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Abstract—Model-Driven Engineering techniques may achieve
a major support to the software development when they allow
to manage relationships between a running system and its archi-
tectural model. These relationships can be exploited for different
goals, such as the software evolution due to new functional
requirements. In this paper, we define and use relationships that
work as support to the performance improvement of a running
system. In particular, we combine: (i) a bidirectional model
transformation framework tailored to define relationships be-
tween performance monitoring data and an architectural model,
with (ii) a technique for detecting performance antipatterns
and for suggesting architectural changes, aimed at removing
performance problems identified on the basis of runtime in-
formation. The result is an integrated approach that exploits
traceability relationships between the monitoring data and the
architectural model to derive recommended refactoring solutions
for the system performance improvement. The approach has been
applied to an e-commerce application based on microservices that
has been designed by means of UML software models profiled
with MARTE.

Index Terms—Software Performance, Architecture traceability,
Model-driven engineering

I. INTRODUCTION

Over the last decades, the fast growing complexity of software
systems has forced practitioners to use and investigate different
development techniques to tackle advances in productivity and
quality. To this extent, software engineering needs to relay
on automated approaches to keep low the development costs
while tackling the rapid changes of software capabilities that
expose different non-functional properties.

In order to manage software complexity, ever more com-
panies are considering Model-Driven Engineering (MDE) [1]
approaches, with the perceived benefit of enabling developers
to work at a higher level of abstraction and to rely on
automation throughout the development process. Nevertheless,
MDE solutions need to be further developed to scale up for
real-life industrial projects [2]. To this intent, one of the major
challenges is to work on achieving a more efficient integration
between the design and runtime aspects of systems. For
instance, through observation and instrumentation, logs and
metrics can be collected and related to the original software
design in order to comprehend, extrapolate and analyze the
inner behavior of running software system [3].

This research was supported by the ECSEL-JU through the MegaM@Rt2
project (grant agreement No 737494).

In support of this, a recent European project1 has been
founded and supported by both industry and academic part-
ners. As part of its continuous system engineering approach
[4], the project notably aims at providing a runtime-design
time feedback loop that could be deployed and used in
different industrial domains. Such a feedback from runtime
to architectural design level can certainly be exploited to let
the developers have some sort of control and manipulation
possibilities over elements they would not be able to access
otherwise.

In this context, non-functional properties (e.g. performance,
power consumption or memory footprint) are becoming ever
more relevant for the success of a software application, and
the early identification of problems induces lower cost solu-
tions [5]. On one side, in model-based software performance
engineering, a number of approaches have been proposed
for detecting and removing performance problems in soft-
ware models. Some techniques are based on the concept
of performance antipattern, which characterizes bad design
practices that may jeopardize software performance, along
with possible refactoring actions aimed to remove them [6].
On the other side, methods and tools have been proposed for
monitoring system execution and measuring performance of
running systems. However, many of them do not envisage a
solid integration with architectural design models [2]. Instead,
one of the main benefits in adopting model-based performance
evaluation is the ability to conduct analysis (e.g., what-if
analysis) that would be expensive on a real system, such as
to analyze the system behavior when subjected to different
workloads, or to analyze the performance sensitivity to system
parameter variations within some ranges. Basing on a solid
connection between runtime information and architectural
design, developers can suggest architectural changes needed
to meet performance requirements before the system actually
experiments certain scenarios (e.g., some specific workloads).

This paper proposes a model-driven approach to support
designers in their performance analysis and model refactoring
processes by exploiting design/runtime interactions. In partic-
ular, the system behavior at runtime is related to the archi-
tectural design in order to investigate potential performance
issues in design and to suggest possible model refactoring
actions. The approach has been realized within Eclipse EMF2

1MegaM@Rt2 project: https://megamart2-ecsel.eu/
2Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/



and it integrates a model-driven framework for the definition of
correspondences between design and runtime with another one
for performance analysis and model refactoring, respectively
JTL [7] and PADRE [8].

The main novel contributions of this paper are: (i) the
definition of a traceability model between logs extracted from
a running system and an architectural model, (ii) feeding an
architectural model with runtime monitored performance in-
dices, (iii) engineering an end-to-end solution for performance
improvement based on the interoperability between JTL and
PADRE.

The approach has been applied on an e-commerce applica-
tion based on microservices that has been designed by means
of UML software models (profiled with MARTE) [9, 10].

The rest of the paper is organized as follows: Section II
introduces some background information on the model-driven
techniques that have been used in the work. Section III
presents the overall approach. Section IV describes the case
study that is used in Section V to show the approach in prac-
tice. Then, related work is presented in Section VI, whereas
Section VII concludes the paper.

II. BACKGROUND

Model Driven Engineering (MDE) [1] leverages intellectual
property and business logic from source code into high-level
specifications enabling more accurate analyses. In general, an
application domain is consistently analyzed and engineered
by means of a metamodel, i.e., a coherent set of interrelated
concepts. A model is said to conform to a metamodel, meaning
that the former is expressed by the concepts encoded in
the latter. Constraints are defined at the meta-level, and the
consistency relationships between models are guaranteed by
means of (bidirectional) model transformations specified on
source and target metamodels. With the introduction of model-
driven techniques in the software lifecycle, also the analysis
of non-functional properties has became effective by means
of dedicated tools for the automated assessment of quality
attributes [11].

This paper proposes a model-driven approach to support
designers in a performance analysis process that involves
model-driven traceability links to relate software architecture
and runtime information (as introduced in Sect. I). To this end,
the approach exploits the following frameworks.
A. JTL
JTL (Janus Transformation Language) [7] is an Eclipse EMF-
based tool realized to maintain consistency between software
artifacts. Its constraint-based and relational model transforma-
tion engine is specifically tailored to support bidirectionality
and change propagation. The JTL transformation mechanism
provides a relational semantics relying on Answer Set Pro-
gramming (ASP) [12]. The bidirectional engine provides the
possibility to apply the transformation rules in both ways,
from right to left domains and viceversa. Furthermore, given
a change to one model (e.g., the target model), JTL uses the
DLV constraint solver [13] to find a consistent choice for the
other model (eg., the source model).

The traceability mechanism stores relevant details about the
linkage between right and left model elements at execution-
time (including the applied transformation rules) [14]. Trace-
ability links are extrapolated during the transformation execu-
tion and made explicit by the framework. In fact, traceability
models are maintained as models conforms to the dedicated
traceability metamodel, as defined in its Ecore format within
EMF. Traceability models can be stored, viewed and ma-
nipulated (if needed) by the designer. Moreover, traceability
models can be re-used during the transformation execution:
they can be given as input of the transformation in order to
(re-)establish consistency, manage ambiguities and guarantee
the correctness of the transformation.
B. PADRE
PADRE (Performance Antipatterns Detection and model
REfactoring) [8] is an Eclipse-based framework that provides
an integrated environment for the detection of performance
antipatterns (i.e., bad practices that might cause performance
degradation) and the application of refactoring actions to UML
models properly profiled with MARTE for sake of perfor-
mance indices and parameters annotation. In this context,
refactoring goal is to improve software performance while
removing performance antipatterns occurrences. PADRE is
equipped with a set of performance antipatterns detection
rules based on those presented in [15], which are verified
in order to identify bad design practices that might lead to
performance degradation; subsequently, PADRE is able to
apply predefined refactoring actions aimed at removing the
identified antipatterns occurrences.

PADRE exploits the Epsilon platform [16] to provide several
kinds of detection and refactoring sessions with different levels
of automation, which are based on Epsilon Validation Lan-
guage (EVL), Epsilon Pattern Language (EPL), and Epsilon
Wizard Language (EWL), respectively. The first one is used
in this paper, providing so-called user-driven sessions, where
a list of performance antipatterns occurrences is presented to
the user, which can apply one (or more) predefined refactoring
action(s) among the available ones. After a refactoring action
has been applied, PADRE automatically executes performance
analysis (by exploiting a derived performance model) and
provides feedback to the user in order to decide whether the
obtained refactored model meets performance requirements.

III. OVERALL APPROACH

The idea underlying our approach exploits the correspondences
between the architectural design and the runtime aspects of a
software system, with the aim of improving its performance. In
particular, the system behavior at runtime is matched with the
architectural design in order to connect performance critical
situations at runtime with their corresponding potential causes
in design. We specify such design-runtime correspondences
by means of traceability models to make the relationships
between system design and runtime information consistent
and exploitable. Consequently, the analysis of such traceability
models can help to discover system properties deviations and
to identify the affected components.



Fig. 1: Overall approach

The overall architecture of our approach is depicted in
Fig. 1, where the top side represents the flow of activities
on design artefacts, whereas the bottom side contains runtime
activities. The large gray boxes represent the JTL and the
PADRE frameworks that have been introduced in the previous
section. The system under analysis is represented by the yellow
box in the bottom part of the figure. The flow starts with
an architectural design (represented by an UML Model) and
Monitoring data (represented as Log files), and it follows a
sequence of steps that are described in the following.

A. Runtime information mining

As depicted in Fig. 1, runtime data (i.e., logs/traces) are
obtained through a monitoring infrastructure over a running
system. The specific infrastructure adopted for our case study
is detailed in Section IV.

The collected runtime information is then integrated in the
EMF-based environment and translated in EMF artifacts. In
this step, Logs are automatically transformed in Log Models
that conform to a specific Log Metamodel (properly defined in
Ecore format) representing monitoring data. In Section V-A,
the specified metamodel is shown and used to automatically
generate log models.

B. Design-Runtime traceability with JTL

Correspondences between the system behavior at runtime and
the architectural design can be defined in several ways. They
are often based on the concept of traceability relationships,
which may help designers to understand associations and de-
pendencies that exist among heterogeneous models [17, 18]. In
MDE, a traceability link is a relationship between one or more

source model elements and one or more target model elements,
whereas a trace model is a structured set of traceability links,
e.g., between source and target models.

In this work, we propose to generate traceability links
between UML and Log Models by means of JTL. In particular,
the tool allows to specify Design-Runtime correspondences in
a declarative way at metamodel level, as bidirectional model
transformations (i.e., between design and runtime metamod-
els). The JTL Traceability engine is able to execute such
bidirectional model transformations and automatically gener-
ate the correspondent traceability links between elements of
the UML design model and the log model ones. Traceability
links are collected in an explicit way as in Traceability Models
conforms to a dedicated metamodel, namely the reference JTL
Traceability Metamodel described in Section V-B).

Although in this paper JTL is used only in one direction
(i.e., from running logs to UML model), its bidirectional
capability can be exploited for sake of system refactoring
automation, namely for reporting suggested refactoring actions
from the modeling level to the running level. Obviously, being
UML and Traceability models at different levels of abstraction,
the Design-Runtime correspondences are not necessarily one-
to-one. It could be often the case that a single element in an
UML model corresponds to multiple elements in the running
system. However, the results of antipattern detection joint with
composability/decomposability rules of performance indices
lead enough information to treat this aspect. One possible
scenario is that a single refactoring action on a model could
correspond to multiple alternative actions on the running
system.



C. Performance indices annotator

This step represents an intermediate phase where the knowl-
edge gained above is used to enable an effective detection and
resolution of performance problem within PADRE. Indeed, the
correspondences between runtime information and software
models are key to infer performance properties: performance
data are used to annotate the UML Model by means of the
MARTE profile, thus obtaining the UML+MARTE Model in
Fig. 1.

In general, performance parameters (e.g., workload, re-
source demands) represent input values requested to solve the
performance model derived from the software model, whereas
indices (e.g., throughput and response time) represent the out-
put of performance analysis. In this step, both parameters and
indices are obtained and then annotated on the UML+MARTE
Model that will be used within PADRE (as described in details
later) for the sake of Performance Antipattern detection. For
instance, the Resource Demand D of a software operation is
obtained as the product of its Service Time S and Number V
of Visits [19], where S has been estimated by stimulating the
system with a lightweight load to avoid waiting time. Hence,
such annotation step augments the UML Model by introducing
performance-related information that is exploited for detecting
performance antipattern occurrences on the basis of realistic
metrics gathered from the running system.

In Section V-C we show how performance indices are
calculated and back-annotated to the UML+MARTE Model
of the considered case study.

D. Performance analysis and refactoring with PADRE

PADRE is used to perform a performance antipattern analysis
and to suggest the most promising refactoring actions that
shall remove detected antipatterns and then improve the overall
system performance.

As illustrated in Fig. 1, starting from an UML+MARTE
Model, Performance Antipattern detection is first executed,
followed by a Model refactoring step. The following Perfor-
mance Analysis step in the figure collapses two sub-steps, that
are: (i) automated transformation of the refactored model into
a performance model (i.e. a Queueing Network [11]), and (ii)
execution of Mean-Value Analysis [19] on the performance
model to obtain the current performance indices. PADRE is
also able to back-annotate the UML+MARTE Model with the
obtained performance indices, so that it can undergo a new
refactoring loop. The process lasts until either the user stops
it or no more performance antipatterns are detected on the
model. The output of this process is represented by a set of
well-formed refactoring actions that, at the design level, have
demonstrated to effectively improve the system performance.
The system refactoring step is represented as a dashed box
between the design and the runtime areas of Fig. 1, because
the propagation of these actions on the running system is still
to be automated.

In the next section, a case study is presented and later used
to show the approach at work.

IV. CASE STUDY

In this paper, we consider an e-commerce web application
based on microservices, called E-Shopper3. According to the
microservice architecture, the application is developed as a
suite of small services, each running in its own process and
communicating with RESTful HTTP API. The application
is composed by 9 microservices, each requiring a different
database to operate, and developed on top of the Spring Cloud4

framework.
The E-Shopper application is designed by means of the

UML language. All the views of the system are embedded in
a single model file, as it is customary among UML graphical
design tools. A fragment of the UML software model is
depicted in Fig. 2. The UML Component Diagram in Fig. 2a
shows an excerpt of the static view of the application by means
of software components (each providing a microservice) and
their interconnections. The UML Deployment Diagram in
Fig. 2b depicts the deployment view of the system, ie.,
hardware nodes and how the application artifacts are allocated
on them. Specifically, each microservice is deployed on a
different Docker5 container.

Among the existing Use Cases of the application, we
consider three scenarios that are representative of the differ-
ent purposes of the system. In particular, the Web scenario
describes the requests to the home page that the site visitors
perform via the browser. For instance, the UML Sequence
Diagram in Fig. 2c illustrates the dynamic view in which the
web service randomly finds items in the E-Shopper categories.
Moreover, the Mobile scenario describes the research of a
product by means of the mobile application. Finally, the
Warehouse scenario describes the requests performed by the
employees while checking the products availability. In this
paper, we focused on the performance analysis of the Web
scenario.

To the aim of monitoring the running application, the
following infrastructure has been set up. The application has
been instrumented by means of the Spring Cloud Sleuth6

distributed tracing solution. Thus, the running application is
monitored during a load test performed with JMeter7. The
workload was designed to stress the application by simulating
a significant amount of requests along the three mentioned
scenarios.

The log traces produced during the execution are gathered
by the Zipkin8 distributed tracing system. On turn, Zipkin is
configured to forward the monitoring data to the distributed
database and search engine Elasticsearch9. A sample of raw
logs collected within Elasticsearch is shown in Fig. 3. For
instance, the first item with time 18/11/20 09:52:48.107
includes all the information related to the span with id

3The application is available at https://git.io/fh9Z8
4Spring Cloud: https://spring.io/projects/spring-cloud
5Docker: https://www.docker.com
6Spring Cloud Sleuth: https://spring.io/projects/spring-cloud-sleuth
7Apache JMeter: https://jmeter.apache.org/
8Zipkin: https://zipkin.io/
9Elasticsearch: https://www.elastic.co/products/elasticsearch



(a) Static view (UML Component diagram) (b) Deployment view (UML Deployment diagram)

(c) Dynamic view (UML Sequence diagram)

Fig. 2: An excerpt of the E-Shopper UML Software Model

16bb4e7b689f807a that have been gathered during the mon-
itoring (ie., trace id, duration, timestamp, service and related
end point, type of span, IP address, port number, etc.).

V. THE APPROACH IN PRACTICE

In this section we show a stepwise application of the proposed
approach to an E-Shopper case study.

A. Runtime information mining

The raw logs obtained from the infrastructure described in the
previous section have to be specified by means of a model-
based representation. To this aim, we have defined a dedicated
metamodel, as depicted in Fig. 4. It basically defines the notion
of Log, which is the root element of a log model. A Log stores
all the Trace information for messages being sent to EndPoints
representing the microservices (Services) of an application. A
Trace is identified by a unique ID and includes a set of Spans
that represent execution events. A Span is specified by the
following attributes: timestamp that describes when the event
occurs, duration that describes the time to complete the call,
and kind that is SERVER, CLIENT or undefined. A Span refers

to an EndPoint that is an URL used to access the project and
refers to one or more Services.

Figure 5 depicts a sample of a Log Model that repre-
sents the original logs shown in Fig. 3. For instance, the
topmost Span (id 16bb4e7b689f807a) represents the first span
in Fig. 3 with a 27ms duration, by SERVER kind, and with
the 18/11/20 09:52:48.107 timestamp for the call to the
http://categories/category EndPoint belonging to the gateway
Service. Note that the information that is negligible for our
purposes has not been included. The model is automatically
generated from the original raw log by means of a Java trans-
formation able to serialize the textual representation of the logs
into xmi-encoded models conforms to the Log Metamodel.

B. Design-Runtime traceability with JTL

Starting from the Log and UML models, a Traceability Model
is automatically generated by means of JTL [14]. In order
to represent the traceability information between design and
runtime artefacts, the JTL traceability reference metamodel
is considered. As depicted in Fig. 6, it basically defines



Fig. 3: A fragment of the raw log in Elasticsearch

Fig. 4: Log Metamodel

the notion of TraceModel, which is the root element of a
traceability model.

It relates a model belonging to a ”left” domain to a
model belonging to a ”right” domain. In particular, a set
of trace links between left and right elements and the rules
that enforced their mapping are collected. A TraceLink re-
lates one or more elements belonging to the left domain
(leftLinkEnd) and the correspondent (one or more) elements
belonging to the right domain (rightLinkEnd). Such links
connect elements of TraceLinkEnd type that have a name and
a type. Each TraceLinkEnd refers to an object of EObject
type (org.eclipse.emf.ecore.EObject) that represents a specific
object in the left or right domain.

The correspondences between the design and runtime con-
cepts are defined by means of JTL and specified between the
corresponding metamodels, as reported in List. 1. The speci-
fication is defined by means of relations between elements of
the two involved domains. In particular, on Line 1, variables

Fig. 5: A Log Model sample

log and uml are declared to match models conforming to
the Log and UML metamodels, respectively. The specified
relations are described as follows:

- The top relation Trace2UseCase (Lines 3-13) maps a
container element of Trace type in the Log domain
and a container element of UseCase type in the UML
domain. The where clause invokes the execution of the
Span2Message relation;

- The Span2Message relation (Lines 14-22) maps a Span
and a Message type element involved in a use case



Fig. 6: JTL Traceability Metamodel

interaction. The where clause invokes the execution of
the EndPoint2Signature relation;

- The EndPoint2Signature relation (Lines 23-31) maps an
EndPoint of a Span and an Operation type element that
represents the signature of a message;

- The top relation Service2Component (Lines 32-40) maps
a Service type container element to a Component type
one.

1 transformation Log2UML (log:Log, uml:UML) {
2 ...
3 top relation Trace2UseCase {
4 checkonly domain log t : Log::Trace {
5 spans = s : Log::Span { }
6 };
7 checkonly domain uml uc : UML::UseCase {
8 ownedBehavior = ob : UML::Interaction {
9 message = m : UML::Message { }

10 }
11 };
12 where { Span2Message(s, m); }
13 }
14 relation Span2Message {
15 checkonly domain log s : Log::Span {
16 endpoint = ep : Log::EndPoint { }
17 };
18 checkonly domain uml m : UML::Message {
19 signature = s : UML::Operation { }
20 };
21 where { EndPoint2Signature(ep, s); }
22 }
23 relation EndPoint2Signature {
24 n : String;
25 checkonly domain log ep : Log::EndPoint {
26 name = n
27 };
28 checkonly domain uml s : UML::Operation {
29 name = n
30 };
31 }
32 top relation Service2Component {
33 n : String;
34 checkonly domain log s : Log::Service {
35 name = n
36 };
37 checkonly domain uml c : UML::Component {
38 name = n
39 };
40 }
41 ...
42 }

Listing 1: Log2UML correspondences specification

The described mapping assumes that models are consistent
with the monitored code. In this case study, models and
code are also consistent in terms of naming convention used.
However, JTL allows specifying also complex relationships

between elements, e.g., elements that do not trivially match
by names, or model elements that do not map one-to-one to
the code [7].

The application of the Log2UML transformation on the Log
and UML models, as shown in the left and right part of Fig. 7,
generates the corresponding Traceability model, as shown in
the middle of that figure. In particular, the arrows connect
trace links with the source and target model elements they
refer to. For instance, the Trace2UseCase 149c4cef3ac7f19f
traceability link relates the Get HomePage use case in the right
end and the corresponding 149c4cef3ac7f19f log trace in the
left end. Hence, for each message in the use case, we are able
to know when the corresponding operation has started and its
response time. As a consequence, the traceability model can be
used to derive complex measures such as the average response
time of a specific scenario or the average service time of an
operation (as mentioned in Section III-C).

C. Performance indices annotator

In this step, the Traceability Model generated above is used to
extract performance properties and incorporate them into the
UML Model by means of the MARTE profile. In particular, the
runtime information obtained by the monitoring infrastructure
is used to obtain the performance input parameters, whereas
the relationships between runtime information and software
model are used to identify the proper UML elements that have
to be annotated with these parameters.

The considered performance properties have been ob-
tained as described in Section III-C and annotated in the
UML+MARTE Model as following:

- The service time S of each operation is annotated on
its relative message in the scenario by means of the
servCount attribute of the GaAcqStep stereotype. Also,
the number of times a message occurs in the same
scenario, which corresponds to the number V of visits,
is annotated in the rep tag of the same stereotype.

- The response time of a whole scenario is annotated in the
respT tag of the GaScenario stereotype; it corresponds to
the response time of the parent span in the corresponding
trace (see the 149c4cef3ac7f19f Trace and the Get Home
Page use case in the Traceability Model of Fig. 7).

- The throughput is annotated in the throughput attribute
of the GaScenario stereotype.

- The workload is annotated in the pattern tag of GaWork-
loadEvent stereotype, which can represent an open or a
closed class of jobs.

- The utilization of a Docker container is set through the
utilization tag of the GaExecHost stereotype applied to
the corresponding UML Device.

An excerpt of the UML Component and Sequence diagrams
annotated with MARTE is depicted in Fig. 8.

D. Performance analysis and refactoring with PADRE

In this step, the obtained UML+MARTE Model is given as
input to PADRE. The Performance Antipattern detection step



Fig. 7: Traceability model between the E-Shopper Runtime and UML models

on our case study has identified the following performance
antipatterns:

- two occurrences of the Pipe and Filter (PaF) performance
antipattern due to the extensive processing of critical
operations in the Web Service and Items Server mi-
croservices, respectively. In particular, a Pipe and Filter
highlighits that, among the calling methods (i.e., chain
of messages), an operation’s demand is larger than a
threshold and, as a consequence, the platform is over-
utilized;

- an occurrence of the One-Lane Bridge (OLB) perfor-
mance antipattern due to a congestion on the Web Service
microservice. In particular, the microservice receives a
number of calls greater than its pool size, thus the
response time of the considered scenario goes over a
predefined threshold.

PADRE proposes a set of refactoring actions for each
detected performance antipattern. For instance, among the
actions proposed for a PaF performance antipattern, PADRE
suggests to move the most demanding operations either to a
new component deployed on a new node or to a component
with less demanding operations. Moreover, PADRE suggests
to deploy the critical component on a new and more powerful
node, or on the node with the lowest utilization.

In Table I we have summarized the results obtained from
our refactoring session: the first column reports the type
of refactoring, whereas the obtained response time and its
improvement are reported for each scenario.

First, we have applied a refactoring action on the Items
Server component. In particular, we decided to move the
most demanding operation findProduct() of Items Server to
a new component (i.e., the new Items-Server-2 microser-

    <<GaAcqStep>>
-rep: 5 
-prob:1 
-servCount:1258 

    <<GaAcqStep>>
-rep: 1 
-prob:1 
-servCount:8070 

    <<GaAcqStep>>
-rep: 1 
-prob:1 
-servCount:4830 

    <<GaAcqStep>>
-rep: 1 
-prob:1 
-servCount:10730 

(a) UML+MARTE Sequence diagram

  <<GaExecHost>> 

  - utilzation: 0.908 

  <<GaExecHost>> 

  - utilzation: 0.10 

  <<GaExecHost>> 

  - utilzation: 0.05 

  <<GaExecHost>> 

  - utilzation: 0.983 

(b) UML+MARTE Deployment diagram

Fig. 8: An example of MARTE Annotations

vice) deployed on a new node (i.e., the new Items-Server-



Web (Response Time = 1.615 s) Warehouse (Response Time = 53.332 ms)
Refactoring Action New Response Time Improvement (%) New Response Time Improvement (%)

Move operation 1.402 s 13.34 50.347 ms 5.04
Increasing device capability 1.281 s 20.73 53.332 ms 0

TABLE I: Performance improvements due to refactoring actions

2 Docker container). After the application of this action, a
new UML+MARTE model is obtained and transformed to
the corresponding performance model. Thereafter, as a result
of its performance evaluation, the PaF occurrence results to
be removed. The response time of the Web scenario, in this
case, has been improved by 13.34%, whereas the one of the
Warehouse scenario has been improved by 5.04%.

By executing an antipattern detection on the refactored
model, the PaF and OLB performance antipatterns, previously
detected on Web Service, still occur as expected. In order
to further improve the response time of the Web scenario,
we have increased the capabilities of the Container-Web-
Service device, so that the demand of the getHome() operation
decreases. As a result of this refactoring, also shown in Table I,
the response time of the involved scenario has been improved
of 20.73% upon a 4.94% demand reduction. In this case, since
the touched device is not involved in the Warehouse scenario,
the latter does not experience any performance improvement.

Hence, all the above actions represent the set of refactoring
options (i.e., the green box on the right-hand side of Fig. 1)
that the joint usage of JTL and PADRE has allowed to identify
for removing the performance problems currently occurring in
the system.

VI. RELATED WORK

A vast literature exists on performance modeling, perfor-
mance monitoring, and performance problem identification
techniques, as separate research domains. We report on the
most significant papers that attempt at merging such domains.

Trubiani et al. [20] provide a systematic process to identify
performance issues with runtime data, based on load testing
coming from operational profile and application profiling.
From the obtained runtime data, performance antipatterns are
detected, aimed at identifying common performance issues and
their solutions. Software refactoring is then (manually) applied
to solve identified performance antipatterns.

Apart from technological and implementation aspects, a
methodological difference distinguishes our approach from the
one in [20], namely: we bring runtime data up to the design
level, by annotating an UML model with the MARTE profile,
and one of the main advantage of addressing performance
issues at design level is to narrow down the search space for
possible later empirical performance tuning.

Menascé et al. [21] have proposed the DeSARM approach,
whose scope is the derivation of architectural models at
runtime; such models can be used in decentralized decision
making for architecture-based adaptation in large distributed
systems. To this aim, DeSARM is able to identify important
architectural characteristics of a running application, such as
components, connectors, nodes and communication patterns.
DeSARM has been used by Albassam et al. [22] to introduce

runtime failure analysis and architectural recovery on the
discovered system architecture. However, DeSARM has not
been adopted for identifying performance problems, as we do
in this paper.

Petriu et al. [23] deal with the automated generation of
performance models from UML-MARTE architectural models,
and the propagation of performance analysis results back to the
latter. The main difference with our work is that this approach
fully work at the model level, and it does not consider the
availability of a running software system from which runtime
information can be extracted for a more realistic identification
of performance problems.

Logs obtained from monitoring the running software system
are exploited by Vögele et al. [24] to automatically extract
workload specifications for load testing and performance
models parameterization. However, [24] is limited to the
parameterization of performance models, whilst our approach
provides support for the interpretation of analysis results
carried out by performance antipattern detection and their
possible solutions.

To the best of our knowledge, our approach is the first one
that combines system monitoring, traceability links between
runtime data and software model, and automated problem
identification and solution based on performance antipatterns.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced an approach that aims at support-
ing the identification and solution of performance problems on
a running system by means of automation in: extracting run-
time information, annotating design models with performance
data, and detecting and solving performance antipatterns.

The application of the proposed approach to the E-Shopper
case study allows outlining some considerations. As a premise,
the code instrumentation and the utilization of industrial
standard technologies, such as Zipkin and Elasticsearch, make
the case study adequate to demonstrate the applicability of
our approach. Furthermore, the definition and the use of
traceability models results to be a key point for automating the
exploitation of runtime information for sake of performance
analysis and improvement of the system design. In fact, in
absence of a collection of correspondences between monitored
data and the system design, the extrapolation of a large amount
of data from a running application and the annotation of a
software model would be very expensive.

We conceived and implemented the approach to be ex-
tensible. In this paper, we defined a dedicated metamodel
that represents the logs format as represented by the used
monitoring infrastructure. However, runtime information can
be of different types (eg., simulation or executable models,
logs/traces, states or configurations of the system, test mod-
els, dynamic information or runtime measures), it can have



different formats (eg., textual, binary, datasets) and can be
collected by means of various mechanisms (e.g., simulation,
monitoring, execution, debugging, profiling, verification). As
an enhancement, a generic runtime metamodel that deals with
different runtime information can be specified and integrated
to the approach.

As a further extension, also the adoption of different mod-
eling languages can be supported by the approach and by
the used tools. The designer can specify the correspondences
between proper languages; JTL is indeed able to deal with
any Ecore artifact conforms to EMF. Moreover, we envisage
possibly redefining the model annotation step and the antipat-
tern detection rules; PADRE indeed provides the designer with
interfaces to write the proper notation-specific rules.

Finally, as illustrated in Figure 1, the suggested refactoring
actions resulting by the application of our approach obviously
refer to the architectural design level. As a future work, we
intend to close the gap between design and runtime level by
introducing automation in the propagation of these actions
down to the runtime level (see the System Refactoring dashed
box of Figure 1). We will relay on MDE techniques, like the
traceability ones in JTL, for such closing step.

REFERENCES

[1] D. C. Schmidt, “Model-driven engineering,” IEEE Com-
puter, vol. 39, no. 2, pp. 25–31, 2006.

[2] H. Bruneliere, R. Eramo, A. Gomez, V. Besnard, J. M.
Bruel, M. Gogolla, A. Kastner, and A. Rutle, “Model-
Driven Engineering for Design-Runtime Interaction in
Complex Systems: Scientific Challenges and Roadmap -
Report on the MDE@DeRun 2018 workshop,” in Proc.
of STAF Collocated Workshops, 2018.

[3] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami,
and H. C. Gall, “PerformanceHat: augmenting source
code with runtime performance traces in the IDE,” in
Proc. of ICSE Companion, 2018, pp. 41–44.

[4] W. Afzal, H. Brunelière, D. Di Ruscio, A. Sadovykh,
S. Mazzini, E. Cariou, D. Truscan, J. Cabot, A. Gómez,
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