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Abstract. Discovering disease-disease association based on the underlying bio-
logical mechanisms is an essential biomedical task in modern biology as under-
standing these relationships will assist biologists in discovering the pathogenesis, 
diagnosis, and intervention of human diseases. Recently, deep learning on graph 
and graph neural networks have achieved promising performance in modeling 
complex biological structures and learning compact representations of intercon-
nected data. Inspired by the success of graph neural networks in learning sub-
graph representations, we propose a novel framework, SNN-VGA, designed to 
predict potential disease comorbid pairs. We first model disease-associated genes 
as subgraphs in the protein-protein interactions network and learn disentangled 
disease module representations using a subgraph neural network model. The 
learned embeddings are leveraged by the variational graph auto-encoder to pre-
dict disease comorbidity in the disease-disease interactions network. Empirical 
results from a benchmark dataset demonstrate that our method performs compet-
itively compared with the state-of-the-art model, with an AUROC of 0.96. 

Keywords: Association Prediction, Comorbidity, Disease, Graph Convolution 
Network, Subgraph Neural Networks, Variational Graph Auto-Encoder. 

1 Introduction 

In cells, the majority of cellular components exert their functions through the interac-
tions with other cellular components [1]. Cellular functions are regulated by a complex 
network of molecular interactions, known as the interactome, which involves physical 
and functional interactions between various biological macromolecules such as proteins 
[2].  Since protein–protein interactions (PPIs) are intrinsic to most of the complex bio-
logical processes, any disruption of these interactions may cause malfunction and po-
tentially lead to diseases. It has been shown that, the analysis of PPIs is important for 
understanding the molecular mechanisms of diseases, which can improve the prognos-
tics and treatment for human disorders [3]. Often, the interconnectivity of the PPIs net-
work allows genetic abnormalities to propagate through the network connections and 
indirectly influence the activity of other gene products [1]. Therefore, perturbations in 
the PPIs network can lead to the simultaneous presence of two or more diseases in the 
same individual, a phenomenon referred to as comorbidity [4]. The etiology of disease 
comorbidities involves several mechanisms. Previous studies have identified the 
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comorbidity patterns through shared associated genes between diseases [5, 6]. Beyond 
genetic overlap, network-based structure has made substantial contributions to the ad-
vancement of biological systems [7], which allows for the exploration of cellular-level 
connections encoded by PPIs to reveal the underling mechanism of comorbidity. There-
fore, direct interactions between causative proteins of two diseases were analyzed to 
uncover the molecular mechanisms driving disease comorbidity [8]. Other studies have 
suggested that diseases may co-occur because they are co-regulated by high-level bio-
logical factors, such as shared cellular processes and biological pathways [9, 10]. The 
random walk algorithm was proposed to explore unexplained disease similarity by an-
alyzing the connections between disease-related genes in the PPIs network [8, 11]. 

Most of the approaches described above are based on analyzing biological factors 
and local network structures underlying the development of comorbid diseases. How-
ever, the PPIs network is large and complex, which requires more advanced methods 
to reveal intricate relationships to explain or predict disease comorbidity. Indeed, stud-
ies have been developed to consider the disease module theory to quantify the associa-
tions between diseases [6, 12]. In recent years embedding representation has been ap-
plied to disease biology. LINE [13] was used to map each gene in the PPIs network into 
a low-dimensional vector space to capture the intricate similarities between diseases 
[14]. CoGO is a model that used graph convolutional network (GCN) to measure dis-
ease similarity according to the structure of gene ontology and the gene interaction net-
work [15]. Another work employed isometric feature mapping (Isomap), an extension 
of multi-dimensional scaling (MDS) that applied geodesic distance on the PPIs network 
for identifying disease comorbidities. In this approach, the nodes' coordinates were de-
rived by preserving the shortest path distances between node pairs through eigenvalue 
decomposition and double centering of the distance matrix [16]. Despite these ad-
vances, the mentioned studies have certain limitations when inferring disease associa-
tions including: 

1. Many comorbid disease pairs remain undiscovered in the medical literature. As a 
result, negative samples, which represent disease pairs that do not co-occur more 
frequently than expected by random chance, are sparse leading to imbalanced train-
ing data. 

2. Disease modules contain rich higher-order connectivity patterns, both internally 
among member genes and externally through interactions with the rest of the net-
work. Most of the previous work elucidates disease associations depending mainly 
on learning the representation of each gene associated with each disease separately 
without considering the interconnections of genes related to each disease module.  

3. Some of the afore-mentioned methods rely on the location of disease modules within 
the PPIs network to predict disease relationships. They assumed that gene products 
associated with a disease segregate in the same neighborhood. In reality, many of 
the disease modules can be localized in one region of the network or distributed 
across multiple local neighborhoods, each with non-trivial internal topology.  

By analyzing a benchmark PPIs dataset used for comorbidity prediction with disease 
module separation [6] and PPIs network Isomap embedding [16], we made the follow-
ing observations: 
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• All disease modules form multiple disjoint components in the PPIs network. The 
minimum number of connected components observed across all disease modules is 
three. However, the maximum number of connected components observed across all 
disease modules is 276, which represents a high degree of fragmentation within a 
particular disease subgraph. 

• The largest connected component (LCC) across all disease modules contains 85% 
of the proteins belonging to a specific subgraph. Despite the presence of large and 
connected components, the majority of the largest connected components, approxi-
mately 93%, include less than half of the proteins within the disease module. 

These observations indicate the fragmented nature of disease-related genes through-
out PPIs network, as they are not organized into cohesive clusters but rather existed in 
isolated groups. Motivated by the above analyses, we propose a deep learning frame-
work, Subgraph Neural Networks-Variational Graph Auto-encoder (SNN-VGA), as 
depicted in Fig. 1. It consists of two models Subgraph Neural Networks (SUBGNN) 
[17] and Variational Graph Auto-Encoder (VGAE) [18]. SUBGNN is used to generate 
meaningful representations for disease subgraphs on the PPIs network while consider-
ing the fragmented topology of each disease subgraph. These learned representations 
by SUBGNN are further leveraged during the construction of a disease-disease inter-
actions network (DDIs) to denote the features associated with diseases in the network. 
Then, we formulate disease comorbidity prediction using the constructed disease graph 
as a link prediction problem and exploit the advancement of VGAE to determine 
whether there is a missing link between two diseases in the DDIs network. 

2 Materials and Methods  

2.1 Biological Data 

Protein-Protein Interactions (PPIs). The PPIs interactome describes the interactions 
between proteins within the cell. Our PPIs data is derived from [6, 16], contains 13,460 
proteins and 141,296 interactions, including regulatory, binary, literature-curated, met-
abolic enzyme-coupled, protein complexes, kinase-substrate pairs, and signaling inter-
actions. We model the PPIs interactome as a graph 𝐺!!"# = (V, E)	that contains two 
main elements V	=	{1,	…,	n}	is the set of nodes representing proteins, and E	⊆ V × V	is 
the set of undirected edges that indicate the interactions between the proteins. The larg-
est connected component in this graph includes 13,329 nodes and 141,150 edges, cov-
ering more than 99% of the nodes and edges in the dataset used for this study. We focus 
on the LCC because it represents the most biologically relevant interactions, where the 
involved proteins frequently participate in significant cellular processes. It is generally 
believed that small connected components (many of them are singletons) in the current 
incomplete PPIs network are a result of missing edges, which correspond to interactions 
yet discovered, conceivably due to their minor/obscure roles, and that those small con-
nected components, with missing edges once detected, will be connected to form into 
a larger component or merge to the LCC. Therefore, it has been a common practice 
adopted in similar and related studies to focus on LCC for PPIs networks [16, 17]. 
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Disease Data. The disease-gene associations dataset is obtained from [6, 16]. The da-
taset contains a list of 299 diseases, and each disease has a set of genes that are known 
to be associated with the disease.   

2.2 Disease Modules in the PPIs Network 

Disease-gene associations and the interactions between them can be modeled in a PPIs 
network as subgraphs consisting of both known human diseases and disease-related 
genes. Each subgraph represents a disease module that contains a set of proteins which 
collectively contribute to a cellular function within the PPIs network and are implicated 
in causing the disease. In this work, we have constructed 299 disease modules as sub-
graphs, each consisting of gene products related to a specific disease. 

2.3 Disease Comorbidity 

To validate our proposed method, we utilize a Medicare dataset of disease history that 
includes 10,743 disease pairs [6, 16]. In order to quantify the comorbidity for each dis-
ease pair, the relative risk (RR) of observing a pair of diseases di and dj, affecting the 
same patient, is computed using the following equation: 

                                                          RR$% =
Cij	N
PiPj

                               (1) 

where Cij is the number of patients affected by both diseases, N is the total number of 
patients in the population, and Pi and Pj are the prevalence of diseases i and j respec-
tively. The prevalence of a disease refers to the proportion of the total population that 
is affected by a given disease. When the RR exceeds a specific threshold, it indicates 
that the co-occurrence of two diseases is more frequent than would be expected by a 
random chance. In this study, we set the threshold for the RR at two different values: 0 
and 1 to investigate how it may affect the learning and performance of the model. When 
the threshold on RR is set at 1, the data contains 6,269 comorbid disease pairs, whereas 
setting the RR value to zero gives rise to 8,874 disease pairs, which are used to construct 
DDIs network, as described in the following sections. 

2.4 Disease Network Representation 

Given the dataset of disease-associated genes and the PPIs network, we adopt a subnet-
work embedding model called SUBGNN that captures the topology of disease sub-
graphs. It creates representations for all disease modules, which have varying sizes and 
multiple distributed connected components throughout the graph, as shown in Fig. 1(a). 
Subgraph Representations. Given a PPIs network as a graph 𝐺!!"# = (V, E), where 
V	=	{1,	…,	n}	consists of a set of nodes denote the proteins, and edges E ⊆ V × V	rep-
resent the interactions between them. S =	(V',	E')	is a disease subgraph of 𝐺!!"#	if 
V'	⊆	V and E'	⊆ E where nodes in each disease subgraph denote the product of genes 
associated with the disease, and the edges indicate the interactions between them. Each 
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subgraph has a unique label yS defines distinct disease and may include multiple con-
nected components 𝑆()). Given disease subgraphs 𝒮 = {S1 , S2,	…,	Sn },	SUBGNN is 
designed to identify the unique structure of subgraphs via three property-aware chan-
nels, each designated to explore a different aspect of subgraph topology which are po-
sition, neighborhood, and structure described in Table 1. SUBGNN specifies a mecha-
nism that propagates neural messages at the subgraph level, between the subgraph com-
ponents and randomly sampled anchor patches. Anchor patches 𝒜x	=	/Ax

(1),	…,	 
Ax
(n	A)0		are subgraphs that are randomly sampled from the underlying graph 𝐺!!"# in a 

channel-specific manner, where each anchor patch corresponds to one of the 
SUBGNN’s channels, defined as 𝒜+, 𝒜N	and 𝒜S. Each propagated message conveys 
information about the relationship between a specific anchor patch and a subgraph com-
ponent as follows: 

                                               MSGX
A→S =  γx(𝑆()),	 Ax) .	ax                  (2) 

where X is the channel, γxis a similarity function between the component 𝑆()) and the 
anchor patch Ax, and ax	is the learned embedding of Ax	. There are three types of simi-
larity functions that determine the relative weighting of each anchor patch in building 
the subgraph component representations. For the position channel, the similarity func-
tion is defined as follow: 

                                              γP1𝑆
()),	AP2	=	

1
,dsp,-("), AP.	+	1.

 (3) 

where dsp	represents the average shortest path (SP) on the graph between the connected 
component	𝑆()) and the anchor patch AP	specified for position channel. In contrast, for 
the neighborhood channel, the similarity function is γN1𝑆

()),	AN2 = 1 in the case of an 
internal neighborhood and γN1𝑆

()), AN2 ≤ K	for a border neighborhood that includes 
the subset of neighbor nodes within a k-hop distance from the connected component 
nodes. For the structure channel, the similarity function is given by: 

                                          γS1𝑆
()), AS2	=	

1

0DTW	01$(") , 1As2 +	12
 (4) 

here, 𝑑-(") 	and 𝑑Asare the ordered degree sequences for the subgraph component and 
anchor patch, respectively, which are compared by the normalized dynamic time warp-
ing (DTW) measure [19], a similarity measure that calculates the optimal alignment 
between two sequences by minimizing the cumulative distance. The messages are then 
transformed into an order-invariant hidden representation hx,c	for the subgraph compo-
nent 𝑆()), as follows: 

                                     gx,c	= AGGM 56MSG X
Ax→-(") 	∀	Ax	∈	𝒜x9:  (5) 

                                                hx,c ⟵ σ 5Wx . [gx,c; hx,c]: (6) 
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The outcome of applying these equations is a channel specific hidden representation 
hx,c	for each connected component	𝑆())	of subgraph S and channel X, where Wx	is a 
layer-wise learnable weight matrix for channel X, σ is a non-linear activation function, 
AGGM	is a function that aggregates messages received from anchor patches, and hx,c	is 
the representation of the connected component at the previous layer, which gets updated 
and passed to the next layer of the model. The model is designed as such to learn a ds-
dimensional subgraph representation 𝐳- ∈ ℝds 	for each disease subgraph S	∈	𝒮. This 
representation encapsulates the collective properties of all subgraph components using 
three channels across all layers, which can be then used for comorbidity prediction.	

2.5 Disease-Disease Interaction Prediction 

We address disease comorbidity as a task of predicting potential edges between diseases 
in a network as shown in Fig. 1(b). We consider a Graph 𝐺1$#34#3 = (V, E), 
where	V	=	{1,	…,	n}	represents the set of nodes each denoting a disease, and E ⊆	V × V 
is a set of edges that capture the interactions between diseases. The adjacency matrix 
of 𝐺1$#34#3 denoted by 𝐀 ∈ 	ℝ5×5	satisfies Aij	≠	0 if and only if 1𝑣$,	𝑣%2	∈	E suggesting 
the existence of a relationship between disease pairs. Specifically, with the RR thresh-
old set to 1, only disease pairs with an RR value of 1 or higher are considered connected 
by positive edges in the disease graph, indicating their comorbidities. Conversely, as-
signing a more relaxed threshold at RR = 0 allows disease pairs with an RR value of 0 
or higher to be connected by positive edges. Additionally, each node in the graph is 
associated with a 𝑑-dimensional feature vector generated by SUBGNN model. All dis-
ease feature vectors are stored in the disease feature matrix 𝐗	 ∈ ℝ5×1. 
Variational Graph Auto-Encoder (VGAE). VGAE is a framework for unsupervised 
learning specifically designed for graph-structured data. It combines the power of GCN 
with probabilistic modeling to learn low-dimensional latent representations of nodes in 
a graph. In particular, the latent representations for an undirected graph are learned by 
leveraging the graph structure represented by an adjacency matrix A and observed node 
attributes X to encode the graph structure and produce a posterior approximation 
qϕ	(Z	|	X, A) over the latent variables Z. Subsequently, the decoder reconstructs the 
original graph structure from these latent variables that consist of a compressed repre-
sentation of the graph's structure and features. We introduce a component for disease 
comorbidity prediction based on the VGAE model in our designed formwork, as illus-
trated in Fig. 1(b). To the best of our knowledge, our model is the first attempt to im-
plement VGAE for comorbidity prediction. 
Inference Model. The inference model aims to compute latent representations Z via 
multiple graph convolution layers to capture the structural similarities between dis-
eases. We initially adopt two convolutional layers of a GCN to learn more informative 
representations of diseases. We then embed these representations into a low-dimen-
sional latent space. The encoder model is defined as: 

                                              q(Z | X, A) = ∏i=1
N 	q(zi	| X, A)  (7) 
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                                            q(zi | X, A) = 𝒩(zi | μi, diag(σi
2)) (8) 

where μ = GCNμ(X, A) and log σ 	= GCNσ(X,	A)		are the matrices of 
μi  and	log 𝛔$ 	representing the parameters of the learned distribution that describes the 
latent variables Z.  GCNμ(X, A)	and GCNσ(X,	A)	denote a two-layer GCN defined as 
GCN(X,	A) = 	Ã	ReLU(Ã𝐗𝐖7)𝐖8, where 𝐖$ are the weight matrices. The symmetri-

cally normalized adjacency matrix Ã is given by Ã =	D9%& AD9%&, where D is the degree 
matrix. The Rectified Linear Unit function is defined as ReLU (·) = max (0, ·). 
Generative Model. The Generative model maps disease feature vectors from the latent 
space generated by the encoder into the original disease graph. The structure of the 
decoder component influences the model's flexibility and ability to capture the expres-
siveness of the learned features. Therefore, to enhance these aspects, a multilayer per-
ceptron (MLP) neural network is employed to predict the probability of links between 
diseases in the network, as illustrated in Fig. 1(b). The latent representations corre-
sponding to each disease pair are concatenated and fed into a MLP neural network to 
predict the likelihood of edges in the disease network. We propose the following de-
coder network to reconstruct the original disease graph A: 

                                             p(A | Z) =	∏i=1
N  ∏j=1

N  p(Aij | zi,	zj) (9) 

For each pair of nodes i and j in the disease network, the probability of the existence of 
an edge between them is calculated using MLP as the following expression: 

     p(Aij = 1 | zi,	zj)	=	σ	(W2(ReLU(W1Zij	+	b1)) +	b2) (10) 

where Zij	=	[ zi,	zj]	represents the concatenated latent representations corresponding to 
diseases i and j, and the parameters Wi  and bi	are the decoder weight matrix and bias 
vectors, respectively. σ (·) is defined as the logistic sigmoid function. The final output 
determines the predicted probability of a link between diseases i and j. 
Training Objective. We optimize the variational lower bound ℒ w.r.t. the variational 
parameters	Wi , given by:  

                          ℒ	= 𝔼q(Z | X, A) [log	p(A | Z)] − 	KL[q(Z | X, A)	||	p(Z)]  (11) 

here, KL[q(∙)	||	p(∙)]	denotes the Kullback-Leibler divergence between q(·) and p(·). 
We assume a Gaussian prior for 𝑝(𝐙), expressed as 𝑝(𝐙) = ∏ 𝑝(zi)$ =	∏ 𝒩(zi | 0, I)$ . 

3 Experiments 

3.1 Datasets 

Our experiment is conducted on benchmark datasets for PPIs and disease-associated 
genes [6, 16], which form an underlying base graph including subgraphs with their as-
sociated labels as known diseases. Because of the use of LCC in our method, genes that 
are not in the LCC will be dropped from our experiments, which may cause some loss 
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of information and make the prediction task more challenging. On the other hand, use 
of LCC allows us to focus on genes that are on the LCC and hence more informative in 
terms of the degree of interconnectivity and interactions with other genes.  The statistics 
of the datasets are summarized in Table 2. 

3.2 Experimental Setup and Evaluation Methods 

We build our implementation of SNN-VGA by leveraging two distinct platforms: the 
Facebook machine learning library “PyTorch” [20-22], and the scikit-learn machine 
learning library [23]. We detail the experimental setups and evaluation methods for 
disease module representations and comorbidity prediction, respectively. 

3.3 Disease Module Representations 

We use the experimental setups proposed by SUBGNN. Initially the model is trained 
using Graph Isomorphism Network (GIN) [24] on link prediction to generate node and 
meta node embeddings for each node within the subgraph of the PPIs network. Subse-
quently, these trainable nodes embeddings are utilized to implement SUBGNN model, 
which generates feature vectors for each disease module. 

3.4 Predicting Comorbidities Between Disease Modules 

For the experimental settings of VGAE, we employ a transductive link prediction split 
in which the same graph structure is partitioned into the training, validation, and test 
sets. From the entire graph, 70% of the edges are designated as positive samples for the 
training set. Additionally, we sample 20% of the edges for validation and 10% for test-
ing, which serve as positive samples, i.e., node pairs that are connected with an edge. 
Concurrently, for the training, validation, and test sets, we also randomly sample an 
equal number of negative samples, i.e., node pairs that are unconnected. 
Parameters Selection for VGAE Architecture. The architecture of VGAE signifi-
cantly influences the prediction performance of the model. Accordingly, we empirically 
set the dimensions of both the hidden layer and latent variables to 128 and 64, respec-
tively. These values were selected based on validation set performance to balance 
model complexity and generalization. Additionally, we initialize the weights as de-
scribed in reference [25]. We train the model for 50 epochs using Adam optimizer [26] 
with a learning rate of 0.001. 
Evaluation Measures. We apply a nested cross-validation procedure [27], for model 
assessment and selection. Our model is trained using a 10-fold-within-5-fold nested-CV 
procedure to obtain an unbiased estimate of model performance while simultaneously 
optimizing the parameters. We calculate the reconstruction probability of the test edges 
to evaluate the ability of the model to classify comorbid versus non-comorbid disease 
pairs. We employ common evaluation metrics to measure the prediction performance of 
the SNN-VGA model, which include accuracy, precision, recall, F-measure (F1), average 
precision (AP), and the receiver operating characteristic (ROC) curve score.  
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4 Results 

The averaged model performance for the comorbidity prediction task is reported in Ta-
ble 3. We evaluate our method's performance by setting the comorbidity RR threshold 
values at 0 and 1. A threshold of 1 emphasizes stronger disease associations, while a 
threshold of 0 incorporates a wider range of associations, thus increasing edges between 
diseases and enhancing both graph connectivity and model training. Moreover, it ena-
bles the model to capture more complex relationships between the diseases and learn 
meaningful representations.  As illustrated in Table 3, with an RR threshold of 0, SNN-
VGA achieves remarkably high scores with an area under the ROC curve (AUROC) of 
0.96 and an AP of 0.95. At the stricter RR threshold of 1, although there is a slight 
decline in the performance, SNN-VGA still yields strong results with an AUROC of 
0.94 and an AP of 0.92. The superior performance of our method, particularly at the 
RR = 0 threshold can be attributed to its ability to effectively leverage the increased 
connectivity within the disease network, which in turn leads to more comprehensive 
analysis of potential disease associations. Fig. 2 represents the ROC curves and their 
related areas under the curves that exhibit the performance of SNN-VGA across distinct 
test sets.  For each test set, we run the model with different random initialization, and 
we then obtain the mean result and standard error derived from 10 runs that further 
emphasize the model consistency and statistical reliability under different conditions.   

In our comparison, we include the recent state-of-the-art method “Weighted Geo-
metric Embedding” [16] for predicting comorbid diseases. This method mapped the 
PPIs network into a low-dimensional geometric space using the MDS technique. Each 
disease module was characterized by features derived from its projection in the geo-
metric space, which were subsequently used to train support vector machine and ran-
dom forest classifiers for comorbidity classification. Table 3 presents the results of this 
performance comparison. It can be observed that our SNN-VGA model achieves out-
standing performance in the disease comorbidity prediction task as compared with the 
“Weighted Geometric Embedding" method. In particular, our approach enhances the 
AUROC score and accuracy by 6% and 2%, respectively. 

5 Conclusion 

In this study, we introduce SNN-VGA, a novel computational approach that integrates 
biological data into a single network and employs graph deep learning paradigms to 
predict disease comorbidity. We develop two distinct models. Initially, a SUBGNN is 
adopted to produce a set of feature vectors, each representing a specific disease module. 
Then, a model based on VGAE is applied to reconstruct the DDIs network for predict-
ing disease comorbidities. By addressing shortcomings observed in related work, our 
method significantly outperforms a state-of-the-art method in cross-validation experi-
ments on a benchmark dataset, as measured by common metrics. It demonstrates that 
our approach, by integrating a network comprised of diseases and a network of PPIs, 
cross linked via known disease-gene associations, offers a powerful platform for ana-
lyzing disease similarities with a unified graph-theoretic framework.  
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Table 1. Six properties of subgraph topology in Subgraph Neural Network. 

Position Internal  The distances between Si’s components 
Border The distances between Si and the rest of 𝐺!!"# 

Neighborhood Internal  Defines a set of internal nodes of Si 
Border Defines a set of border nodes of Si 

Structure Internal  The internal connectivity of 	𝑆(%) within Si  
Border The border connectivity of 	𝑆(%) within Si  

Table 2. Statistics of the benchmark datasets. 

Table 3. Comparison of averaged model performance using our method and state-of-the-art 
method for thresholds RR = 0 and RR = 1. 

 

Dataset #Nodes  #Edges 
Protein–Protein Interactions  13,460 141,296 
Disease–Disease Interactions (RR = 0) 299 8,874 
Disease–Disease Interactions (RR = 1) 299 6,269 

Model Indicators 
AUROC  Accuracy     Precision    Recall    F1    AP 

SNN-VGA 
(Ours) 

RR=0     0.96 
±	0.01 

    0.92 
±	0.01   

      0.91 
  ±	0.01 

    0.94 
±	0.01 

    0.92 
±	0.01 

    0.95 
±	0.00 

RR=1     0.94 
		±	0.00 

    0.89 
±	0.01 

      0.87 
		±	0.00 

    0.92 
					±	0.01 

    0.89      
						±	0.01 

    0.92 
±	0.00 

    Weighted  
    Geometric 
Embedding [16] 

  RR=0     0.90         0.90       0.90     0.90     0.89 - 

       RR=1     0.76         0.70       0.70     0.70     0.69 - 
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Fig. 1. The Hybrid Deep Learning Architecture of SNN-VGA Combining Subgraph Neural Network and 
Graph Variational Auto-Encoder. (a) SNN Model for Disease Representations: This step takes as input 
a protein-protein interactions (PPIs) network, in which we identify disease modules via known disease-
gene associations. Each disease module corresponds to a subgraph comprised of nodes representing 
genes associated with the disease. The output of this step is a disease network (much like a condensation 
graph of these disease modules), along with a feature vector for each disease module, characterizing its 
positional and structural relationships with other disease modules learned by SNN from the underlying 
PPIs network. (b) VGA Model for Predicting Disease Comorbidities: Inference Model: It consists of 
a two-layer Graph Convolutional Network that processes the disease feature vectors and the structure of 
the disease network to infer the latent disease embedding used to predict interactions between diseases. 
The mean (μ) and variance (σ) vectors represent the parameters of the learned probabilistic distribution 
for each node in the latent space. These vectors are used to sample the latent space to create an embedding 
vector Z for each disease node, capturing the essential features of each disease node in a lower-dimen-
sional space. Generative Model: For each pair of diseases i and j (colored yellow and green respec-
tively), their Z vectors are concatenated into a single representation, which is then processed by a Mul-
tilayer Perceptron network to determine the comorbidity between these two diseases: if yes, an edge is 
added to connect these two disease nodes; otherwise, they remain unconnected. This process is repeated 
for all disease pairs. Reconstructed Disease-Disease Interactions Network: The output network gen-
erated by the model aims to predict disease comorbidities by leveraging the latent embedding and incor-
porating DDIs ground truth to enhance prediction accuracy.                    

                                                     (a) RR = 0                                                                                           (b) RR = 1  

Fig. 2. ROC curves for each fold of the 10-fold cross-validation, along with the mean result and 
standard error for the test sets across different RR values. 
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