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Abstract. Tackling malware that spreads through business and social
networks is a big cybersecurity challenge for large organisations and en-
terprises. To address this problem, we propose a new real-time param-
eter estimation method for forecasting Trojan malware propagation in
such an environment. We set up a novel framework to estimate the per-
interaction transmission rate p and verify the results of the estimation
through a combination of real and simulated data sets. We discuss the
benefits of integrating interactions into malware propagation models and
study the accuracy and performance of our estimator for the parameter
p. We examine how this method enables us to incorporate early detection
data into real-time forecasts and how we are thus able to model malware
not yet seen before.

Keywords: malware propagation model - forecasting - real-time - zero-
day attack - parameter estimation - compartmental model - agent-based
model - Trojan malware - networks - spreading agent - stochastic mod-
elling - simulations.

1 Introduction

With the debilitating effects some malware have had in recent years on corpora-
tions and public bodies [1], it’s imperative to prepare ahead and have foresight
when fighting against malicious software, i.e. malware. It has been theorised that
malware propagation modelling can be used to anticipate the damage malicious
software can cause [2]. The theory developed has drawn inspiration from human
epidemiology, with the first application of a compartmental model developed for
computer malware considered by Kephart and White [3].

A Trojan or Trojan horse is a prevalent type of malware that uses social
engineering to trick users into executing malicious code, for example via clicks
on links sent through email or instant messages; in other words, the between
user interactions become the main vehicle of infection transmission. Utilising
the business and social network of each victim user and the user-to-user inter-
actions, different types of Trojan malware or Trojan components of compound
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malware can spread into the larger business and social network communities
within an entire organisation. Therefore to model Trojan propagation within
such an environment, it is important to consider the interactions through email
or other types of business or social communications. Our work focuses on in-
troducing an estimation method that can use the early-life malware infection
information to estimate the infection transmission rate per interaction p which
can then be used in forecasting systems and simulations. This early-life infection
data contains real-time interaction, network structure, and incidence informa-
tion. In contrast, related work makes assumptions on the infection parameter p
when modelling and simulating the infection spread. The main novelty of our
current approach is that we can infer the infection properties even if the type
of infection has not been seen before. Such attacks are referred to as zero-day
attacks, against which security defences in place have no means to detect or
defend. Conventional mitigation measures may only be known after the malware
has been studied for some time.

To our knowledge, this is the first study to estimate p, the transmission rate
per interaction in a corporate environment for Trojan propagation forecasting.
In Section 3 we present the modelling framework and the subsequent estimator;
in Section 4 we describe the results and conclude this paper in Section 5 with
suggestions for future work.

2 Related Work

Malware propagation models have been studied in the literature for some time
[2,4,5]. Liu et al. [2] implemented an S-I-R compartmental model with the aim
of studying the theoretical dynamics of online malware spread and to theorise
on the best response approaches. Newman et al. [4] analysed different email
networks and the effects of various response strategies on the studied graphs.
Komninos et al. [5] developed a worm propagation model that models the spread
of malware through people’s contact lists. In this work, they created acquaintance
graphs by generating edges between nodes in a network, however, they did not
take into account the effect of weighted graphs.

Weighted networks were first introduced by Deijfen [6] to study human epi-
demics on graph-based networks where the transmission does not take place
with the same probability between individuals and analysed the effect this had
on vaccination and epidemic thresholds. In their following work with Britton [7],
they showed a relationship between the volume of connections and the propa-
gation of an epidemic by incorporating the degree distribution of the network
graph and estimating the basic reproduction number (Ry), which is one of the
key characteristics of an infection. They also suggested that Ry can be over- or
underestimated by overlooking this relationship. Their suggestions highlight the
need to utilise non-homogeneous transmission rates and to account for the inter-
play between interactions and infection spread in malware propagation models.

Further work has been done by Faghani [8] on modelling the propagation
of Trojan malware on online social networks where they also validated their
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results through experiments. This work makes no attempt to estimate the actual
propagation characteristics and only states a non-exhaustive list of pre-defined
parameters which they then use to calibrate their models. To understand the
evolving malware better, we need timely and dynamic parameters which are not
reliant on overly restrictive assumptions. Therefore, we focus on estimating p, the
transmission probability per time unit per interaction. This parameter does not
require us to assume the states of each individual. Nevertheless, this importance
has been noted in the human and animal infectious disease literature and has
been studied for some time [9,10].

3 Methods

3.1 Model assumptions

Nodes in a network A node in our network is defined as an end-point device
that a member of a business or social network uses to communicate with other
members of the network. This communication can be instant messages, emails,
voice calls, etc. We use a node to denote that there is a relationship between a
device and human and we are not looking at autonomous devices. An infection
in a node occurs because an end-user has executed malware therefore we do not
differentiate between nodes and end-users. Because our malware propagation
models are temporal models, the scenario where a user owns two or more systems
and execute malware on these systems at the same time is rare and is ignored
in the study.

Network structure The network structure of the business and social network
in a corporate in this study is represented by a graph. The nodes are connected
by edges in the graph, where each edge denotes that a direct interaction has
taken place between any two nodes at some point in the past. The weight of
these edges represents the number of interactions that have occurred between
two connected nodes in a given time period, this can be communication via email,
instant messages, etc. An edge does not necessarily mean that an interaction has
taken place during the time period which we are modelling but it represents a
possible channel of interaction. Neighbours are the set of nodes a given node has
interacted with directly at some point in the past.

Interactions between nodes in the network An interaction between any
two nodes in a network is bi-directional, which means any two nodes can commu-
nicate with each other as long as they are connected by an edge. An edge forms
once the first interaction has taken place, this is logged by systems like contact
lists, email, and instant messages history. In our estimation method, we focus
only on incoming interactions from infected nodes to their susceptible neigh-
bours. We look at incoming interactions because we assume that only through
new communication can nodes be infected and that their outgoing interactions
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cannot infect themselves if they are susceptible. We assume that infected in-
dividuals cannot be re-infected therefore interactions between any two infected
neighbours are not incorporated into the model. We assume removed nodes in the
network cannot re-infect the susceptible nodes because when computing systems
are cleaned up or taken out of the network it is rare or not possible to infect other
systems again. As we are estimating an average infection transmission rate, we
consider each type of interaction to have equal probability of infecting, in which
case we only care about the sum of all interactions from infected neighbouring
nodes. A simple example is given in Figure 1.

Time period The modelling framework allows for user-specified time periods,
we set a daily granularity which we will refer to as our time unit for the rest of
this paper. The interaction data and infection incidence data are broken down
into daily time periods as well.

Input data The input data to this model comprises multiple sources. The
network structure, set of nodes and their neighbours and their interactions are
all data sets that can be obtained from corporate network and system logs.

The estimator has been calibrated on simulated interaction data sets which
are simulated according to assumptions made on the network and the data.
We set up an experiment where we used different distributions to generate the
interactions between neighbours for each time unit.

We also use an open-source data set that represents a Facebook social net-
work to substitute for a real-life corporate interaction network [11]. This net-
work contains 4069 nodes representing members of a social network and their
corresponding edges representing Facebook friendship. We sample from the in-
teractions for each existing edge for each day in an infectious period which we
set to 30 days in this experiment.

Fig.1: An illustration of an example set of nodes with their interactions c; ;
where i, j represent the starting and end node respectively
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3.2 Malware propagation model

The model for malware dynamics is an S-I-R compartmental model that de-
scribes the transitions of individuals in a given corporate social network between
these three states:

Susceptible (S) healthy but can be infected
Infected (I) contracted the malware and can spread it

Removed (R) no-longer infected, cannot infect others nor can it be reinfected

m(®
1-@-pHcu r

v

Fig.2: An illustration of the malware propagation model between each state.

We use an S-I-R model as a simplistic transmission model because it encapsu-
lates the key stages of infection transmission and it is sufficient for demonstrating
the estimation method of our key parameter p, the average rate of transmission
for a single interaction for every node in our network. Nodes move through the
states in the S-I-R sequence and we use p to model the average transmission rate
per interaction and use r as the average removal rate. The transition between
states is modelled using the relationship in Figure 2. Our removed state denotes
the set of nodes that have either been infected then removed from the network
or have been patched and cannot be infected again. We only focus on the S to I
transitions as we seek to find p given real-time data. We incorporate interactions
into this model to parallel a weighted network where transmission rates may not
be the same for all nodes. The likelihood of transmission is higher for nodes that
have more interactions with infected nodes. We derive the transmission rate for
any susceptible node using this interaction-based model.

At time unit ¢, we take any node; where i € {1, ...,n:} and n; = total number
of infected and susceptible nodes in the network at time unit ¢.
We also denote any infected neighbour of node; as node;, where j € {1, ..., mt(i)}
and m;( = total number of infected neighbours of node; at time unit ¢.
The corresponding set of neighbourhood interactions are Inter; j = {¢i 1, ..., ¢; y, 0 }
where ¢; ; represents the total sum of interactions between nodes 7 and j at time
unit ¢.
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P; represents the infection transmission probability for node; at time unit ¢.

P, = P(node; is infected at time unit t)
= P(node; is infected by Inter; ; interactions at time unit t)
=1 — P(node; is not in fected by Inter; ;

interactions at time unit t)

my @
=1- ] @-p)
Jj=1
g ()
=1—(1—p)>= (1)

3.3 Maximum likelihood estimation

Maximum likelihood estimation is a well-understood statistical approach to pa-
rameter estimation and for large sample sizes can be used as an unbiased esti-
mator of a distribution parameter. We obtain the likelihood function using P;
from equation (1) where c¢;,s is the set of interactions and x is the incidence
vector.

Licingiz | p) = [[ ™ (1 = P+ (2)

where

_J 1 if node; is infected

i 0 if node; is susceptible
This likelihood relates to the outcome of n; Bernoulli trials, and through this, we
can find the the parameter p that maximises the likelihood given the observed
data sets = and c;,f. We use a bounded scalar minimisation approach on the
negative log-likelihood function to find the parameter p for each time unit. We
use a scalar minimisation approach because we are dealing with a scalar function
of one variable with bound between 0 and 1 since it is a probability. Additionally,
this was a method which was fast to implement and is often used for minimising
scalar functions [12].

4 Results

We set up the experiment with the assumptions and input data sets described
above. We first simulate real interactions using Poisson distributions with var-
ied parameter A. All of these distributions mimic the non-uniform interaction
patterns each node has in the network. Business and social interactions within
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a corporate environment are likely to result in non-uniform distributions of in-
teraction frequencies per edge, for example someone in a sales role may interact
with more people than someone in a research role. We sampled from Poisson()\)
distributions where A = 0.3, 1, 5, 15/degree.

In the first three formulations of A, we increase the values of A gradually
to investigate how sensitive our estimation method is to the simulated data
with varying underlying values of A. These three values are chosen to represent
value ranges of below 1, 1, more than 1. The Poisson(1) distribution models the
scenario when we have an average frequency of interactions as one but a small set
of nodes with much higher frequency of interactions. The Poisson(5) distribution
parallels an interaction network where the average frequency is higher than in
the Poisson(1) case and there is also a much larger variance in the frequency of
interactions.

In particular, the Poisson(0.3) distribution is chosen to make comparisons
with the fourth choice in which A equals 15/degree. When A is a fixed value,
the average frequency of interactions per unit time does not account for the
scenario where the frequency of interactions is associated with the number of
edges connected to each node. In the fourth and final formulation, X is inversely
proportional to the degree of each node and varies for each node. We use this
distribution to model a setting where nodes with large neighbourhoods will have
low volume interactions on each edge, e.g. workers who have many individual co-
workers in their direct business and social networks are receiving fewer emails per
co-worker compared to workers who have fewer co-workers in the direct network
but are in frequent contact with them. Since the average degree in our network
is approximately 44, A = 15/44 ~ 0.3 which is in comparison to the average
frequency outlined in the Poisson(0.3) distribution.

We define our time unit as one day. The infection transmission rate per
interaction per day for each simulation is set as p € {0.05,0.02, ...,0.95}, a set of
values which we iterate through. Each simulation produces a set of infected and
susceptible nodes for each day. Together with the simulated interaction data set
and the network structure data set, we are then able to test the efficacy of the
estimator. We take the estimated p for each day of the infectious period and
average them to produce the average transmission rates. To compare efficacy
over different simulation runs of the estimator, we also set up » = 100 runs with
each distribution described. Each of these runs represents a 30-day infectious
period for each p we set. We represent the spread of the estimates using box
plots and show the perfect estimation with the diagonal dotted line.

The estimation has varying accuracy for the simulated values of p and also
for the different interaction frequency distributions we sample the contacts from
as shown in Figure 3. We observe that for the relatively low frequency of interac-
tions, such as the case of Poisson(0.3), the method tends to underestimate the
per-contact transmission rates, particularly for lower per-contact transmission
rates. In the case of Poisson(1), the estimator seems to produce results with the
least variation but overestimates for larger transmission rates. When interac-
tion frequency follows Poisson(5), the estimator seems to estimate well for very
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Boxplot grouped by probability Boxplot grouped by probability
of n=100 simulated values for Poisson(15/degree) of n=100 simulated values for Poisson(0.3)
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Fig.3: Box plot of r=100 simulations using (a) Poisson(15/degree); (b) Pois-
son(0.3); (c) Poisson(1); (d) Poisson(5)

small transmission rates but overestimates for the rest of the values. Finally for
interaction pattern modelled by Poisson(15/degree), the variation in the esti-
mation results is much bigger than that for Poisson(0.3) for very small values.
Apart from the very small values, the estimator for Poisson(15/degree) tends
to underestimate which is a similar behaviour to the estimator for Poisson(0.3).

5 Discussion and Future Work

The explanation for the general variation that we see in all of the results can be
partially attributed to the structure of the underlying interaction network. Since
we have certain isolated nodes, an infection may or may not take off. Therefore,
the number of cases may be very small and however many interactions occur,
the cluster may not end up interacting with other clusters and the spread of
the infection is halted. This can contribute to the results that we see for the
Poisson(0.3) case where p is small. In Figure 4c, we can see that most estimated
values of p are 1, this is a direct result of a constant likelihood function. This
may be due to the fact that some nodes have no interactions or that some nodes
that may act as a bridge between communities are removed early on.
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The likelihood function in this case is therefore a constant if ¢; is equal to 0,
then P; equals to 0. We see the same pattern in the Poisson(15/degree) case
in Figure 4a, which also relates to the network structure for small values of p
where if certain well-connected neighbourhoods are infected then we can estimate
accurately but this is not the case for isolated clusters.

0.0 0.2 0.4 0.6 0.8 1.0 Y 0.2 0.4 0.6 0.8 1.0
Estimates Estimates

(a) p=0.05 and Poisson(15/degree) (b) p=0.75 and Poisson(15/degree)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Estimates Estimates

(¢) p=0.05 and Poisson(0.3) (d) p=0.75 and Poisson(0.3)
Fig.4: Density histogram of r=100 simulations for (a) p=0.05 and Pois-
son(15/degree); (b) p=0.75 and Poisson(15/degree); (¢) p=0.05 and Poisson(0.3);
(d) p=0.75 and Poisson(0.3)

There is also a noticeable bias in the estimates for different distributions we
sampled from. For the Poisson(15/degree) and Poisson(0.3) cases, we can see a
trend of underestimating p. We see the opposite for the Poisson(5) distribution.
Where we underestimate values of p, we see that the density of values are gen-
erally around the correct p values however we also observed that a considerable
amount of our estimations of p are significantly lower than expected. The result-
ing biases for the different interaction distributions are likely related and can be
seen in Figure 4b and 4d. From the incidence curve in Figure 5a and 5b, we see
no obvious difference between the different simulations and therefore attribute
the bias to possibly very low volumes of interactions that occur which may then
wrongly indicate low p values when minimising the likelihood function. This in
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Fig.5: Number of infections per day for (a) p = 0.75 and Poisson(15/degree);
(b) p = 0.75 and Poisson(0.3)

turn helps explain why the Poisson(5) distribution overestimates values of p,
since we are more likely to observe much higher levels of interactions which then
wrongly overestimate p. Since we are aware of this bias, we may incorporate this
into the forecasts when we observe similar interaction patterns. For the slight
overestimation we observe for the Poisson(1) case, the explanation is that when
we are using such high values of transmission rate per interaction, we may be ob-
serving very similar spreading behaviour for a variety of p above that threshold.
Therefore, it may be very difficult to distinguish between the scenarios where a
node may have a single interaction for a malware with an extremely high trans-
mission rate per interaction or one where many interactions have happened but
the malware is not as infectious. In both cases the transmission probability may
be very close to 1.
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Overall, these results indicate that when we observe a Trojan malware, we
are able to estimate its probability of infection per interaction on average fairly
accurately. However, we see limitations in accuracy when we observe a malware
that has characteristics that indicate it might be extremely infectious and when
the interactions distributions have certain features. Although this is an unde-
sirable effect, this result together with the intuitions of the transmission model
shows that the way we model malware through interactions may need to be
reconsidered. It is important that for forecasting the spread of infection, this in-
accurate estimation is accounted for and some form of bias correction measures
are applied. We also see that the variance within estimates for different runs of
the same simulated data sets can potentially be problematic. This is something
that needs to be considered when developing the real-time forecasting methods
we have discussed. We have experimented with applying MCMC methods and
will need to further explore this option which may be more flexible and provide
more accurate results that incorporate this variance.

The method we propose removes the need to rely on assumptions on p and
can provide more accurate and precise forecasts and simulations. The results of
this investigation have shown that the properties of different malware lend to
different estimation accuracy and this relationship has to be further researched
and analysed. A natural progression of this work is to compare the spreading
behaviour of highly infectious malware and assess how the bias in our estimates
affects forecasts. We also aim to verify our results on real interaction and inci-
dence data. In addition, we are working on models for non-homogeneous trans-
mission rates and we are using the findings and methodologies of this work to
develop real-time malware propagation forecasting models. We will thus be able
to identify at-risk individuals and help cybersecurity analysts respond to threats
in an informed and timely manner. This will aid the deployment of optimal mal-
ware control strategies by being more specific and detailed.
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