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Abstract – An algorithm is proposed for improv-
ing performance of numerical integration based on
Hansen’s ideal frame when applied to conservative
perturbed Keplerian motion. The procedure relies
on the techniques of manifold projection methods,
and is computationally inexpensive. The benefits of
this approach are illustrated with the main problem
of artificial satellite theory, whose variation equa-
tions are formulated explicitly in the ideal frame to
avoid rotations.

I. INTRODUCTION

Two basic ways of improving the numerical integra-
tion of perturbed Keplerian motion include the integra-
tion of elements—also called parameters, or constants—
rather than coordinates [1, 2], and the use of variable
step size distribution along the orbit. Because the el-
ements evolve slowly, their propagation advances with
larger step sizes than in the case of coordinates, which,
therefore, expedite the numerical integration and reduce
the accumulation of numerical errors. The step size reg-
ulation adapts the numerical integration to the geometric
characteristics of elliptic Keplerian motion, in this way
avoiding the use of unnecessarily short step sizes close to
apogee. It can be attained either by numerical methods,
which is the aim of variable step size numerical solvers
[3, 4], or using analytical time-regularization techniques
[5, 6, 7, 8]. Moreover, in the common case in which
the differential system admits integrals, they can be used
to improve the fidelity of the numerical solution either
by introducing the integral in the differential system as
a coupled control term [9], or in a calibration of the so-
lution obtained after each integration step [10]. The lat-
ter technique is usually known as manifold correction or
projection [11, 12].

The procedure of manifold projection is seen as dis-
pensable when the numerical integration is approached
in elements, as opposite to coordinates, for the stability
of the variation-of-parameters approach [13]. However,
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it is well known that the inaccuracies in the integration
of the semimajor axis play a major role in triggering the
Lyapunov-type instability that is characteristic of per-
turbed Keplerian motion. Therefore, we will see that the
use of this calibration method may help in preventing the
growth of the dominant in-track errors in elements-based
integrations too.

The calibration process is illustrated with the numer-
ical integration of the main problem of the Earth artifi-
cial satellite theory, which accepts the energy as an inte-
gral. More precisely, the variation equations of the main
problem are integrated numerically in the classical set of
ideal elements [14, 15], which are recognized to shine
at numerically integrating perturbed Keplerian motion
[16]. The physical time is taken as the independent vari-
able, and the manifold correction is applied to preserve
the total energy. Our energy-scaling process affects ex-
clusively the ideal elements related to the representation
of the conic in the orbital plane.

For this particular application, the performance of the
ideal-elements integration has been leveraged by explic-
itly reformulating the main problem equations in the
ideal frame [17]. In this way, the number of computer
operations is drastically reduced by avoiding the need
of carrying out repeated rotations between the ideal and
space frames, which otherwise would be needed for the
evaluation of the right sides of the differential equations
at each integration step.

II. THE IDEAL FRAME ALGORITHM

A typical set of ideal-frame varaibles is composed by
the Euler angles pΩ, I, βq that describe the attitude of the
ideal frame pO,u˚,v˚,nq—where n is the direction of
the angular momentum vector—with respect to an iner-
tial, departure frame pO, i, j,kq, and the polar variables
pr, θ, 9r,Θq, where Θ denotes the specific angular mo-
mentum, which describe the motion in the orbital plane.
The polar angle θ fixes the position of the orbital frame
pO,u,v,nq, where u denotes the radial direction, with
respect to the ideal frame. That is,

u “ u˚ cos θ ` v˚ sin θ,

v “ v˚ cos θ ´ u˚ sin θ.
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To guarantee that the frame is ideal, the variation of
the Euler angles must fulfill the equations

sin I 9Ω “ pr{ΘqN sinpθ ` βq,
9I “ pr{ΘqN cospθ ` βq,
9β “ ´ 9Ω cos I,

where N “ P ¨ n, and P is the disturbing acceleration
of the Keplerian motion, cf. [18]. Moreover, to avoid
singularities, the attitude is rather described by the re-
dundant set of Euler parameters [18]

λ1 “ sin 1
2I cos 1

2 pΩ´ βq,

λ2 “ sin 1
2I sin 1

2 pΩ´ βq,

λ3 “ cos 1
2I sin 1

2 pΩ` βq,

λ4 “ cos 1
2I cos 1

2 pΩ` βq.

(1)

To obtain a complete set of variation-of-parameters
equations, the integration of the polar variables is cus-
tomarily replaced by the integration of a time element
and the three hodographic velocities

κ “
µ

Θ
e ¨ u˚, σ “

µ

Θ
e ¨ v˚, ζ “

µ

Θ
, (2)

where µ is the gravitational parameter and e denotes the
eccentricity vector [14, 16]. Alternatively, the integra-
tion of the time element can be replaced by that of the
polar angle θ, in this way avoiding the constraint of the
variation equations to the case of bounded motion.

Then, we arrive to the variation equations

9θ “ µ{pr2ζq,
9κ “ p1` r{pqT cos θ `R sin θ,
9σ “ p1` r{pqT sin θ ´R cos θ,
9ζ “ ´pr{pqT ,

9λ1 “
1
2 p1{ζqpr{pqN pλ4 cos θ ´ λ3 sin θq,

9λ2 “
1
2 p1{ζqpr{pqN pλ4 sin θ ` λ3 cos θq,

9λ3 “
1
2 p1{ζqpr{pqN pλ1 sin θ ´ λ2 cos θq,

9λ4 “ ´ 1
2 p1{ζqpr{pqN pλ1 cos θ ` λ2 sin θq,

(3)

in which R “ P ¨ u, T “ P ¨ v, p “ Θ2{µ is the
parameter of the conic, and

p

r
“ 1`

κ

ζ
cos θ ´

σ

ζ
sin θ, (4)

9r “ κ sin θ ´ σ cos θ, (5)

Denoting x the Cartesian coordinates and 9x the cor-
responding velocities, the initial conditions needed for
integrating Eq. (3) for given x0 “ xpt0q, 9x0 “ 9xpt0q,
are computed through the sequence: r0 “ }x0}, G0 “

x0 ˆ 9x0, Θ0 “ }G0}, and p0 “ Θ2
0{µ. Then,

u0 “
x0

r0
, n0 “

G0

Θ0
, v0 “ n0 ˆ u0,

and

λ4,0 “
1
2 p1` u0 ¨ i` v0 ¨ j ` n0 ¨ kq

1{2,

λ1,0 “
1
4 pv0 ¨ k ´ n0 ¨ jq{λ4,0,

λ2,0 “
1
4 pn0 ¨ i´ u0 ¨ kq{λ4,0,

λ3,0 “
1
4 pu0 ¨ j ´ v0 ¨ iq{λ4,0,

cf. [19]. Finally, ζ0 “ µ{Θ0, and the customary choice
θ0 “ 0 results in

κ0 “
Θ0

r0
´

Θ0

p0
, σ0 “ ´ 9r0 “ ´u0 ¨ 9x0.

At each integration step, the polar coordinates are
computed using Eqs. (4)–(5), from which

x “M

»

–

r cos θ
r sin θ

0

fi

fl , 9x “M

»

–

9r cos θ ´ pΘ{rq sin θ
9r sin θ ` pΘ{rq cos θ

0

fi

fl ,

where the coefficients of the rotation matrix from the
ideal to the inertial frame M are detailed in Table 1.

i z j 1 2 3

1 1´ 2pλ2
2 ` λ

2
3q 2pλ1λ2 ´ λ4λ3q 2pλ1λ3 ` λ2λ4q

2 2pλ1λ2 ` λ4λ3q 1´ 2pλ2
1 ` λ

2
3q 2pλ2λ3 ´ λ1λ4q

3 2pλ1λ3 ´ λ2λ4q 2pλ2λ3 ` λ1λ4q 1´ 2pλ2
1 ` λ

2
2q

Table 1: Coefficients of the rotation matrix M “ pMi,jq.

III. MAIN PROBLEM IN IDEAL ELEMENTS

The main problem of artificial satellite theory stems
from the truncation of the gravitational potential to the
only contribution of the zonal harmonic of the sec-
ond degree [20]. That is, using spherical coordinates
pr, ϕ, λq, the main problem potential is

V “ ´µ
r
` V, V “ J2

µ

r

R2
‘

r2
1

2

`

3 sin2 ϕ´ 1
˘

, (6)

where R‘ is the equatorial radius of the attracting body,
and J2 is the zonal harmonic coefficient of degree 2.

The disturbing acceleration P “ ´∇xV stem-
ming from Eq. (6) is computed in spherical coordinates.
Namely, BV {Bλ ” 0 for the axial symmetry of the main
problem, and P “ ´pBV {Brqu ´ p1{rqpBV {Bϕqϕ̂,
where ϕ̂ is a unit vector in the latitude direction, and

BV

Br
“´ J2

µ

r2
R2
‘

r2
3

2

`

3 sin2 ϕ´ 1
˘

,

BV

Bϕ
“ J2

µ

r

R2
‘

r2
3 sinϕ cosϕ.
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The decomposition of the unit vector k in the merid-
ian plane is rewritten as ϕ̂ cosϕ “ k ´ u sinϕ, which,
besides, shows that sinϕ “ k ¨ u. Therefore,

P “
3

2
J2
µ

r2
R2
‘

r2
 “

5pk ¨ uq2 ´ 1
‰

u´ 2pk ¨ uqk
(

,

whose components in the orbital frame are
»

–

R
T
N

fi

fl “ ´3J2
µ

r2
R2
‘

r2

»

–

1
2 ´

3
2 pk ¨ uq

2

pk ¨ vqpk ¨ uq
pk ¨ nqpk ¨ uq

fi

fl , (7)

cf. [17], which only depend on r and the projec-
tions of k in the orbital frame. Namely, k “

R3pθqMptq
τ p0, 0, 1qτ , where R3 denotes the rotation

matrix about n. Therefore,
»

–

k ¨ u
k ¨ v
k ¨ n

fi

fl “

»

–

1
2M3,1 cos θ `M3,2 sin θ
M3,2 cos θ ´ 1

2M3,1 sin θ
M3,3

fi

fl , (8)

with coefficients M3,j , in the third row of Table 1.

IV. MANIFOLD CORRECTION

The main problem admits the energy E “ 1
2

9x ¨ 9x ´
pµ{rq ` V and the third component of the angular mo-
mentum vector H “ Θ cos I as integrals. Neither of
them will be constant in practice due to the accumula-
tion of numerical errors. Conversely, we can use their
known values E “ E0, H “ H0, obtained from the
initial conditions, to force the numerically integrated so-
lution to lie on the proper manifolds [10]. In particular,
the energy is written in the form

E “ ´
µ

2a

"

1` J2
a

r

R2
‘

r2
“

1´ 3pk ¨ uq2
‰

*

,

which shows that the more important element to correct
is the semimajor axis a “ p{p1 ´ e2q, where e “ }e}.
The simple scaling

ã “ ´
µ

2E0

"

1` J2
am
rm

R2
‘

r2m

“

1´ 3pk ¨ umq
2
‰

*

,

where m denotes the integration step, will notably im-
prove the preservation of the energy, cf. [21]. On the
other hand, a does not pertain to the set of ideal elements
in Eq. (3). According to Eq. (2), it is written in terms of
the ideal elements as a “ µ{pζ2 ´ κ2 ´ σ2q, thus show-
ing the convenience of scaling the three hodographic ve-
locities by the same factor as a; namely qm “ ã{am.
That is, at each step m of the numerical integration, we
replace the numerically integrated values κm, σm, and
ζm, by the scaled ones

κ̃ “ κmqm, σ̃ “ σmqm, ζ̃ “ ζmqm. (9)

Writing the polar component of the angular momen-
tum asH “ Θp1´2 sin2 1

2Iq, and on account of Eq. (1),
we obtain H “ Θ

`

λ23 ` λ
2
4 ´ λ

2
1 ´ λ

2
2

˘

, which sug-
gests an analogous scaling of λi to guarantee its preser-
vation H “ H0. Note, however, that this new scaling
should be done with great care in order to not contra-
vene the geometric constrain

ř4
i“1 λ

2
i “ 1.

V. EXAMPLE ILLUSTRATION

An example is provided to illustrate the effects of
the energy-scaling calibration of the hodographic ve-
locities. In the simulations, the parameters defining
the potential are particularized for the Earth. That is,
µ “ 398600.4415 km3{s2, R‘ “ 6378.1363 km, and
J2 “ 0.001082634.

We focus on the low eccentricity orbit with initial el-
ements in Table 2, which we propagate for a one-month.
The true, reference orbit was computed from the numer-
ical integration of the J2 problem in Cartesian coordi-
nates in extended precision, which we then truncate to
the 16 significant figures of the standard machine preci-
sion. We checked that this truncation of the reference or-
bit routinely preserves 15 significant figures in the com-
putation of the energy integral, and the 16 figures of the
third component of the angular momentum vector are
preserved most times.

Orbital elements Ideal elements (internal units)

a 6878.14 km λ1 ´0.386404272277476
e 0.001 λ2 ´0.644411685305790
I 97.42˝ λ3 ´0.623505510971901
Ω 168.16˝ κ 8.655216828077350 ¨ 10´4

ω 270˝ σ ´5.008699024326435 ¨ 10´4

M 30˝ ζ 1.000000499999096

Table 2: Initial conditions of the test orbit; θ “ 0 and
λ4 “ p1´ λ

2
1 ´ λ

2
2 ´ λ

2
3q

1{2.

Ideal-frame integrations were carried out with and
without energy-scaling control. Their respective intrin-
sic errors, as well as the errors in the preservation of the
energy along the propagation interval, were computed
with respect to the reference solution. The time-histories
of the intrinsic errors, as well as the relative errors in
the preservation of the energy are depicted in Fig. 1 for
the standard, non-controlled, ideal-element propagation,
and in Fig. 2 for the case of the energy-scaling control.

Thus, as shown by comparison of the upper plots of
Figs. 1 and 2, the energy-scaling control is quite effec-
tive, yielding negligible relative errors of Op10´15q af-
ter control. Along-track errors are reduced by about one
order of magnitude with the energy scaling: from about
half mm without control at the end of the 30-day interval
(lower plot of Fig. 1) to a maximum of about half tenth
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Figure 1: Errors of the test orbit without energy-scaling.
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Figure 2: Errors of the test orbit with energy-scaling.

of mm when the energy scaling is applied (lower plot of
Fig. 2). Radial and cross-track errors remain very small
in both different integrations, but since they suffer the
coupling with along-track errors it can be checked that
they clearly improve in the case of energy scaling.
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