
EasyChair Preprint
№ 3713

A Vulnerability Detection Framework for CMS
Using Port Scanning Technique

Md. Asaduzzaman, Proteeti Prova Rawshan, Nurun Nahar Liya,
Muhmmad Nazrul Islam and Nishith Kumar Dutta

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 1, 2020

A Vulnerability Detection Framework for CMS
Using Port Scanning Technique

Md. Asaduzzaman (�), Proteeti Prova Rawshan, Nurun Nahar Liya,
Muhmmad Nazrul Islam, and Nishith Kumar Dutta

Department of Computer Science and Engineering,
Military Institute of Science and Technology, Dhaka-1216, Bangladesh

asadbd45@gmail.com

Abstract. In the era of technology, attack on computer infrastructure
is considered as the most severe threat. Web server is one of the most im-
portant components of this infrastructure. Preventive measures must be
taken to deal with these attacks on the web servers. For this reason, vul-
nerability detection needs to be carried out in an effective way and should
be mitigated as soon as possible. In this paper, an effective framework
for vulnerability detection of web application is proposed. This frame-
work targets the web applications developed with content management
systems (CMSs). It obtains prior knowledge of the vulnerable extensions
of a specific CMS from its contributors. The framework is run against a
target web server using a well-known port scanning tool, Nmap. It checks
if there is any existing matches for the vulnerable extension installed in
that web application. Finally, the framework gives an output comprised
of the installed extensions along with the installed vulnerable extensions
in that web application. Although the output result is shown in the Nmap
console, the framework is a segregated entity that works in collaboration
with Nmap. Thus this framework can be well-utilized by the security
specialists to assess the security of a web application in an easier and
effective way and also to evaluate vulnerability of web servers; hence
shielding the web applications from various kinds of security threats.

Keywords: Security scanner · Port scanning · Content management
system · CMScan · Nmap Scripting Engine

1 Introduction

Nowadays, there is an increasing dependency on web applications. From an indi-
vidual to an organization, almost every transaction is available, stored or traded
in the web. Because of ease of access and its increasing nature of productivity
and operational efficiency, reliability on web services has increased, which in turn
has raised the security issue of the web applications. Web vulnerability refers to
the system flaw or weakness through which the security can be compromised and
resources can be exploited. Attacker can access the flaw; thereafter breach the
system integrity through exploitation. This can be easily detected by using net-
work vulnerability scanners, which identify the security loopholes in a computer

network by inspecting the most potential targets. Network vulnerability scan-
ners like: SARA [1], SAINT [2], VLAD [3] and Nessus[4] are very effective but
most of them are paid and require technical knowledge to use. Whereas, Nmap[5]
is a multipurpose utility tool and a port scanner, which is used by millions of
beginner users for its easy usability. It discovers services and hosts running in a
computer network, including host and port discovery. An NSE script [6] allows
doing a wide variety of network assessment tasks.

A widely used application for managing web contents is the Content Manage-
ment System (CMS). It supports a modular and adaptable framework with the
installation of plugins, so that new features can be added and thus the main func-
tionalities of the CMS can be achieved. Amongst all, the most widely used CMS
platforms are: WordPress (58.8%), WeBex (12%), Joomla (6.5%) and Drupal
(4.8%) [7]. Kaluža et al. [8] carried out a survey on a number of companies and
found that 61.11% of the companies used CMS, where 48.48% of the respondents
used free CMS, 6.06% answered commercial, 18.18% answered custom CMS and
27.27% of the respondents failed to provide an answer. The CMSs can be kept
secured if all the extensions and the plugins can be updated regularly. But the
most common problem is that amongst the huge number of plugins, maximum
are getting outdated thus compatibility issues are created while using the latest
versions.

The main vulnerability issue of CMS lies within its feature-easy identification.
Outdated plugins are the entry points for most of the attackers. Cernica et al.
[9] showed that from the top ten million websites, 16% of them used WordPress.
The paper also conveys that from the total of 21 backup plugins, 12 were found
to be vulnerable that can lead to ’Sensitive Data Exposure’. Martinez-Caro et
al. [10] conducted an extensive study on CMS alongside some basic security
analysis on Joomla and Drupal and found some security vulnerabilities in the
extensions of Joomla and Drupal which can be dangerous. Studies show that in
2018, 90% of the hacked CMS based websites used WordPress, then Magento
taking up to 4.6% of the data sample, 4.3% of the websites with joomla then
consecutively Drupal and ModX [11]. With these kinds of publicly disclosed
exposures, it is easier for the attackers to exploit. Network security professionals
often have to depend on the other paid vulnerability assessment tools in order
to assess the security of web applications (including CMS). Besides, almost all
network-security professionals along with network administrators are experts on
using open source port scanners. So, an advanced framework can be incorporated
in the port scanner that will allow the users to assess vulnerabilities of CMSs.

Therefore, the objective of this paper is to integrate the most required func-
tionalities of a vulnerability scanner for CMSs with a popular port scanner. In
order to attain this objective, this research proposes to build an open source
framework which incorporates an NSE script in a port scanner (Nmap). It can
detect the installed extensions in a CMS; hence it can detect the vulnerable
extensions along with the affected versions.

The remaining sections of this paper are organized as follows: a brief overview
of the related work is presented in section 2, the conceptual framework is dis-

cussed in section 3. In section 4, the design and development of the framework
is discussed. Further, the evaluation of the framework is presented in section 5,
followed by a discussion and conclusion in section 6.

2 Literature Review

This research focused on the field of CMS based web applications, their vulner-
abilities, security aspects and contextual threats and also the ways they can be
exploited. To find out the related literature, a search was conducted in the major
scholar databases including ACM Scholar, Google Scholar, IEEE Explorer and
ScienceDirect using suitable search strings. The related literatures are presented
briefly below.
Most of the CMSs are customizable, adaptable and built-in open source frame-
works (WordPress, Joomla or Drupal) [12], hence they are vulnerable by their
nature. Also, a shared environment provides the users with shared flaws which
encourages the security researchers and the hacker community. Once these vul-
nerable loopholes are found, they are used for mass attacks. Yu et al. [13] made
a model of mapping these vulnerabilities and attack patterns by analyzing the
attack targets. He also developed a methodology to test and detect them in web
services. Scott et al.[14] introduced a Secured Web Applications Project(SWAP)
against various application level attacks. It protects against a large class of at-
tacks than existing web methodologies. In addition, Kals et al. [15] proposed
SecuBat, another vulnerability scanner to analyze web sites for exploitable SQL
and XSS vulnerabilities.

As the most common format of exploit is SQL injections, Wassermann et al.
[16] approached an automated and precise solution. It characterizes the values
of string variable assuming with a context free grammar and tracks the user
modifiable data by modeling string operations. It is implemented in PHP, dis-
covers both known and unknown vulnerabilities as well as scales to large sized
programs. Huang et al.[17] created a static analysis algorithm and a tool named
WebSSARI, which statistically verifies CMSs’ code where run time overhead
is reduced to zero with sufficient annotations. After verifying, it automatically
secures the potentially vulnerable sections of the code. Jovanovic et al.[18] in-
troduced another static analysis tool(Pixy). For detecting XSS vulnerabilities
in PHP, as well as detecting taint-style algorithms like SQL or command injec-
tions Pixy uses data-flow analysis and is written in Java. Fu et al.[19] proposed
another static analysis tool which automatically generates test cases exploiting
SQL injection vulnerabilities in ASP.NET web applications.

Few researches are conducted using Nmap NSE scripts. Rosa et al. [20] de-
veloped a number of open-source tools for analysis of PCOM security aspects
that includes a Nmap NSE PCOM scan. In [21], Nmap NSE is used for testing
authentication servers for malware infection. But no research is conducted for
the CMS scan.

There is a number of existing Nmap NSE scripts that serve different purposes
during vulnerability assessment [22]. Two of the scripts named http-wordpress-

enum.nse and http-drupal-enum.nse can be used to detect the vulnerabilities of
websites that are developed with WordPress and Drupal [23]. These scripts only
allow users to detect vulnerabilities of WordPress (http-wordpress-enum.nse)
and Drupal (http-drupal-enum.nse) respectively based on a limited number of
extensions listed in wp-plugins.lst, wp-themes.lst, drupal-modules.lst and drupal-
themes.lst [24]. But these are two different scripts and unable to accommodate
new CMS.

In sum, though there are numerous existing methods of detecting vulnerabil-
ities of web based applications, almost all of them are paid. The most required
functionalities of vulnerability scanner and port scanner are not integrated to-
gether yet. Although some functionalities are integrated, these only cover two
specific CMSs. Thus this research work will focus to develop an open-source
framework that will achieve these features using port scanning technique in the
context of CMSs.

3 Conceptual Framework

The proposed conceptual framework for vulnerability detection is depicted in
Figure 1. The whole design process consists of two stages: Information Gath-
ering Stage and Operational Stage. In the Information Gathering Stage, infor-
mational details about a new CMS will be collected. Based on the information
achieved, the main framework will be run to detect the vulnerabilities during
the Operational Stage.

One of the major concerns is to accurately detect the vulnerable extensions
or vulnerable core CMS and to minimize the security risks. Another concern is
to adapt a newly developed CMS in the framework. It is needed to enrich the
list of information of the CMSs in order to maximize the accuracy. So, the repos-
itory is made public so that contributors can enrich the information of existing
CMS and append information about a new CMS in the Information Gathering
Stage. Each of the contribution will be highly appreciated in the contribution
section. The information contains details (i.e CMSs’ name and common direc-
tory structure for the extensions) list of extensions available to install and list of
vulnerable extensions which are publicly available in JSON format. Conventions
to contribute in the repository are documented in the development process.

In the Operational Stage, the framework is run against a web server (the
target host). The framework constructs a URL using the directory structure
which resides in the aforementioned JSON file. It checks for the existence of the
directory (HTTP response: 200) and takes decision accordingly. If the directory
exists, it goes for further operation. Following the similar process, extensions are
extracted from the web server those are already installed in the CMS. Vulner-
ability checking of this CMS is performed by analyzing the installed extensions
with respect to the vulnerable extensions’ list.

The scanner returns a list of vulnerable extensions. It can also return the
affected versions, provided that the installed extension and vulnerable extension
contain version information.

Scan and find
web service port
or acquire port
from parameter

Send HTTP
request for

each CMS with
constructed

URL

Detect CMS
analyzing HTTP
response: 200

Construct URL using
directory structure

and extension name
for detected CMS

Check
extension’s

vulnerability

Save
installed

extensions

Detect extension
analyzing status:

200

Send HTTP
request to

the URL

Save installed
extensions,
version and
vulnerability

Target Host

cmsname_
vulnerable_
extensions.

json
Suggest a
probable
solution

Operational
Stage

Information
Gathering
Stage:
Collecting
Extensions

Information
Gathering
Stage:
Collecting
Vulnerabilities

1 2 3 4 5 6

78910

construct URL
using directory

structure to read
version of the

extension

send request
and extract

version from
readable file,

store

Installed ExtensionsInstalled Extensions and version

Installed
Extensions
with version,
vulnerability

1112

Contribution in
the Repository

Gather information
from open source

+ initial fire up

Contribution in
the Repository

Gather information
from open source +

initial fire up

cmsname_
extensions.

json

cms_details
.json

Fig. 1. Working process of the proposed framework

4 Development of the Framework

The framework can accommodate any newly released CMS. This framework
works in two phases- firstly, it gathers the list of CMSs’ details along with the
list of all the extensions and vulnerable extensions that is referred to as the
Information Gathering Stage. Secondly, a website is scanned with vulnerability
detection framework based on the gathered information in the first stage, using
a port scanning technique (Nmap) that is referred to as the Operational Stage.

Information Gathering Stage This part of the framework is open to all the
contributors. Any contribution to this open source tool will be highly appre-
ciated in the contributors section of GitHub. Initially, the GitHub repository
contains information of WordPress and Joomla which can be updated through
the proper pull requests and verification. Anytime, new CMSs can be added to
the repository by appending the lists of information by following the instructed
conventions. There is a cms details.json file which contains the details about
the CMS in an array. In order to append a new CMS in the framework, the
cms details.json must be updated with the new CMS name, CMS version file
directory and array of CMS extension file directory. A new CMS entry can be
appended to the array according to the following syntax:

[{
"cms_name": "example",
"cms_version_file_directory": "/example.txt",
"cms_extension_directory": [

"/directory_1",
"/directory_2"

]
}]

The cms version directory is the directory path of a file that contains version
of the installed CMS and the cms plugin directory contains the array of the
directories those contain the installed extensions.

There are two other files to be created for each CMS. One is the cmsname extension
.json that contains all the extensions available for installation in the cmsname
CMS using the following syntax:

[{
"extension": ["example_1","example_2"],
"directory": ["dir_1/{ext}/{ext}.txt",
"dir_2/{ext}/{ext}.txt"]

}]

Here, directory denotes the file paths those contain version of the extensions. In
the Operational Stage ext will be replaced with the extension name. Another file
to be created for each CMS with the name cmsname vulnerable extensions.json
that contains all the vulnerable extensions along with the list of affected versions
for cmsname CMS using the following syntax:

[{
"vulnerable_plugin":"vulnerable_plugin_name",
"affected_version":["4.5","2.1"],
"description_of_vulnerability":"SQLInjection",
"code_type":["cve","exploitdb"],
"code":[{"cve":"xxxxx","exploitdb":"xxxxx"}],
"source_url":["https://example.com/xxxx/",
"https://example.com/xxxx"]
}]

The above syntax may be changed and will be updated accordingly in the GitHub
documentation in case of any change in the framework.

Operational Stage In this stage, the framework works like an operational tool
using the gathered information from the previous stage. In this paper, the Op-
erational Stage for the proposed framework is developed with an Nmap script
written in Lua programming language. Name of the script is cmscan.nse. When
the nmap –script cmscan target command is run in the terminal, the script
is called and it starts working. At first, it detects the CMS looking into the

cms details.json and thereby recognizing the directory structure. It reads the
version file, provided that the file is available in order to check the vulnerability
of the core CMS. Then it takes the directory path of installed extensions from
the same file. It looks for the cmsname extension.json file to check an exten-
sion’s existence in the CMS. A URL is constructed from the directory path of
extensions and it is appended after the host. Then it checks for the URL’s ex-
istence using the http request. If the extension exists in the CMS, the version is
extracted by reading the file, a URL is constructed using the directory given,
that looks up on the cmsname vulnerable extensions.json file to check whether
any version of the extension is vulnerable or not. If the version is not found, it
is suggested that the user should look for the extension manually.

In this way, the vulnerable plugins are detected along with its CVE, de-
scription of the vulnerability and source URL. The process is made faster and
efficient using the concept of multi-threading and parallelism. Initially the frame-
work has a base of huge list of information that contains two CMSs: WordPress
and Joomla for the initial fire up. However, more CMSs can be accommodated
in the framework.

5 Performance Evaluation of the Framework

To evaluate the performance of the framework, a simple experiment is con-
ducted in two phases. Firstly, two web servers are set up with two different
CMSs (i.e WordPress and Joomla) to evaluate the performance. Secondly, the
framework is run against a number of web servers within a private network,
where the servers are mostly operated with CMSs. In the first phase, WordPress
and Joomla are installed in two different servers. Some extensions are installed
in both of the servers. Some vulnerable extensions are installed in the servers in-
tentionally. The two applications are hosted in the servers with IPs 192.168.0.10
and 192.168.0.12 for Joomla and WordPress respectively. The Nmap scan is
performed against these two IP addresses by running the following commands
in terminal-

nmap --script http-cmscan -p80 192.168.0.10
nmap --script http-cmscan -p80 192.168.0.12

Figure 2 shows the scan result for WordPress based web application. The
scan result finds 6 plugins, 2 of the plugins are vulnerable. The names of the
vulnerable plugins are loco-translate 2.2.1 and wp-cerber 8.0. The scan returns
result in 1.25 seconds. While figure 3 shows the installed plugins and plugin
details from the WordPress admin panel. Another snapshot of scan result for
Joomla based web application is depicted in figure 4 and the extensions page of
Joomla admin panel is depicted in figure 5. In this scenario four extensions are
found in the server, one of the extensions is found to be vulnerable.

In the next phase, the script is run against a block of IP address (172.16.0.0/24)
where a number of CMSs are hosted. Nine hosts are found those run CMSs in

Fig. 2. Passive scan result of the WordPress host

Fig. 3. WordPress extension page from admin panel

web server, most of the servers are run with WordPress. The result summary is
given in the Table 1.

As per Table 1, the framework detects nine web servers. Two of the servers
are using Joomla CMS and another seven servers are using WordPress CMS.
Total number of plugins is shown in the #plugins column and total number
of vulnerable plugins is shown in the #vulnerability column. Required time for
the scan process is also shown for the different target IPs. The framework gives
output based on the extension’s information list. If the list is rich and accurate,
the output will be accurate, otherwise it can be misled. The output delay depends
on the number of extensions installed in the target web application and on the
link speed. The result shows that using the stated port scanning technique, the
framework can work efficiently and accurately based on the information list.

Fig. 4. Passive scan result of the Joomla host

Fig. 5. Joomla extension page from admin panel

Thus the proposed framework will help the security specialists to figure out the
serious vulnerabilities which are potential to cause huge damages.

Table 1. Sample time and vulnerability of target websites.

Target CMS Time(Sec) #plugins #vulnerability

172.16.0.12 Wordpress 24.08 5 1

172.16.0.13 Wordpress 27.11 10 2

172.16.0.32 Joomla 257.14 98 14

172.16.0.33 Joomla 165.75 61 11

172.16.0.34 Wordpress 100.45 47 5

172.16.0.42 Wordpress 25.79 6 0

172.16.0.78 Wordpress 59.98 21 1

172.16.0.74 Wordpress 41.841 13 0

172.16.0.61 Wordpress 28.44 8 1

6 Discussion and Conclusions

In this paper, a framework is proposed that integrates the most important com-
ponents of a vulnerability scanner with a port scanner in the context of CMS.
Knowledge base of this framework is CMSs’ information which is mostly de-
pendent on the contributors. But the information will be updated from servers
as well, which minimizes the framework’s dependency on the contributors. As
a result the framework will help in vulnerability assessment by detecting the
vulnerabilities of a CMS efficiently.

The main implication of the framework is that it requires less effort to op-
erate. Also, it is not needed to go through the hassle of paid and full-fledged
vulnerability scanners. The network administrator can also use this to know
about the possible vulnerabilities.

There are a number of existing tools to serve the purpose of vulnerability
assessment. Most of the tools are heavy and paid. There is a shortage of open
source tools that can help to assess the vulnerabilities. Most of the open source
tools are not dedicated for the CMSs and so fails to detect the vulnerabilities of
most of the CMSs. These tools are good for only specific CMSs. Although Nmap
is a popular multipurpose tool for vulnerability assessment, there is no script
or framework of Nmap to assess the vulnerabilities of CMSs [22]. In this paper,
an open source framework is proposed that can be used for the vulnerability
assessment of all the CMSs using Nmap. The framework serves the purpose of
vulnerability assessment for a broader range of websites developed with CMSs.

The framework is currently being operated using port scanning technique
and is dependent on Nmap. Also the knowledge base of this framework is mostly
dependent on the contributors. The run time of the framework varies with the
configuration of machine and network connectivity with the target host. The
machine needs internet connection to perform the scan.
In future, the main initiative is to make the framework independent and as well
as to incorporate in the other popular security tools. Also the aim is to mini-
mize the dependency on the contributors by deploying servers for the purpose
of gathering and updating the information about CMS. The scan can also be
performed without internet connection; in that case the information lists are to
be downloaded to the local machine in the same directory of the script. This
process does not ensure the updated repository to be resided in the user’s ma-
chine. Although a number of network scanning tools exist in the open source,
but few of those are developed for CMSs scan. Also the tools are developed for
a specific CMS. Some tools have support to scan all kind of CMSs, but the users
are to pay a heavy cost for the tools. Performance evaluation can be carried out
by comparing the output for a specific CMS with the existing open source tools
and also with the paid tools. In future, a detailed performance evaluation and
comparison will be conducted with the existing frameworks.

In this new course of technological evolution where everyone uses devices
which is more or less connected to common or private networks. Access, misuse
and hacking of files and directories are happening more than ever. The framework
can help to find these vulnerabilities and detect the ways through which network

interrogation is possible to inform the users or the administrator, thus protecting
from further attacks by making a more integrated and rigid network.

References

1. Security auditor’s research assistant, http://www-arc.com/sara/. Last accessed 29
Nov 2019

2. Saint cybersecurity solution, http://www.saintcorporation.com/. Last accessed 29
Nov 2017

3. Vlad the scanner, http://www.decuslib.com/decus/vmslt00b/net/vlad readme.
html. Last accessed 29 Nov 2017

4. Nessus vulnerability scanner, https://www.tenable.com/products/
nessus-vulnerability-scanner. Last accessed 29 Nov 2017

5. Lyon, G.F.: Nmap network scanning: The official Nmap project guide to network
discovery and security scanning. Insecure (2009)

6. Nse-nmap scripting engine, https://nmap.org/book/nse.html. Last accessed 29 Nov
2017

7. Market share:top website platforms and example sites, https://websitesetup.org/
popular-cms/. Last accessed 29 Nov 2017

8. Kaluža, M., Vukelić, B., Rojko, T.: Content management system security. Zbornik
Veleučilǐsta u Rijeci 4(1), 29–44 (2016)

9. Cernica, I.C., Popescu, N., Tiganoaia, B.: Security evaluation of wordpress backup
plugins. pp. 312–316 (05 2019). https://doi.org/10.1109/CSCS.2019.00056

10. Martinez-Caro, J.M., Aledo-Hernández, A.J., Guillen-Perez, A., Sanchez-Iborra,
R., Cano, M.D.: A comparative study of web content management systems. Infor-
mation 9, 27 (01 2018). https://doi.org/10.3390/info9020027

11. Website hacked trend report 2018, https://sucuri.net/reports/
19-sucuri-2018-hacked-report.pdf. Last accessed: 24 Jan 2020

12. Meike, M., Sametinger, J., Wiesauer, A.: Security in open source web content
management systems. IEEE Security & Privacy 7(4) (2009)

13. Yu, W.D., Aravind, D., Supthaweesuk, P.: Software vulnerability analysis for web
services software systems. In: Computers and Communications, 2006. ISCC’06. Pro-
ceedings. 11th IEEE Symposium on. pp. 740–748. IEEE (2006)

14. Scott, D., Sharp, R.: Developing secure web applications. IEEE Internet Comput-
ing 6(6), 38–45 (2002)

15. Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: Secubat: a web vulnerability scan-
ner. In: Proceedings of the 15th international conference on World Wide Web. pp.
247–256. ACM (2006)

16. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: ACM Sigplan Notices. vol. 42, pp. 32–41. ACM (2007)

17. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web
application code by static analysis and runtime protection. In: Proceedings of the
13th international conference on World Wide Web. pp. 40–52. ACM (2004)

18. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web
application vulnerabilities. In: Security and Privacy, 2006 IEEE Symposium on. pp.
6–pp. IEEE (2006)

19. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis
framework for detecting sql injection vulnerabilities. In: Computer Software and
Applications Conference, 2007. COMPSAC 2007. 31st Annual International. vol. 1,
pp. 87–96. IEEE (2007)

http://www-arc.com/sara/
http://www.saintcorporation.com/
http://www.decuslib.com/decus/vmslt00b/net/vlad_readme.html
http://www.decuslib.com/decus/vmslt00b/net/vlad_readme.html
https://www.tenable.com/products/nessus-vulnerability-scanner
https://www.tenable.com/products/nessus-vulnerability-scanner
https://nmap.org/book/nse.html
https://websitesetup.org/popular-cms/
https://websitesetup.org/popular-cms/
https://doi.org/10.1109/CSCS.2019.00056
https://doi.org/10.3390/info9020027
https://sucuri.net/reports/19-sucuri-2018-hacked-report.pdf
https://sucuri.net/reports/19-sucuri-2018-hacked-report.pdf

20. Rosa, L., Borges de Freitas, M., mazo, s., Monteiro, E., Cruz, T., Simoes, P.: A
comprehensive security analysis of a scada protocol: from osint to mitigation. IEEE
Access 7 (03 2019). https://doi.org/10.1109/ACCESS.2019.2906926

21. Basam, D., Ransbottom, J., Marchany, R., Tront, J.: Strengthening mt6d defenses
with lxc-based honeypot capabilities. Journal of Electrical and Computer Engineer-
ing 2016, 1–13 (01 2016). https://doi.org/10.1155/2016/5212314

22. Rahalkar, S.: Introduction to nmap. In: Quick Start Guide to Penetration Testing,
pp. 20–39. Springer (2019)

23. Rahalkar, S.: Introduction to nmap. In: Quick Start Guide to Penetration Testing,
p. 23. Springer (2019)

24. List of data in nse libraries, https://svn.nmap.org/nmap/nselib/data/. Last ac-
cessed 04 Sept 2019

https://doi.org/10.1109/ACCESS.2019.2906926
https://doi.org/10.1155/2016/5212314
https://svn.nmap.org/nmap/nselib/data/

	A Vulnerability Detection Framework for CMS Using Port Scanning Technique

