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Abstract—A common pattern in high performance scientific
computing is the structured grid pattern in which one or more
elements of a matrix are computed as a stencil operation of other
matrix neighbouring elements. Since there are multiple options
to efficiently implement this pattern on modern computing
architectures, we provide a comparison of the performance of a
number of parallel implementations on a multi-core system with
GPU capabilities. The application used for this case study im-
plements the propagation of wireless signals in a bi-dimensional
environment, considering reflections and signal attenuation. The
parallel programming paradigms examined in this paper include
CUDA, TBB, Rust and OpenMP, with CUDA proving to be the
fastest implementation.

Index Terms—numerical simulation, PDE, structured grid,
CUDA, TBB, OpenMP, Rust, GP-GPU, wave propagation.

I. INTRODUCTION

Out of the numerous types of parallel problems, among
the most common are data parallel problems. For this type
of problems the data is split in parts and various similar
computations are performed in parallel on the data chunks.
Such problems are commonly seen in high performance com-
puting (HPC), examples being the patterns of processing on
structured or unstructured grids [1]. This kind of parallelization
can be implemented using various frameworks, paradigms or
specialized programming languages. Deciding which is the
most appropriate approach for a given problem, is not straight-
forward. This paper provides a model for wireless signal
wave propagation, taking into account both reflections and
attenuation and then implements it in a numerical simulation.
We then use this use-case to compare the performance of
OpenMP [2] (Open Multi-Processing), Threading Building
Blocks [3] (TBB), Rust [4] and NVidia CUDA [5] (Compute
Unified Device Architecture).

The background information from which we began our
work, namely the wave equation and the free path loss formula
for wireless signal, is presented in Section II. More details
on the numerical solution for the partial differential equation
of wave propagation and also the reflection and the damping
model of the amplitude of the wave based on the free path
power loss model are offered in Section III. The section also
introduces a pseudo-code of the algorithm and outlines the
implementation details in the considered parallel programming
paradigms. Next, in Section IV, we graphically show the

results of our model, with and without amplitude attenuation,
and we also provide performance measurements for the differ-
ent parallel implementations. We show that Rust and OpenMP
offer similar performance, with TBB clearly outperforming the
previous two. We also show that even though CUDA is more
efficient than TBB, the performance penalty for using the later
over the former is limited. Section V concludes the paper and
identifies future research directions.

II. RELATED WORK

We start from the partial differential equation of wave
propagation:
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∂x2
+
∂2A

∂y2
+
∂2A

∂z2
=
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c2
∂2A

∂t2
(1)

Solving this PDE leads us to a function which describes the
amplitude of the wave in any given points of space and at any
time moment, provided the fact that we also have the initial
conditions for it, i.e. the points at which the perturbation first
occurs, or, in simpler words, the position and time moment
where the signal source is placed. This is precisely what our
simulation does: iterates over space and time and computes
the amplitude in each point of the 4D space.

A = f(x, y, z, t),∀x, y, z, τ ∈ D (2)

The discretization of this PDE is provided in [7]. The
previous equation doesn’t take into account reflections. In
order for the model to be more accurate we also use the Law
of Reflection which is outlined in Figure 1 and obtained from
the Dirichlet conditions of the PDE, as explained in [9] and
section III-C. To put it simply, the Law of Reflection states
that the incidence angle has the same value as the reflection
angle.

^θi ≡ ^θr (3)

For a wireless signal this simple description proves to be not
enough, because it doesn’t take into account the attenuation of
the signal. In developing the damping model for the amplitude
we started from the free path loss model for power attenuation
of signal [8].



Fig. 1: Law of Reflection Graphically Explained
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Expression 4 relates the received power Pr, at a given point
in space to the power transmitted Pt, by the signal source,
based on the distance R between them. A graphical power
variation with space is represented in Figure 2.

Fig. 2: Log-Representation of Power Loss with Space

In order to relate the amplitude to the power of the wave,
the following formula [6] proved to be useful:

P =
1

2
µω2vA2 (5)

III. THE DAMPING MODEL

First of all, it is worth noting that while in our work we
interpreted our model as describing the propagation of wireless
signal, the actual mathematical description is more general.
This means that our model can be used in sound engineering
(since mechanical and electromagnetic waves share the same
mathematical description), earthquake analysis, radar localiza-
tion etc. just as well as it can be used for wireless signal
description.

This section explains how we augmented the wave equation
model to also include damping wave effect, before diving

into the actual numerical solution to our model, which also
integrates reflections, and finally explaining the algorithm we
used for our experiments.

A. Damping Model for the Wireless Signal

A common challenge for wireless communications is that
the radio signal quickly vanishes into background noise even
for relatively short propagation distances. For this reason, the
effect can not be neglected by our model and our simulation.

While the wave equation offers information about the am-
plitude of the wave, the free path power loss formula offers
information about the power of the signal. In order to obtain a
model for the amplitude of the damped propagating wave, one
needs to relate the two formulae by transforming the power
loss into amplitude loss over space.

In equation 5 we make the following notation:

1

2
µω2v = ψ (6)

which leads us to the expression for the power of the signal
at any point in space and any time moment

P (x, y, z, t) = ψA2(x, y, z, t),∀x, y, z, t (7)

Let the coordinates be (xs, ys, zs) for the signal source and
(xr, yr, zr) for a receiver on the grid.

In order to maintain the generality of our model, we need
to eliminate the proportionality factor which particularizes the
model for a given frequency and propagation velocity. We do
this by dividing the signal power at transmission against the
power at reception. For isotropic environments, it follows from
expressions 5 and 6 that:

P (xs, ys, zs, t)

P (xr, yr, zr, t)
=
ψA2(xs, ys, zs, t)

ψA2(xr, yr, zr, t)
=

=
A2(xs, ys, zs, t)

A2(xr, yr, zr, t)
,∀t (8)

This allows us to relate the amplitude of the wave at
transmission source against the amplitude at receiver, using
a proportionality factor χ, specifc to each space coordinate
and time moment.

A(xs, ys, zs, t)

A(xr, yr, zr, t)
=

√
P (xs, ys, zs, t)

P (xr, yr, zr, t)
=

= χ(xr, yr, zr, t),∀t (9)

In other words, we use the free path loss formula for power
to obtain the proportionality factor at any space coordinates,
and considering the initial amplitude of the wave we can use
expression 10 to compute the amplitude of the damped wave
anywhere in space and at any moment of time.

A(xr, yr, zr, t) =
A(xs, ys, zs, t)

χ(xr, yr, zr, t)
,∀t (10)



B. Numerical Solution to the Wave Equation

In order to use our model in a simulation, we need to
discretize it. One simple way to do this is to consider finite
differences instead of derivatives in the wave equation. The
bi-dimensional continuous space becomes a bi-dimensional
grid by considering a finitely small space discretization step
∆x. We also use a smallest time duration possible ∆t (the
discretization step in time). An example of such a precomputed
discretization is provided in [7] and briefly adapted to the use-
case outlined in Section IV.

The general form of the amplitude gradients on the grid is:
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By differentiating an expression similar to expressions 11–
14 one more time, we obtain the discrete expression 15 for the
second derivative with respect to time, in which At

i,j denotes
the amplitude at point (i, j) of the mesh and at moment t.
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∆t2
(15)

Finally, by replacing the formulae in the wave equation we
obtain the discrete form, as follows:
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Consequently, the recursive expression for computing the
amplitude becomes:
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i,j −At−1
i,j +
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We notice that this is a formula which computes the ampli-
tude at any given point in space (discretized in a bidimensional
mesh) based on the amplitude of the neighbouring points at
two previous time steps. In fact, the formula can be interpreted
as a stencil operation which combines points on the mesh
from 2 different time stamps to obtain the mesh at a new time
moment. This implies that the points at the same time step can
be computed in parallel, but have to be serial as time increases.
In other words, the stencil kernel can be applied in parallel to
generate the new mash values, but it can’t generate multiple
new mashes at the same time - this has to happen serially.
This influences the design of our algorithms, as it is presented
in section III-D.

C. Integrating Reflections in the Numerical Solution

In order to integrate reflections of wireless signal into our
model we need additional information, apart from expression
1 and its initial conditions (generation of signal by a source
point). Namely, we need to add information about the reflec-
tors on the mesh. In the theory of PDEs this is achieved by
fixing the so-called boundary conditions. Out of the many pos-
sible behaviours that can be exhibited at boundary, producing
precisely the effect of reflection is achieved by using the so
called Dirichlet boundary condition [9].

Let D be the definition domain for the (x, y, z) tuples in
expression 1 and ∂D ⊂ D its boundary (the points on the
edge of the reflectors), then the Dirichlet boundary conditions
can be stated as:

A(x, y, z, t) = 0,∀(x, y, z) ∈ ∂D, ∀t (18)

What the Dirichlet boundary conditions mean for our nu-
merical solution of the PDE is that expression 17 is modified
such that in computing the value of At+1

i,j any terms for
which points (i, j) fall inside the boundary of the reflectors
are replaced with 0. Figure 3 graphically explains the stencil
operation. The reflector is colored in green. For a fixed point
(in black) on the boundary, the squares in black, blue and
red are the points involved in the stencil operation. The blue
points are the points outside of the reflector and the red ones
are inside the reflector. Therefore, the red points overwrite the
corresponding terms of expression 17 with 0 while the blue
points don’t. The black point is also overwriting the amplitude
value with 0.

Fig. 3: Boundary Reflections using Modified Stencil Kernel

For example, for Figure 3 the resulting stencil operation is
reduced to:

At+1
i,j =

1

2
(At

i−1,j +At
i,j−1) (19)

D. The Parallel Propagation Algorithm

In order to implement our data parallel algorithm, we first
designed a serial algorithm for the simulation. We iterate over



each discrete time step in the time interval during which the
wave propagates, and for each such time step, at every point
of the discrete space (the grid) we compute the amplitude of
the signal as a numerical solution to the wave equation, i.e.
by using Formula 17.

Since equation 1 doesn’t offer information about reflection,
we use the boundary conditions to adjust the amplitude of the
point where appropriate. Up to now, the algorithm simulates
the propagation of the signal considering reflections, but not
damping. In order to obtain the damping effect, we compute
the χ proportionality factor and we use it to normalize the
previously obtained amplitude of the signal, as shown in
Algorithm 1.

Algorithm 1 Simulate Wave Propagation - Serial

INPUT: source position and amplitudes in time, reflectors
for jiffy in discrete time interval do

Compute current transmitted power Pt based on expr. 5
for line in grid lines do

for col in grid columns do
Compute amplitude based on expr. 17
Adjust amplitude for reflexion based on fig. 3
Compute received power Pr based on expr. 4
Compute χ based on Pr according to expr. 9
Adjust amplitude using χ factor as in expr. 10

end for
end for

end for

Algorithm 2 Simulate Wave Propagation - Parallel

INPUT: source position and amplitudes in time, reflectors
for jiffy in discrete time interval do

Execute the loop serially
Compute current transmitted power Pt based on expr. 5
for line in grid lines do

Execute the loop in parallel
for col in grid columns do

Execute the loop in parallel
Compute amplitude based on expr. 17
Adjust amplitude for reflexion based on fig. 3
Compute received power Pr based on expr. 4
Compute χ based on Pr according to expr. 9
Adjust amplitude using χ factor as in expr. 10

end for
end for

end for

In order to parallelize this algorithm, we notice that, for
a given jiffy t, each point of the grid can be computed in
parallel, being independent from one another, as they are
based only on the past values of the amplitude, according to
formula 17. What this means is that considering a fixed jiffy,
the computation of every point of the mesh is independent of
the value of the other points at the same time moment.

On the other hand, we need to run our algorithm in a serial
manner throughout each individual time step. That happens
because formula 17 shows that the amplitudes at each jiffy
depend on the amplitudes at the previously two jiffies. This
results in a simulation which runs in parallel in space, but
serially in time. This leads to the parallel algorithm outlined
in Algorithm 2.

IV. RESULTS AND DISCUSSION

With respect to the model of wave propagation, a graphical
representation without considering damping is shown in Fig-
ure 4. The graphical results of the simulation which takes into
account the damping of the wave are shown in the Figure 5.

Each simulation was run for 30 seconds physical time, with
a time-step of 0.05 seconds, totaling 600 iterations.

With respect to parallel implementations and comparisons,
we implemented the previous parallel algorithm in a number
of different parallel programming paradigms, namely OpenMP,
TBB, Rust and NVidia CUDA. The first technology which has
been employed was OpenMP due to its increased productiv-
ity obtained by abstracting many low-level details from the
programmer.

TBB was chosen to allow for more control than OpenMP.
During our experiments we noticed that the productivity over-
head of TBB is rather small when compared to the productivity
of OpenMP. More to the point, about the same amount of time
was invested in the TBB and OpenMP implementations.

Our third choice was Rust, as it emerged as a new
programming language with the promise of easy and safe
parallelization of code [10]. Rust offers two paradigms for
parallelization: one for shared memory and one for message
passing, based on channels. The channels connect threads
on the same machine so no special packing is required and
therefore no additional overhead is incurred.

Finally, GP-GPU architectures have established themselves
as one of the most important technologies for data parallel
applications. Since NVidia CUDA [11] is one of the most
efficient and wide-spread libraries, we chose to port our code
to this technology as well.

The propagation model without damping was implemented
in OpenMP, TBB and Rust, while the model including damp-
ing was implemented in TBB and CUDA.

A. Execution Environment

The used experimental setup included two execution queues
on the University Politehnica of Bucharest’s cluster. The model
without damping was run on a queue with 12 Intel Xeon
cores running 24 threads at 2.67GHz and 32G RAM, while the
model which includes the damping factor was run on a queue
with 20 Intel Xeon cores with 40 threads running at 2.5GHz,
62G RAM. The CUDA version was tested on a Tesla K40M
NVidia GPU, using API version 9.

B. Execution Time

Figure 6 presents the execution time for implementations
which do not consider the damping of the wave. When



Fig. 4: Wave Propagation with no Amplitude Damping

Fig. 5: Wave Propagation with Amplitude Damping

it comes to the parallelization, TBB produces the binary
with the shortest execution time, Rust and OpenMP being
almost twice as slow. We noticed that while Rust seems
slower than OpenMP and TBB in the serial versions, the
difference between Rust and OpenMP shrinks significantly
when multiple threads are used. Combining this with the
deadlock and race conditions protection provided by Rust’s
type system, we consider that for data parallel problems one
might easily choose Rust over OpenMP. This is particularly
relevant when requiring better safety guarantees. TBB provides
a significant improvement over OpenMP in terms of execution
time. However, this incurs a small productivity penalty.

Figure 7 presents the execution time for the TBB implemen-
tation when amplitude damping is taken intro consideration.
The dimension of the grid in this case is 2048x2048, the same
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Fig. 6: Rust vs. OpenMP vs. TBB Execution Time without Damping
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Fig. 7: TBB Execution Time with Damping

as in the CUDA case. The execution speed for 24 threads is
8.418s.

Table I shows the execution time for the CUDA implemen-
tation, when the input is the same as for Figure 7. The per-
formance of CUDA seems to vary greatly with the dimension
of the kernel, with the best choice for dimension not being
straightforward. In fact, what we did was to iterate through
the space of hyper-parameters (possible kernel dimensions) to
find the best fit for our simulation. All the kernels use bi-
dimensional square grids and bi-dimensional square blocks.
We can see that the best execution time is is 7.44s, so it
is about 11% better than TBB when it comes to execution
speed. Also, Table I outlines that symmetric sizes of kernels
(i.e. obtained by swapping the grid size with the block size)
exhibit similar execution times.



PPPPPPPPGrid
Block

4 8 16

4 103.12 7.79 41.14

8 7.44 31.45 135.84

16 27.21 149.22 592.19

TABLE I: CUDA Execution Time with Damping (s)
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Fig. 8: Rust vs. OpenMP vs. TBB Speed-up without Damping

C. Speed-up

In the case of the model without amplitude damping, the
speed-up outlined in Figure 8 shows that TBB is better than
both OpenMP and Rust, with Rust offering better speed-
up than OpenMP. One should note that for all considered
programming paradigms the speed-up is flat-lining at 12
threads, which is to be expected on a system with 12 CPU
physical cores running a CPU-intensive numerical simulation.
Furthermore, Figure 9 and Table II outline that the maximum
speed-up achieved using a K40m with 2880 NVidia CUDA
cores is only slightly better than using TBB on a 20 core Intel
Xeon machine, i.e. 19.90 vs. 18.31.

D. Efficiency

When it comes to computing efficiency, Figure 10 shows
the TBB performs best, with Rust and OpenMP performing
significantly worse, in this domain.

PPPPPPPPGrid
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4 8 16

4 1.43 19.01 4.10

8 19.90 4.70 1.09

16 5.44 0.99 0.25

TABLE II: CUDA Speed-up

1 4 8 12 16 20 24 28 32 36 40
1
2

4

6

8

10

12

14

16

18

20

Number of Threads

Sp
ee

d-
up

TBB

Fig. 9: Speed-up TBB with Damping
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Fig. 10: Efficiency of Rust, TBB and OpenMP without Damping

E. Comparison Conclusions for the Parallel Paradigms

To sum up, considering the technologies used in our exper-
iments, there is always a trade-off between productivity and
performance. While CUDA is more efficient than TBB, TBB
doesn’t require the understanding of the GP-GPU paradigm
or even the existence of a GPU. On the other hand, when
choosing between Rust and OpenMP the trade-off becomes
more complex. What is actually traded is the productivity of
OpenMP over the safety of Rust. It is significantly harder to
reach peak performance with Rust, but there are better chances
that the program is correct, giving the fact that deadlocks and
race conditions are eliminated by the strong typing rules and
the unique ownership system. We encountered very few bugs
when setting up our experiments with Rust, compared to our
CUDA implementation.



V. CONCLUSION AND FUTURE WORK

To conclude, we provide a model and its numerical solution
for wireless signal propagation which takes into account reflec-
tion and attenuation. The model is general enough that it can
also be considered as describing earthquake wave propagation,
acoustic wave propagation, and radar.

We consider the simulation of this wave propagation an
example of the structured grid pattern in scientific computing
and we compared parallel implementations in OpenMP, Rust,
and TBB, showing that OpenMP and Rust exhibit similar
performance and that the best performance overall is achieved
by the CUDA implementation. While this is true, we ac-
knowledge that each tested programming paradigm has certain
particularities which make them better suited for particular
use-cases (e.g. safety concerns, rapid development needs,
performance, etc.). The purpose of this work was to provide
information for users and application developers, helping them
decide which parallel programming paradigm to use when
deploying a particular numerical algorithm.

The considered signal propagation model can be further
augmented to better match reality by taking into account a
heterogeneous propagation environment, modifying the speed
of propagation of the wave and therefore the ψ factor. To
date, our model considers only the damping of electromagnetic
waves due to the permittivity of the environment. In reality,
when hitting a wall, the wave doesn’t only reflect, but it is also
partially absorbed by the wall, as the collision is not perfectly
elastic. This phenomena affects both the amplitude and the
power of the reflected signal.

Two other research directions are possible starting from this
work. The first is combining multiple technologies, perhaps
involving heterogeneous computing techniques, e.g. using MPI
for distributed data processing, with each node computing the
data using CUDA. The second approach might employ spe-
cialized hardware accelerators, deployed on FPGAs, for data
parallel processing. This is achieved both by using specialized
hardware architectures for custom problems and by eliminat-
ing the abstraction stack which is built on hardware (operating
system, high level instructions, etc.). FPGAs can easily achieve
speed-up of 10x−100x [12], while data parallelism is known
to be handled very well by GP-GPU architectures. This
makes a future FPGA – GP-GPU comparison a good research
candidate.
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