ﬁ EasyChair Preprint

Ne 356

Towards an Open Source Stack to Create a
Unified Data Source for Software Analysis and
Visualization

Richard Miiller, Dirk Mahler, Michael Hunger, Jens Nerche and
Markus Harrer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 17, 2018

Towards an Open Source

Stack to Create a Unified

Data Source for Software Analysis and Visualization

Richard Miiller*, Dirk Mahler, Michael Hungeri, Jens Nerche® and Markus Harrer¥

*Leipzig University, Germany

Email: rmueller @wifa.uni-leipzig.de

Thuschmais GbR, Dresden, Germany

Email: dirk.mahler@buschmais.com

iDeveloper Relations, Neo4j Inc., Malmo, Sweden
Email: michael.hunger@neo4j.com
§Application Development, Kontext E GmbH, Dresden, Germany
Email: j.nerche @kontext-e.de
ISoftware Development Analyst, Freelancer, Roth, Germany
Email: contact@markusharrer.de

Abstract—The beginning of every software analysis and visu-
alization process is data acquisition. However, there are various
sources of data about a software system. The methods used
to extract the relevant data are as diverse as the sources are.
Furthermore, integration and storage of heterogeneous data from
different software artifacts to form a unified data source are very
challenging. In this paper, we introduce an extensible open source
stack to take the first step to solve these challenges. We show
its feasibility by analyzing and visualizing JUnit and provide
answers regarding the schema, selection, and implementation of
software artifacts’ data.

Index Terms—software analysis, software
schema, graph database, query, open source

visualization,

I. INTRODUCTION

Software analysis and visualization are a vital means for
making informed decisions in software development and
maintenance projects. The quality of these decisions strongly
depends on the quality of the underlying data source. The
data should be accurate, complete, consistent, credible, and
current [1]. In case of software, this means that its structural,
behavioral, as well as evolutionary data [2, p. 3f] should be
considered and accessible from a unified data source.

The software visualization pipeline describes the steps to
transform data from software artifacts into visual representa-
tions. These steps are data acquisition, analysis, and visual-
ization [2, p. 12]. There are various kinds of software artifacts
belonging to a software system, such as source code, test
results, code analysis results, or version control logs. During
data acquisition, the relevant data from these artifacts is ex-
tracted. The data naturally maps to a multivariate, compound,
attributed, and time-dependent graph [3]. This graph consists
of entities, their relations, and attributes. In the analysis step,
the data is aggregated, enriched, and the relevant parts are
filtered. The resulting entities and relations are mapped to
marks and their attributes are mapped to channels resulting
in a specific visualization [4, Ch. 5]. Views define the parts of
the visualization shown to the user on a display to support a
specific task [5].

Creating, storing, and querying the data captured by such
graphs is very challenging. Diehl et al. summarize the most
important questions in this respect [3].

1) Schema: How to model a given aspect of a software
system in terms of entities, relations, and attributes?

2) Selection: How to select data relevant for a given task
from an entire graph?

3) Implementation: How to store the graph in a way that
is efficient for quickly reading and writing large amounts
of data?

Our contribution in this paper is the introduction of an open
source stack providing answers to these questions. We present
JOAssistant, an extensible tool that scans different kinds of
software artifacts and stores the extracted data as a graph.
Further, we introduce Neo4j as a suitable storage, analysis,
and filter tool for heterogeneous software data. Finally, we
present a prototype as a proof of concept visualizing integrated
structural, behavioral, and evolutionary data with D3 and
React.

Data Acquisition —> Analysis —> Visualization
Software Aggregation,
Artifacts Enrichment, Views
Filtering

Test

[passed
[passed

[failed

=1
T

-

/QAssistant

®neos)

Fig. 1: Open source stack to extract, analyze, and visualize
heterogeneous information of software artifacts.

II. OPEN SOURCE STACK

The proposed open source stack creates a unified data source
for software analysis and visualization. jQAssistant scanners
extract heterogeneous data from software artifacts and store
it in a Neo4j graph database. jQAssistant rules and Neo4j’s
query language Cypher are used to aggregate, enrich, and
filter the important parts. Finally, the filtered data is mapped
to D3 components embedded in a React app and visualized
in a browser. The components of the open source stack are
summarized in Fig. 1.

A. Neodj

Neo4j' is an open source graph database that is built to
store, manage, and query large amounts of connected data. It
is a native graph database as it implements the data model
efficiently down to the storage level.

1) Model: 1Its data model is a property graph, linking
labeled nodes with named, directed relationships both of
which can carry arbitrary sets of properties as key-value pairs.
There is no rigid schema which makes it suitable for linking
variably shaped information from different data sources. The
abstract graph data model is shown in Fig. 2.

Fig. 2: Abstract graph data model of Neo4;.

2) Cypher: The graph query language Cypher [6] matches
given patterns in the graph using a visual, ASCII art-
based syntax, e.g., (nodel:Labell)-[:RELATION_TYPE]->(
node2:Label2). Cypher supports all regular query language
operations as well as comprehensions, data flow concepts, and
user-defined functions and procedures. The language evolution
is driven by the openCypher’ organization of independent
researchers and vendors.

3) Driver: Neo4j has flexible deployment options, from
embedding it into an application, running it as a server or on
cloud infrastructure. The database supports both transactional
operations as well as large-scale graph analytics. Drivers for
most programming languages, e.g., Java, Python, R, .Net,
and JavaScript allow to execute Cypher statements and return
tabular or graph results. The driver is the interface between
the data handling component and the visualization component
of the stack.

B. jOAssistant

jQAssistant? is a tool based on Neo4j for scanning software
artifacts’ data and analyzing the extracted data by applying
rules. It has been developed for automated verification of a
software system’s implementation compared to its specifica-
tion. Therefore, jQAssistant is commonly used as part of build

Thttps://neo4j.com
Zhttps://www.opencypher.org
3https://jqassistant.org

pipelines on CI (continuous integration) servers. It integrates
with the build tool Apache Maven* but can also be executed
independently as command line utility. The core of jQAssistant
is a framework which provides interfaces for scanner, rule,
and report plugins. The framework is agnostic to any specific
programming language or technology that shall be scanned or
analyzed.

1) Scanner: The scanner extracts data from software ar-
tifacts and stores it as a graph in the Neo4j database. The
process is controlled by the framework. Plugins are responsible
for interpreting specific types of information like directory
structures, .class files containing Java bytecode, or URLs.
Each plugin creates a sub-graph representing the extracted
data. In defined technical contexts, relevant information may
be exchanged between plugins to create connected graphs.

2) Rules: In a subsequent step the graphs can be analyzed
by applying rules on them: concepts for data enrichment and
constraints for detecting violations.

A concept adds abstractions to the graph which are defined
in the design or architecture language of the system. For
example, in the library JUnit, a direct child package of the root
package org. junit may be interpreted as component. Hence, a
concept with the id junit:Component can be defined that adds
a label to each corresponding node using a Cypher query.
MATCH (p:Package)-[:CONTAINS]->(c:Package)

WHERE p.fgn = "org.junit"

SET c:Component // set the label
RETURN c as component

"Component"

It is possible to have dependencies between concepts. For
example, the concept junit:ComponentDependencies requires
the enriched graph of junit :component for aggregating depen-
dencies between contained types to the component level. This
can be achieved by creating relationships of type DEPENDS_ON.
The property weight indicates the degree of coupling.

MATCH (cl:Component)—[:CONTAINSx]->(tl:Type),
(c2:Component) — [:CONTAINSx*]—-> (t2:Type),
(tl)-[:DEPENDS_ON]->(t2)

WHERE cl <> c2

WITH cl, c2, count(x) as weight

// creates a relation for component dependencies
MERGE (cl)-[d:DEPENDS_ON]->(c2)

SET d.weight = weight

RETURN cl, c2, weight

A constraint is also expressed as a Cypher query. It is
violated if it returns a result that is not empty and usually
depends on one or more concepts.

With these means, scanned data from different sources
can be automatically aggregated, enriched and connected.
For example, LOC (lines of code) from method level can
be aggregated to classes and packages or to newly added
components. Moreover, the components can be enriched with
further data such as average change frequency or test coverage.

3) Plugins: The main distribution of jQAssistant provides
a set of plugins with scanners and rules that support file
formats with a focus on the Java programming language and its

“https://maven.apache.org

related technologies. The scanners provided by the Java plugin
create graphs representing core elements of the language,
i.e. nodes labeled with Package, Type, Field, Method, and
Annotation that are connected by corresponding relation-
ShipS, €.g2., (:Package)-[:CONTAINS]->(:Type) OI (:Type)
- [:DECLARES] -> (:Method) - [: RETURNS] -> (: Type). The label
Type represents a Java type that can be qualified further by
another label like :Type:Class OI :Type:Interface.

Furthermore, there are plugins® contributed by the jQAssis-
tant community. Next, the Git, Jacoco, and PMD plugins are
briefly described.

Git® is a distributed version control system. Its data is
organized as a graph which naturally fits into a graph database.
The jQAssistant Git plugin imports the meta-data but not the
file content. Imported nodes are Repository, Author, Commit,
Change, File, Branch, and Tag. The connection to the Java
bytecode graph is done via rFile nodes. An example of a
concept are the merge commits which are marked nodes with
the label Merge.

JaCoCo’ is a Java code coverage library. It is mainly used
for checking code coverage of unit tests. The jQAssistant Ja-
CoCo plugin imports the XML report file. Imported nodes are
Report, Package, Class, Method, and counter. The connection
to the Java bytecode graph is done via Package, Class, and
Method nodes. An example of a constraint is to define test
coverage rules such as that a method with a given complexity
requires a specified test coverage.

PMD?® is an extensible, cross-language, and static source
code analyzer with a rich set of rules for Java. The jQAssistant
PMD plugin imports the XML report file. Imported nodes are
Report, File, and violation. The connection to the Java
bytecode graph is done via rile nodes. An example of a
concept is to enrich existing Java class nodes with the number
of PMD violations.

C. D3 and React

D3 (Data-Driven Documents) [7] is a JavaScript library to
manipulate data and to create interactive, web-based visualiza-
tions. It uses established web standards such as HTML, SVG,
and CSS and provides a rich set of visualization techniques.

React’ is a JavaScript library for building web-based user
interfaces. It is a perfect companion of D3 as it turns D3
visualizations in reusable visualization components.

III. PROOF OF CONCEPT

To provide a proof of concept, we present a Software
Analysis and Visualization Dashboard'® as one visualization
frontend for the open source stack. The dashboard supports
project leaders in decision-making and provides interactive
views concerning architecture and dependencies as well as

Shttps://github.com/kontext-e/jqassistant-plugins
Ohttps://git-scm.com

7https://www.jacoco.org

8https://pmd.github.io

%https://reactjs.org/
10https://github.com/softvis-research/jqa-dashboard

resource, risk, and quality management of a software system. It
is implemented as React application and uses D3 visualization
components'!. The data for each view is dynamically queried
from a Neo4j database.

As an example use case for analysis and visualization,
we have chosen the open source project JUnit!?. At first,
the bytecode, Git log, test coverage results, and static code
analysis results are scanned with jQAssistant and stored in a
Neo4j database. During analysis, predefined rules aggregate,
enrich, and connect this data. A screencast demonstrating
the data acquisition, analysis, and visualization of JUnit is
available in the repository of the dashboard. Next, we present
some selected views based on this unified data source.

A. Dependency Analysis

Dependency analysis is important to assess the coupling and
cohesion of a software system. To visualize the dependencies,
structural data is necessary. The following Cypher query
is based on the concept junit:ComponentDependencies and
returns the fully qualified name for each component and its
dependencies including the weight.

MATCH (source:Component)—-[d:DEPENDS_ON]—>
(target :Component)

RETURN source.fqgn as component,
dependency, d.weight as weight

target.fgn as

The returned data is used to create a dependencies analysis
view with a chord diagram. The fully qualified names of
the components are arranged radially around a circle and the
dependencies are drawn as arcs. The corresponding view for
dependency analysis is shown in Fig. 3 (a).

B. Hotspot Analysis

Hotspot analysis supports assessing the risk of a software
system [8, p. 19]. Hotspots are complex parts of the source
code that change often. They are usually candidates for im-
provements or refactoring. To visualize these hotspots, struc-
tural data and evolutionary data are necessary. The following
Cypher query returns the fully qualified name for each type,
its LOC, and its number of commits.

MATCH (c:Commit)—-[:CONTAINS_CHANGE]->
()-[:MODIFIES]->(f:File)

WHERE NOT c:Merge

WITH f, count(c) as commits

MATCH (t:Type)-[:HAS_SOURCE]->(f),

(t) - [:DECLARES]-> (m:Method)

RETURN t.fqgn as type,
sum (m.effectivelLineCount)
sum(commits) as commits

as loc,

The returned data is used to create a hotspot analysis view
based on circle packing [8, p. 20]. The fully qualified names
of the types are mapped to nested circles with LOC as the
size and the number of commits as the color of a circle. The
corresponding view for hotspot analysis is shown in Fig. 3 (b).

https://github.com/plouc/nivo
2https://github.com/junit-team/junit4

= S customQuery Sertings

(a) Dependency view showing component coupling.

8 Cwmaey @ sy

(c) Test coverage view highlighting untested code.

NNNNNN

(d) Lists showing static code analysis results from PMD.

Fig. 3: Different views of JUnit based on a unified data source.

C. Test Coverage Analysis

Test coverage analysis supports assessing the quality of a
software system. To visualize the test coverage, structural and
behavioral data are necessary. The following Cypher query
returns the fully qualified names for all classes, the signature
of their methods with the corresponding covered instructions
and LOC.

MATCH (c:Jacoco:Class)-[:HAS_METHOD]->
(m:Method:Jacoco)—[:HAS_COUNTER]-> (cnt:Counter)
WHERE cnt.type="INSTRUCTION"

RETURN c.fgn as fgn, m.signature as signature,
covered x= 100) / (cnt.covered + cnt.missed) as
coverage, cnt.covered + cnt.missed as loc

(cnt.

The returned data is used to create a test coverage analysis
view with a treemap. The fully qualified names of the types
and method signatures are mapped to nested rectangles where
the LOC define the size and the coverage defines the color of
a rectangle. The corresponding view for test coverage analysis
is shown in Fig. 3 (c).

D. Static Code Analysis

Static code analysis is another means to assess the quality
of a software system. Here, the source code is checked
against predefined rules. PMD provides checks regarding best
practices, code style, design, documentation, error-proneness,

multithreading, and performance. The following Cypher query
returns the fully qualified name of a file and further data
describing the violation.

MATCH (:Report)-[:HAS_FILE]->(file:File:Pmd)

—[:HAS_VIOLATION]->(violation:Violation)
RETURN file.fqgn, violation

The returned data is used to create a radar chart showing
the number of violations in the categories. Furthermore, all
violations are summarized by category and listed in separate
boxes. Each violation is colored according to its priority. The
static code analysis view is shown in Fig. 3 (d).

IV. RELATED WORK

Moose [9] and Rascal [10] provide languages for parsing,
modeling, and querying software artifacts’ data. Moose uses
a family of meta-models, namely Famix [11] for structural,
Dynamix [12] for behavioral, and Hismo [13] for evolutionary
software artifacts’ data. These formats are great to store
the corresponding information. But the extraction and the
integration of the data is still challenging. Rascal is a domain-
specific language for software analysis and manipulation. Its
main differences to the open source stack are that Rascal
focuses on static source code analysis and provides additional
source code transformation as well as generation features.

There are some recent approaches using a graph database for
storing and querying extracted software artifacts’ data. VerX-
Combo [14] stores library dependencies in a Neo4j database
and visualizes them with parallel sets using D3. The provided
views support system maintainers in decision making to either
update or introduce new third-party libraries. The Swarm
Debugging Prototype [15] stores data from debugging sessions
in a Neo4j database and visualizes them as method call
graphs and sequence stack diagrams. The provided views aid
developers to decrease the required time for deciding where to
toggle a break-point and locate bug causes. VIMETRIK (Visual
Specification of Metrics) [16] is an interactive visual data
exploration and data-mining tool to create software metrics.
The aggregated data is then visualized using suitable views
provided by KNIME [17].

We identify three main differences to our proposed open
source stack. First, we aim at integrating structural, behavioral,
and evolutionary data from different software artifacts in a uni-
fied data source. Second, the stack already includes scanners
for different software artifacts licensed as open source. Third,
the stack provides loosely coupled components that can be
tailored for specific needs or project requirements. On the one
hand, the scanners are freely selectable. On the other hand, the
visualization components are not limited to D3 and React. For
example, they can be easily replaced by Jupyter'3, Pandas',
and matplotlib® for 2D visualizations or A-Frame'® for 3D
visualizations.

V. OPEN QUESTIONS

We have presented an open and extensible stack for software
analysis and visualization. As a proof of concept, we have
analyzed and visualized JUnit. The open source stack provides
first answers to the questions raised by Diehl et al. [3] with
regard to schema, selection, and implementation of software
artifacts’ data. However, this is just a first step as there are
still open questions and challenges.

Which further languages and software artifacts should
be supported? jQAssistant mainly supports Java-based soft-
ware artifacts. Its open and extensible architecture provides
best opportunities to develop plugins to support further lan-
guages and other types of software artifacts which is especially
important in today’s polyglot software projects.

What is a suitable schema to store structural entities at
different points in time and simultaneously keep the data
source consistent? At the moment, the data source contains
the complete history log but only one snapshot of the Java
bytecode. The major objective is to have code entities, their
relations, and attributes at different points in time. Hence, we
are working on a Java source code scanner!’ that is able to
scan different versions of source code.

Bhttps://jupyter.org

“https://pandas.pydata.org

Bhttps:/matplotlib.org

16https://aframe.io
Thttps://github.com/softvis-research/jqa-javasrc-plugin

How to leverage context-specific views? With the graph-
based approach, not only different data sources can be con-
nected, but also different abstraction levels and perspectives
on the whole software development lifecycle can be created.
Refactorings could be motivated based on change frequency,
actual usage data of production systems, and upcoming user
stories to find valuable spots for quality improvements. First
ideas exist'®, but which possible views support development
teams, product owners, or even managers the most?

How to find hidden structures? At code level, most of
the actual software structure is hidden. While packages and
modules can be used to make it explicit, they do not always
capture the right granularity or grouping. By analyzing depen-
dencies with graph algorithms and deep learning techniques,
it is possible to detect implicit clusters. These clusters might
be derived from a unified data source integrating source code,
stack traces, and recorded IDE interactions of developers.

REFERENCES

[1] ISO/IEC 25012:2008, “Software engineering — Software product Quality
Requirements and Evaluation (SQuaRE) — Data quality model,” 2008.

[2] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer, 2007.

[3] S. Diehl and A. C. Telea, Multivariate Graphs in Software Engineering,
ser. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2014, vol. 8380, ch. 2, pp. 13-36.

[4] T. Munzner, Visualization analysis & design. CRC Press, 2014.

[5] E. H. Chi, “A taxonomy of visualization techniques using the data state
reference model,” in IEEE Symp. Inf. Vis., 2000, pp. 69-75.

[6] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An Evolving Query Language for Property Graphs,” in ACM
SIGMOD Int. Conf. Manag. Data, 2018, p. 13.

[71 M. Bostock, V. Ogievetsky, and J. Heer, “D3 Data-Driven Documents,”
IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2301-2309, 2011.

[8]1 A. Tornhill, Software Design X-Rays - Fix Technical Debt with Behav-
ioral Code Analysis. The Pragmatic Bookshelf, 2018.

[9] O. Nierstrasz, S. Ducasse, and T. Girba, “The story of moose: an agile
reengineering environment,” in Proc. 10th Eur. Softw. Eng. Conf. held
Jjointly with 13th SIGSOFT Int. Symp. Found. Softw. Eng., vol. 30.
Lisbon, Portugal: ACM, 2005, pp. 1-10.

[10] P.Klint, T. van der Storm, and J. Vinju, “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation,” in 2009 9th
IEEE Int. Work. Conf. Source Code Anal. Manip., 2009, pp. 168-177.

[11] S. Ducasse, N. Anquetil, U. Bhatti, A. C. Hora, J. Laval, and T. Girba,
“MSE and FAMIX 3.0: an interexchange format and source code model
family,” p. 40, 2011.

[12] O. Greevy, “Dynamix - a meta-model to support feature-centric analy-
sis,” in Ist Int. Work. FAMIX Moose Reengineering, 2007.

[13] T. Girba, J. M. Favre, and S. Ducasse, “Using meta-model transforma-
tion to model software evolution,” Electron. Notes Theor. Comput. Sci.,
vol. 137, no. 3, pp. 57-64, 2005.

[14] Y. Yano, R. G. Kula, T. Ishio, and K. Inoue, “VerXCombo: An Interactive
Data Visualization of Popular Library Version Combinations,” in 23rd
Int. Conf. Progr. Compr., 2015, pp. 291-294.

[15] F. Petrillo, G. Lacerda, M. Pimenta, and C. Freitas, “Visualizing inter-
active and shared debugging sessions,” in 3rd IEEE Work. Conf. Softw.
Vis., 2015, pp. 140-144.

[16] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “Visual analytics
of software structure and metrics,” in 3rd IEEE Work. Conf. Softw. Vis.,
2015, pp. 16-25.

[17] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter, T. Meinl,
P. Ohl, K. Thiel, and B. Wiswedel, “KNIME - the Konstanz information
miner,” ACM SIGKDD Explor. Newsl., vol. 11, no. 1, p. 26, 2009.

I8https://feststelltaste.de/swot-analysis-for-spotting- worthless-code

