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Abstract—This paper presents a new blind spectrum sensing
(SS) algorithm based on a machine learning model: the radial
basis function support-vector machines (RBF-SVM). As features,
the introduced approach uses statistical tests that are based
on the eigenvalues of the received signals covariance matrix.
Since the decision on the frequency resource occupancy is in
fact an issue of labeling binary data, SVM is intended as a
potential technique for SS paradigm. The flexibility of SVM for
linearly non-separable and high dimensional data makes it a
good candidate for our issue, particularly that we consider low
signal to noise ratios (SNR). Computer simulations shows that the
proposal outperforms classical non-cooperative SS algorithms.

Index Terms—Cognitive radio, spectrum sensing, support-
vector machines, eigenvalue decomposition.

I. INTRODUCTION

For several years now, the demand in terms of spectral re-
sources and its under-exploitation are increasing [1]. This issue
is all the more relevant today when many new technologies,
such as the Internet of things (IoT) [2] or vehicle to everything
communication (V2X) [3], accelerate the saturation of the
spectrum. This context urges to find new reliable solutions for
future requests within the frequency resources. It is in these
circumstances that cognitive radio (CR) could be the most
well-grounded alternative. Indeed, by allowing some users,
called secondary user (SU), to exploit the unused frequency
resources opportunistically, the spectrum occupancy will be
higher and finally better optimized. However, the licensed user,
called primary user (PU), must not be subject to interference
from the CR communication network. The backbone of the CR
communication is to find the best resource opportunity in order
to dynamically reallocate free frequency band or white spaces,
as depicted in Fig 1. This mechanism must happen in the best
possible and most reliable way. Thus, the SU has to be aware
of its environment to avoid dismissing spectral opportunities
but also to not interfere with PU communication.

The spearhead of CR systems is the cognition loop that
is built upon the spectrum sensing (SS) algorithms [4]. A
standard for wireless regional area networks (WRANs) with
a CR-based air interface is in progress by the IEEE 802.22
Working Group. This standard envisages to wield very-high
frequency (VHF), and ultra-high frequency (UHF) bands cur-
rently licensed for analog and digital television broadcasting
(between 54 MHz to 862 MHz) and wireless microphones and

potentially in the 1300 MHz to 1750 MHz, and 2700 MHz to
3700 MHz provided the regulatory regime allows it [5]. The
CR system requires to sense the licensed user at a probability
of detection of at least 90% and a probability of false alarm
lower than 10% under shallow SNR region as illustrated in
Table I.

SS paradigm has sparked a major interest these last years
and resulted in an extensive literature proposing several algo-
rithms [6]. Many SS algorithms have been developed, such as
cyclostationarity detector (CD) [7], energy detection (ED) [8]
or matched-filter (MF) [9]. These algorithms consider that the
SU has a priori knowledge of the source signal, the noise
power, or the channel.

In order to improve the detection of the PU, a set of blind
SS algorithms that exploit the multiple-input multiple-output
(MIMO) feature are investigated: arithmetic-to-geometric
mean (AGM) [10], maximum-eigenvalue-geometric-mean
(MEGM) [11], mean-to-square extreme eigenvalue (MSEE)
[12], blindly combined energy detection (BCED) [13], and
unified sensing algorithm (USA) [14].

To enhance the performance of the PU detection [15],
recent contributions have proposed the spatial filtering
such as maximum-to-minimum beam energy (MMBE) [16],
maximum-to-mean energy detector (MMED) [17], and max-
imum energy beamforming-output-to-input (MEBOI) [18].
But these algorithms, based on beamforming, are under ray
propagation assumption. Other contributions for SS algorithms
are based on the deep learning approach [19] or machine
learning (ML) [20]. These two last methods provide good
performance gains for cooperative sensing methods. Under the
non-cooperative assumption, the ML aspect was not explored
enough.

In this paper, we propose a new fully blind method in a
non-cooperative context. Based on the SVM approach, this
method uses three statistical tests, based on eigenvalues of the
covariance matrix of the received signal, as input features. Un-
like conventional thresholding methods, the non-linear samples
separation, as well as the maximization of the margin, improve
detection performance. Thus it allows better separability for
the two subspaces (H1/H0).

The rest of the paper is organized as follows. In Section
II, we describe the system model and the background work,



Fig. 1. Scenario of dynamic resource allocation for secondary user over free
frequency in narrowband context.

including related work. Section III describes the contribution
of the paper through the ML approach, notably, the radial basis
function SVM (RBF-SVM). Section IV provides computer-
based performance analysis. Conclusions are drawn in Section
V.
Boldface lower letter is used to denote vectors and boldface
capital letter to denote matrices. We use superscript (.)T to
denote transpose. Iq denotes the identity matrix of order q
and E[.] stands for expectation operation.

II. SYSTEM MODEL

Here, we assume a SU as a CR system with M (M > 1)
linear antennas. In SS model, there is two main hypothesisH1,
when the PU is present and H0, when the frequency resource
is vacant. Thus, set of probability is defined

• False alarm noted Pfa = Pr(H1 | H0)
• Miss-detection noted Pmd = Pr(H0 | H1)
• Detection noted Pd = 1− Pmd = Pr(H1 | H1).

To provide clarity, in Fig 2, we illustrate an example of the
probabilty density function of the two hypothesis (H1 and H0

in continuous line and in dashed line curve respectively). The
threshold makes it possible to distinguish between the Pmd
(red area) and the Pfa (green area). Some standards of SS are
depicted in Table I. For example, for wireless microphone, the
requirement of this standard is to identify the PU at a SNR of
at least −12dB with a probability of detection over 0.9 [21].

The received signal by the SU is expressed as

ym(n) = αrm(n) + gm(n), n = 1, 2, · · · , N (1)

where N is the number of observed samples, m denotes the
antenna (m = 0, · · · ,M − 1), y is the received signal, r(n)
represents the transmitted signal from the PU, g(n) is a zero-
mean additive white Gaussian noise with variance σ2

b and α =

TABLE I
FEATURES OF STANDARD [5]

Features Analog TV Digital TV
Wireless

Microphone
Probability of

detection
90% 90% 90%

Probability of
false alarm

10% 10% 10%

Time of detection
(second)

≤ 2 ≤ 2 ≤ 2

SNR (dB) 1 −21 −12

Fig. 2. Example of probability density function of H1 and H0 and
representation of the probability of error

{0, 1} under Hα hypothesis. The vector representation of the
received signal under H1 hypothesis is written

y(n) =

P∑
p=1

Cp∑
k=0

hp(k)sp(n− k) + g(n), (2)

where P is the number of PU, Cp is the channel order,
hp = [h1p, h2p, · · · , hMp]

T is the channel from PUp to
receiver antennas. We consider L consecutive samples and
define the following vectors

yL(n) = [yT (n), · · · ,yT (n− L+ 1)]T , (3)
gL(n) = [gT (n), · · · ,gT (n− L+ 1)]T , (4)
sL(n) = [sT0 (n), s

T
1 (n), · · · , sTP−1(n)]T , (5)

where sTp (n) = [sp(n), sp(n−1), · · · , sp(n−L−Cp+1)]T . L
is called the smoothing factor and is well investigated in [15].
The matrix expression of the received signal is given by

yL(n) = HsL(n) + gL(n), (6)



where H is a ML × (C + PL) matrix which represents the

channel C =
P∑
p=1

Cp. The theoretical covariance matrix of the

received signal is expressed as

Ry = HRsH
H + σ2

gIML, (7)

where

Ry = E[yL(n)yL(n)
H ] (8)

Rs = E[sL(n)sL(n)
H ]. (9)

The eigenvalues, noted λi, of the covariance matrix (Her-
mitian matrix) of the received signal are real numbers. The
ML eigenvalues are defined as λ1 > λ2 > · · · > λML. The
estimated covariance matrix is given by

R̂y(N) =
1

N

N∑
k=1

yL(k)yL(k)
H . (10)

The noise subspace size is equal to (M − P )L − C, so we
can note the estimated eigenvalues as λ̂1 > λ̂2 > · · · >
λ̂C+PL > λ̂C+PL+1 = · · · = λ̂ML = σ2

g . Some of SS
algorithms exploit these estimated eigenvalues. The following
paragraphs provide three well-known algorithms of eigenvalue
based non-cooperative SS.

a) Arithmetic to Geometric Mean (AGM): This SS algo-
rithm is based on the ratio between the mean received energy
and geometric mean of the eigenvalue [10]. The statistical test
expressed as

TAGM =

1

ML

ML∑
k=1

λ̂k(
ML∏
k=1

λ̂k

)1/ML

H0

≶
H1

γAGM, (11)

where γAGM is the threshold [11] given by

γAGM =

√
2

MLN
Q−1 (Pfa) + 1. (12)

where Q−1 is the inverse Q-function which describes the tail
distribution function of the standard normal distribution

Q (t) =
1√
2π

+∞∫
t

exp
(
−u2/2

)
du. (13)

b) Blindly Combined Energy Detection (BCED): In [13],
the statistical test is

TBCED =
λ̂1

1

ML

ML∑
k=1

λ̂k

H0

≶
H1

γBCED, (14)

where γBCED is the threshold developed in [22]. Considering
the ratio between the largest eigenvalue and the mean esti-
mated energy, the probability of false alarm is given by

Pfa = 1− FTW

(
γBCED − µN,ML

σN,ML

)
+

1

MLN

(
µN,ML

σN,ML

)2

F ′′TW

(
γBCED − µN,ML

σN,ML

)
, (15)

where FTW is the cumulative distribution function of the Tracy-
Widom (TW) distribution and F ′′TW represents the second
derivate of FTW,

µN,ML =

(
1 +

√
ML

N

)2

(16)

σN,ML = N
−2
3

(
1 +

√
ML

N

)1 +
1√
ML
N

1/3

. (17)

c) Maximum-Eigenvalue-to-the-Geometric-Mean
(MEGM): The statistical test of MEGM algorithm is
based on the the ratio between the largest eigenvalue and the
geometric mean of the eigenvalues [11]

TMEGM =
λ1(

ML∏
k=1

λk

)1/ML

H0

≶
H1

γMEGM. (18)

The threshold is defined as

γMEGM =
F−1TW (1− Pfa) ν + χ

N
, (19)

where ν =
√
χ

(
1√
N − 1

+
1√
ML

)(1/3)

and χ =(√
N − 1 +

√
ML

)2
.

These algorithms cited above provide best performance in
non-cooperative spectrum sensing context.

III. SVM-BASED SPECTRUM SENSING (SVM-SS)

In this section, an SS scheme with a statistical test based
on the eigenvalue decomposition of the covariance matrix of
the received signal and radial basis function-support vector
machine (RBF-SVM) is established. SVM is a supervised
machine learning algorithm exploited to solve discrimination
problems. SVM is designed for binary classification, which
makes it a good candidate for the SS paradigm (H0 or H1).

SVM aims at finding the best hyperplane in order to separate
between a set of input features. Thus, this decision plane is
designed from j(j = 1, · · · , `) points training dataset of pairs
(tj , fj), where tj is the input parameter vector and fj in
(1,−1)j indicates the class to which the vector tj belongs. The
whole hyperplane is expressed as the set of points t satisfying
wT t+b = 0 and the best decision plane is designed by solving
the following optimization parameter

min
w,b,ξ

1

2
wTw + V

∑̀
j=1

ξj (20)

subject to
ξ>0

fj(w
Tϕ(tj) + b) > 1− ξj , (21)

where ξj is a slack variable, V > 0 is a penalty parameter
and ϕ(.) is the function which maps each training data point
tj to a high-dimensional space using a kernel function K(.)
which satisfies K(tj , ti) = ϕ(tj)

Tϕ(ti). SVM algorithms use
different kind of kernel function. The most exploited type of
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Fig. 3. Probability of detection versus SNR

kernel function is the radial basis function (RBF) expressed
as

K(tj , ti) = exp
(
−% || tj − ti ||2

)
. (22)

In this paper, the Gaussian kernel, is used (% = 1
2σ ) where

σ is the width of the kernel function. The SVM model, i.e.,
penalty parameter C and σ, is validated using the well-known
cross-validation technique. Here, the inputs of the SVM are the
statistical tests based on the eigenvalues. The main advantages
of the SVM are the good trade-off between the lower number
of training samples and the accuracy, in addition to the faster
classification compared to the other ML algorithms [23].

IV. SIMULATION RESULTS

In this section, we furnish some simulation results compar-
ing the proposed method, SVM-SS, to the other ones based on
the eigenvalue decomposition of the covariance matrix of the
received signal for different scenarios. Computer simulations
are based on 105 Monte-Carlo trials. Unless otherwise indi-
cated, we assume throughout simulations the same values for
the following parameters P = 1, M = 6, N = 20, Pfa = 0.1
and Cp = 0. The training set is set to 120 samples for each
hypothesis H1 and H0.

In Fig. 3, we illustrate the performance of the SVM-SS
method comparing to the other ones in term of Pd versus
the SNR. The SVM-SS method offers better performance,
especially for low SNR region (−10 dB to −5 dB). We
can note that our proposal provides more than 5% of better
detection relatively to the other methods.

In Fig. 4, we evaluate the performance of the SVM-SS
method with less number of antennas (M = 4). As expected,
the detection performance degrades when comparing to Fig. 3,
but the gap of Pd is also the same, 5% of better detection
for SVM-SS method. We can note that the SVM-SS is not
sensitive to the number of antennas. This makes it possible
to exploit this method, whatever the spatial diversity of the
system.
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Fig. 4. Probability of detection versus SNR for M = 4
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Fig. 5. Probability of detection versus SNR for N = 40

Fig. 5 evaluates the impact of the number of samples by
setting a signal duration required for sensing of N = 40.
Analyzing Figures 3 to 5, we observe an improvement in
the detection rate, with a difference of about 5%. It still
clearly appears that the SVM-SS algorithm outperforms other
methods, although the difference with other methods slightly
reduces. This means that the SVM-SS approach is all the more
interesting than the sensing duration decreases, which makes
it an efficient sensing method.

Finally, the influence of the number of paths Cp on the
performance can be analyzed from Fig. 6 where Cp is set
to 2 whereas other results were obtained in a pure line-of-
sight channel setting (Fig. 3 to 5). This allows us to compare
the proposed algorithm to those based on the eigenvalues
considering different frequency selectivity rates. As can be
expected, the overall performance of the various methods
degrade when increasing the number of paths. However, when
the frequency selectivity is high (Cp = 2), the performance
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Fig. 6. Probability of detection versus SNR for Cp = 2

of the SVM-SS still outperforms other methods. We hence
conclude that even if the proposed method is sensitive to the
number of paths as others, it still keeps better performance.

V. CONCLUSION

In this paper, we proposed a new blind method in a non-
cooperative context. Considering the RBF-SVM approach, this
method exploits three techniques (BCED, MEGM, and AGM)
based on the eigenvalues of the received signals covariance
matrix. In opposition to classical algorithms of spectrum sens-
ing, which are based on the fixed threshold, our method pro-
poses a non-linear separation based on training samples. From
various simulation trials, it turns out that the proposed SVM-
SS approach outperforms other methods built on eigenvalue
decomposition, whatever various parameter settings such as
channel selectivity, number of antennas and sensing duration.
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