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Abstract—With the rapid development of artificial intelligence
and neural networks, deep reinforcement learning has achieved
remarkable results in a series of complex sequential decision-
making problems. The application of multi-agent reinforcement
learning in air combat game scenarios is also booming. In
the use of reinforcement learning for multi-agent air combat
decision-making, the scalability and transferability of the model
have become critical issues. Designing a multi-agent air combat
decision-making framework with solid scalability, robustness, and
rapid convergence has become a research hotspot in various
countries. To address this problem, this paper proposes a multi-
agent air combat decision-making framework based on attention
mechanism transfer and designs a 2D air combat simulation
environment for this framework. The decision-making process of
this framework is divided into two stages. First, course learning
is carried out in the designed essential air combat environment
to enhance the aircraft’s combat capability. Then, the trained
strategy is transferred to a complex air combat environment for
further training. Experiments have shown that this framework
has better transferability and robustness.

Index Terms—Air combat, Multi-Agent Reinforcement Learn-
ing, Transfer Learning, Curriculum Learning

I. INTRODUCTION

With the development of artificial intelligence technology,
multi-agent air combat decision-making technology has be-
come increasingly popular in domestic and foreign military
fields [1]. Deep reinforcement learning techniques offer a
robust approach to enable the autonomous operational capa-
bilities of UAV swarms. A collection of multi-agent training
frameworks [2], such as QMIX, Q-Trans, and MAPPO,
have been invented based on reinforcement deep learning.
To enhance the learning efficiency and quality of multi-agent
collaborative strategies [3], these learning frameworks are
designed for multi-agent systems with many basic principles
or structural design innovations. Based on the principle of
value decomposition, the QMIX network simplifies the value
distribution between individual agents and collective agents
and simplifies the learning structure [4]. The Q-Trans network
introduces a transformation function that allows individual
agents to adjust their strategies based on the behaviour of
others, effectively capturing complex interactions between
agents [5]. MAPPO employs the advantage function to assess
the expected benefits of each agent’s actions, promoting the
development of more effective independent strategies. At the
same time, a coordination mechanism maintains consistency
across the agent system’s policies, balancing independence
with coordination [6]. At the same time, Mappo introduces

the most important sampling method to enable multiple agents
to complete off-policy training efficiently. CLIP is introduced
into the loss function to accelerate the exploration of strategies
in the training process. Furthermore, The Transformer network
has proven advantageous in expressing high-dimensional situ-
ations across various applications, including decision-making
in multi-aircraft combat scenarios. As the costs of unmanned
aerial vehicles (UAVs) decrease, the emergence of large-
scale UAV combat scenarios on future battlefields becomes
increasingly likely, highlighting the need for effective air
combat strategy training [7]. When swarm drones, unmanned
robots, and other unmanned technologies are widely used
on the battlefield, it is particularly important to design a
more open and intelligent UAV suitable for air combat [8].
Therefore, conducting air combat strategy training for large
UAVs is important. While a multi-agent learning framework
that supports different agent types is available [9], in practice,
it is difficult for an agent to learn the optimal air combat
decision from scratch due to the complexity of the fixed-wing
aircraft model and the large exploration space.

To efficiently and reliably train a larger-scale UAV collab-
orative air combat strategy, this paper suggests transferring
knowledge from a small-scale air combat model (2 vs. 2) to
a larger-scale model (5 vs. 5). This approach leverages the
understanding of the global situation developed in the small-
scale model by reusing its Transformer module in the larger
context. As a result, strategy convergence can be achieved with
minimal training, greatly enhancing the stability and efficiency
of the large-scale air combat model.

1)Design a simulation platform that can quickly realize
multi-agent air combat simulation and interaction of different
scales and different combat difficulties, and design basic
scenarios for training using course learning.

2)Transfer learning is introduced to transfer the aircraft
strategies of basic scenarios, and training and comparison are
carried out in more complex scenarios. Practice has proved
that this method can improve the model’s convergence speed,
winning rate, and robustness.

II. PROBLEM OVERVIEW

A. Modeling Air Combat Scenarios

The multi-aircraft air combat scenario discussed in this
article refers to within visual range (WVR) engagements,
where tactical maneuvers are employed to gain a superior
position to fire upon the adversary. In these scenarios, the



primary weapons used are short-range air-to-air missiles and
machine guns, emphasizing the importance of close-range
combat and real-time decision-making. The opposing sides in
these air combat simulations are designated as the red side
and the blue side. In this context, the red side represents
our forces, with the tactical strategies being derived through
advanced learning algorithms. On the other hand, the blue side
represents the adversary, whose responses are guided by script-
based tactics that vary in difficulty. In this article, the scenario
involves red side aircraft that employ tactics learned through
machine learning or other adaptive processes, while the blue
side represents the opposing force, utilizing pre-determined
tactical responses based on various levels of difficulty. These
responses range from random action sampling to more sophis-
ticated air combat scripts and simulated self-play techniques.
The blue side’s tactics are designed to challenge the red side
in multiple ways, testing the adaptability and effectiveness of
learned strategies. The focus of the research is on a multi-
aircraft air combat environment within visual range, which
uses tactical maneuvers as a key factor in achieving the firing
advantage. The primary weapon systems in use are short-range
missiles and machine guns, emphasizing the need for close-
quarters engagement. In this framework, the red side’s aircraft
apply learned strategies, while the blue side represents the
opponent and uses various difficulty-based tactics that include
random action sampling, predefined air combat strategies, and
virtual simulations against itself. The mathematical modeling
of the aircraft’s movement within a two-dimensional plane is
provided as follows:

ẋ=u cosψ−v sinψ
ẏ=u sin psi+v cos psi

u̇=r·v+ 1
mFx

v̇=− r·u+ 1
mFy

ṙ=Mz

Iz

Ψ=r

(1)

Based on the findings presented in the literature [12], a two-
dimensional air combat aircraft model is developed, capable
of deploying both air-to-air missiles and aircraft cannons as
its primary weapons systems. The key characteristics of this
model are depicted in Fig. 1 and are outlined as follows: -
The heading angular velocity falls within a range of [0, 5]
degrees per second. - The aircraft’s speed can vary between
200 and 500 meters per second. - For short-range missile
systems, the aircraft can carry up to 8 missiles, with an
effective range between 0 and 11 kilometers. The missile
launch cone is centered along the aircraft’s longitudinal axis,
with an allowable angle range of [−60, 60] degrees. Each
missile has a single-shot hit probability of 0.75. - The aircraft’s
cannon system has a maximum ammunition capacity of 400
rounds. The effective firing range for the cannon is between 0
and 2 kilometers, with a firing cone angle range of [−60, 60]
degrees. Additionally, the cannon can be continuously fired
for up to 200 seconds.

Fig. 1. Aircraft Model

B. Reinforcement Learning for Multi-Agent Air Combat

In this scenario, multi-aircraft air combat is modeled as a
Partially Observable Markov Game (POMG). From the Red
Army’s perspective, the air combat process is defined by a six-
tuple (S,Oi(i ∈ n), Ai(i ∈ n), P,R, γ). Here, S represents
the overall air combat state, which is the combined state
of both the red and blue forces. Oi denotes the observable
state for the i-th red aircraft, where n ≥ 1 corresponds to
the number of observable red aircraft. Ai defines the action
space available to the i-th red aircraft, while the joint action
A = A1 × · · · × An signifies the collective actions of all red
aircraft at a given decision-making step. The state transition
probability is represented by P : S×A→ △S, describing the
likelihood of transitioning from one state s to another state s

′

after the Red team performs a joint action a in state s ∈ S.
The reward function is given by R : S × A× S → R, which
defines the immediate reward the red aircraft group receives
upon taking action in state s and transitioning to the new
state s

′
. The discount factor γ ∈ [0, 1] is used to calculate

and accumulate long-term rewards over time. In this model,
air combat is treated as a typical sequential decision-making
problem where aircraft continuously observe the environment,
make tactical decisions, execute those decisions (within a
simulation environment), and accumulate rewards based on
their actions. The POMG framework defines the observation
space for each aircraft, which is composed of three main
components: 1) Self-information, expressed as:

Ot,i=[x, y.v, ψ,Aoffi,j , AAi,j , ATAi,j ,

di,j , di,f , Aoffi,f , AAi,f , ATAi,f , sr, ca]
(2)

In this context, the subscript i refers to the current time
step, while i (i ∈ n) represents the i-th aircraft of the Red
side, with n being the total number of observable Red aircraft.
Similarly, j (j ∈ m) denotes the j-th aircraft of the Blue
side, where m is the number of observable Blue aircraft.
The subscript f refers to friendly aircraft. The variables x, y
represent the aircraft’s 2D position, v is the current speed, sr
indicates missile readiness, and ca shows whether the aircraft



is firing. The heading angle of the aircraft is denoted by ψ.
Additionally, Aoffi,j represents the angle of attack, which is
the angle between the velocity directions of the Blue aircraft
j and Red aircraft. AAi,j , or azimuth, is the angle between
the vertical axis of the Blue aircraft and the distance vector
between the Red and Blue aircraft. ATAi,j refers to the radar
tracking angle, defined as the angle between the distance
vector of the Blue aircraft relative to the Red aircraft and the
vertical axis of the Red aircraft. Other subscripts follow the
same pattern. For further details, refer to Fig. 2.
2) Friendly information, expressed as:

Ot,f=[v, ψ,Aofff,i, AAf,i, ATAf,i, df,i, sr, ca] (3)

3) Opponent information, expressed as:

Ot,j=[v, ψ,Aoffj,i, AAj,i, ATAj,i, dj,i, sr, ca] (4)

4) Combine the observation information of all red aircraft to
get the global observation:

The action space is defined as [h, e, c, b], where each com-
ponent represents a specific control parameter for the aircraft:
h ∈ [−6, . . . , 6] is a discrete action space that adjusts the
aircraft’s heading angle ψ within the range of [−180, 180]
degrees per second. e ∈ [0, . . . , 9] is a discrete action space
that controls the aircraft’s velocity v, ranging from [0, 500]
meters per second. c ∈ [0, 1] indicates whether or not to
fire the aircraft’s cannon. b ∈ [0, 1] determines whether to
launch a missile. The reward function is designed to reflect
advantageous combat scenarios, such as positioning behind the
opponent’s tail for an optimal attack. To encourage the agent
to improve its attack efficiency, factors such as the azimuth
angle (AA), distance (d), radar tracking angle (ATA), and
the remaining cannon rounds and missiles are considered in
the reward structure. The function incentivizes actions that
increase the likelihood of successful engagement, as expressed
in the following equation:

ra=AA+d+
Cremain

Cmax
+
Sremain

Smax
(5)

In this equation, Cmax and Smax represent the maximum
number of cannon rounds and missiles the aircraft can carry,
respectively. Meanwhile, Cremain and Sremain indicate the
remaining cannon rounds and missiles available after engaging
and defeating the opponent.

Ot,full=Ot,i ∪Ot,f ∪Ot,j (6)

III. METHOD

A. Curriculum Learning

Curriculum learning in reinforcement learning is a transfer
learning approach that accelerates training by progressively
increasing task difficulty. It involves creating a sequence of
tasks similar to the final target, with strategies transferred
across tasks to improve learning speed and performance. In

AA

Opponent

Agent

ATA d

Opponent

h

Aoff

Fig. 2. Air Combat Model

multi-agent air combat decision-making, the red side (trained
through reinforcement learning) faces varying blue-side strate-
gies. Curriculum learning is applied to gradually increase the
complexity of blue-side tactics. Training begins with simple
strategies, and as the red side’s model converges, the difficulty
of blue-side strategies is raised to enhance the red aircraft’s
combat effectiveness and adaptability. This study defines four
levels of blue-side strategies.

• L1: static, the blue aircraft is static.
• L2: random, the blue aircraft takes random actions within

the allowed action space.
• L3: script, the blue aircraft engages the nearest Red

aircraft and after engaging, moves away from the red
aircraft

• L4: self-play,the red aircraft adopts the blue strategy of
L3 training to confront the opponent.

B. Neural Network Architecture

Our network structure is based on the Actor-Critic network.
The Network structure of the proposed method mainly consists
of three components, as shown in Fig. 3:

1) Actor network structure: The actor parameterized by
θ : πθ

i : oi → a,consists of the embedding layer, Long Short-
Term memory(LSTM) and Multi-head attention network.It
takes partial observation oi as input and outputs action values
for making decisions. In the actor network, firstly, As a
high-dimensional sparse vector, the observation space ofull
is mapped to a D-dimensional real vector, which concludes
the battlefield situation representation information through the
embedding layer. LSTM is used to fuse the environmental
embedding et−1

i at last time t−1 and the interaction embedding
hti at current time t,yielding the environmental embedding eti
at current time t, and then, the environmental embedding eti
through a multi-head attention mechanism network to obtain
a vector attti containing battlefield situation attention. Lastly,
as shown in the equation:

f ti=[eti; att
t
i] (7)

The attention vector is concatenated with the embedding of
the original environment. Then, f ti is fed into a policy network



with FC shared layer and FC layer, which outputs action values
of aircraft i.

2) Critic network structure: The critic parameterized by
ϕ : vϕi : si → R, is similar to actor network structure. The
critic network takes the aircraft global state si of aircraft i as
inputs and outputs a scalar value for the actor training.

3) Actor-critic network parameter sharing The training of
policies for homogeneous agents can be made more efficient
through parameter sharing. In this Actor-critic network, the
actor-network embedding f ti and critic network embedding cii
as inputs go through a shared FC layer to obtain situation
information containing more cooperative knowledge.
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Fig. 3. Neural Network Architecture

C. Transfer Learning

In the structure shown in Fig 3, the Transformer module
processes global observation data to better capture global fea-
tures and support decision-making for individual aircraft. The
idea is that if the Transformer module has effectively learned
to represent situational features in two vs. two air combat,
reusing its parameters could speed up learning for larger-
scale scenarios. Based on this, the paper reuses Transformer
parameters from two vs. two scenarios for five vs. five air
combat to enhance training efficiency without compromising
quality.

IV. EXPERIMENTS

A. 2 vs. 2 curriculum training results

Training takes place within the air combat simulation en-
vironment described earlier, which allows visualization of
aircraft flight paths and weapon usage. A simulation cycle
concludes when either the time limit is reached or all aircraft
on one side are destroyed. Aircraft are considered destroyed
if hit by a shell or missile, or if they collide with the map
boundary. At the start of each episode, aircraft positions and
orientations are randomly assigned to opposite sides of the
map. In the 2 vs. 2 training scenario, the map size is set
to 5 kilometers. The red side is equipped with five air-to-air

missiles and 200 cannons, while the blue side carries eight air-
to-air missiles and 400 cannons. The blue side trains using four
levels of strategies. The blue team’s model, trained using the
Script strategy, is then loaded into the simulation environment,
where the self-play strategy is used for further training. This
model is later compared to a model trained from scratch, as
shown in Fig 4.

(a) Reward

(b) Winning rate

Fig. 4. 2 vs. 2 air combat training results

In the 2 vs. 2 curriculum training, the red plane carries 200
cannon shots and 5 missiles for each episode. The blue plane
carries 400 cannon shots and 8 missiles. In this training, the
opponent’s combat capability is stronger than our intelligent
body. In order to win this air battle, our aircraft’s strategy
will be more intelligent. As the blue side’s strategy level
increases, we increase the simulation time from L1’s T = 200
by △t = 50. Start training the basic model from the static
strategy and gradually increase the blue side’s strategy level
to L4.wining rate. First, let the two planes of the blue side
adopt the simplest static strategy, train the red side model,
and test the winning rate of the trained model (randomly
initialize the positions of the red and blue sides 100 times,
and then calculate the winning rate of the red side), and then
gradually upgrade the blue side strategy. The trained old red
strategy is gradually loaded into the air combat environment
with a high-level blue strategy for course learning.

It can be seen from Fig. 4 that the red team’s intelligent



agent, trained through the curriculum learning, demonstrated
good combat capabilities. Fig. 5 shows the Red side’s combat
trajectory when the Blue side adopts self-play strategies. From
Fig. 4, we can see that the red team has the highest win rate for
the simplest static scene. When the blue team starts to execute
the more difficult random motion strategy, the red team’s
win rate decreases, showing that the model strategy trained
from the static scene is relatively simple. As the difficulty of
the Blue Team’s strategy increases, the red team’s win rate
gradually increases. It can be seen that when the blue team is
executing the L2-L4 strategy, the course learning is effective
for model training.

Fig. 5. 2 vs. 2 Air Combat Trajectory

B. Transfer learning based on attention parameter sharing

In this study, we designed a 5 vs. 5 air combat simulation
task utilizing the aforementioned simulation platform. We
reconstructed the parameters of the Fully Connected (FC) and
Embedding layers in the decision network while reusing the
parameters from the LSTM and Transformer networks. The
model trained on the 2 vs. 2 scenario was then adapted for
the 5 vs. 5 air combat task, which covers a combat range of
80x80 kilometers. The number of weapons carried by both
the red and blue sides remained consistent with the previous
section, allowing for a comparison with curves generated from
training from scratch. The resulting reward and win rate curves
are illustrated in Fig 6. From the reward curve shown in
Fig 6, it is evident that the model trained with parameter
sharing from the 2 vs. 2 scenario converges more quickly and

exhibits a smoother reward trajectory compared to the model
trained from scratch. This indicates enhanced convergence
speed and robustness. Additionally, analyzing Fig 6, we found
that the winning rate of the model trained from scratch was
significantly lower than that of the transfer-learned model,
which achieved a win rate as high as [insert specific percentage
here]. This demonstrates the superior combat capability of the
transferred model. Overall, the migration of the strategy model
from the 2 vs. 2 air combat scenario to the more complex 5
vs. 5 environment effectively enhances both the convergence
speed and robustness of agent training, resulting in improved
combat capabilities and higher win rates for the red aircraft.

(a) Reward

(b) Wining rate

Fig. 6. 5 vs. 5 air combat transfer training results

Select the strategy model obtained by transfer training,
randomly initialize the red and blue square position informa-
tion and weapon information, load the model, and obtain the
trajectory diagram:

As shown in Fig 7, the curves of the red and blue planes
represent the motion trajectories of the red and blue planes
from the beginning to the end of the simulation. It can be
found from the trajectory diagram that, at the beginning of
the simulation, due to the long distance between the two
planes, the blue side will execute the motion command to
approach the red plane under the control of the script. In
contrast, the red side now has no detection range of the blue
plane. There are only friendly forces, and the Red aircraft
will randomly select actions in the specified action space to



Fig. 7. 5 vs. 5 Air Combat Trajectory

explore the surrounding environment (such example, When
the simulation step length increases, the blue side will move
to the detection range of the red side aircraft. When the blue-
side aircraft appears within the detection range of the red side,
it will take action to approach the blue-side aircraft under the
guidance of the distance reward function (such as direct pursuit
and offensive rotation). Once within range, the red-headed and
blue-square aircraft engage in a close dogfight, choosing the
dominant position to attack until the aircraft is dead or the
simulation ends (for example, attacking the enemy’s rear).
The curve analysis shows that after training in the framework
of this paper, the red intelligence can learn effective tactical
attack actions and destroy the blue aircraft.

V. CONCLUSIONS

This paper focuses on multi-agent air combat decision-
making utilizing battlefield attention information within a two-
dimensional simulation environment. We employed a cur-
riculum learning approach to train a 2 vs. 2 air combat
model, where the blue side employs various strategic levels.
Subsequently, this model was transferred to the more complex
5 vs. 5 air station scenario using transfer learning, allowing
for a comparison with a model trained from scratch. Results
indicate that this approach significantly enhances the winning
rate, convergence speed, and robustness of the multi-agent air
combat decision-making process. Additionally, we analyzed
the multi-head attention architecture of each aircraft during
the simulations to extract attention information relevant to the
current combat situation, confirming that the transfer learn-
ing method aligns more closely with real-world air combat
scenarios.

In future work, we aim to combine this framework with a
six-degree-of-freedom high-precision aircraft countermeasure
environment to validate the effectiveness of our approach in
more complex environments, and, we will further increase
the number of agents in the new adversarial environment and
the complexity of the blue square agent strategy, and update
our transfer learning approach. Implement transfer decision
learning in the complex adversarial environment of larger
scale agents.
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