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1 Background 

Adaptive cruise control (ACC) for vehicles has been 
available for years now. It was created on the top of 
cruise control that originates roughly in the 1950’s. The 
ACC is to enhance the automatic driving by keeping a 
safety distance set by a driver to another vehicle in 
front. The ACC is basically about balancing between the 
vehicle speed and the distance between two vehicles. 

For control engineering education purposes, the ACC is 
a representative example of control engineering. 
Basically, anyone can understand the scope of the ACC 
requiring little effort on motivating the need for the 
ACC. Second, the ACC engineering task can be divided 
into well-defined, separate tasks of process modelling, 
control design and control tuning which all can be 
verified by applying dynamic, time-domain simulation.  

The literature of the ACC recognizes several ways to 
deal with the ACC and the vehicle models to be worked 
upon. The reader is advised to get familiar with work by 
Bengtsson (2001), Gäfvert (2003), Kim (2012) and 
Miyata (2010). For gaining a good insight to process 
modelling and control design with tuning, the work by 
Vilanovia & Visioli (2012), Åström & Hägglund (1995) 
are recommended.  

2 Aims 

The scope of the paper is to design an ACC strategy 
based on a simple differential equation for modelling a 
vehicle. The model contains one manipulatable input, 
vehicle’s engine thrust, and one putout, vehicle speed. 
In addition, the model recognizes two primary 
disturbance terms: road slope and air resistance. 

The proposed model is then used for designing an 
advanced PID control for regulating both vehicle speed 
and the safety distance to the front vehicle. As there 
are two simultaneous control tasks (speed and 

distance) but basically only one variable to be 
manipulated, engine thrust, a single PID controller is 
not adequate. Instead, an advanced control scheme is 
required with overriding (limiter) control. Also, 
adaptive control is discussed as an addition to the 
introduced control strategy. 

The emphasis in this paper is an educational 
perspective consisting of explaining the simplifications 
made in modelling, decisions made in control design 
and, finally, observations made in control tuning. 
Results of modelling, control design and tuning for the 
ACC are visualized through simulations executed in 
Matlab/Simulink environment.  

 
3 Vehicle model 

Quite often, designing a good control scheme does not 
necessarily require a perfect match in modelling. 
Instead, a simple model is adequate as far as it captures 
the essence of the behavior. Following this principle, a 
simple force-based model that was chosen for the ACC 
design purposes, is a kinematic first-order, non-linear 
Newtonian model. Applying a free body diagram as 
illustrated in figure 1, the model sums up affecting 
forces which are vehicle engine force 𝐹௘௡௚, gravitational 
force 𝐺 and force due to air resistance 𝐹௔௜௥ . 

 

   

 

 

 

 

 

 

Figure 1. Free-body diagram of a vehicle (Suzuki Vitara 
4WD 2019) with mass 𝑚 on a road surface having a 
slope of 𝜃. 

According to the second Newtonian law, the sum of 
affecting forces applied to a vehicle generates 
acceleration 𝑎(𝑡) with respect to time 𝑡 

𝑚 ∙ 𝑎(𝑡) = 𝐹௘௡௚(𝑡) − 𝐹 (𝑡) − 𝐹௔௜௥(𝑡)  (1) 
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By substituting forces 𝐹 (𝑡) = 𝑚𝑔 ∙ 𝑠𝑖𝑛𝜃(𝑡) and 
𝐹௔௜௥(𝑡) = 𝑏𝑣ଶ(𝑡) and replacing acceleration by the 
first-order time derivative of speed  𝑎(𝑡) =

ௗ

ௗ௧
𝑣(𝑡), the 

equation (1) can be expressed as 

𝑚 ∙
ௗ

ௗ௧
𝑣(𝑡) = 𝐹௘௡௚(𝑡) − 𝑚𝑔 ∙ sin 𝜃 (𝑡) − 𝑏𝑣ଶ(𝑡) 

   (2) 

where 𝑚 is vehicle mass with a driver (kg), 𝑣 is vehicle 
speed (m/s), 𝐹௘௡௚ is engine thrust (Newton), 𝜃 is road 
slope (angle, radians), 𝑏 is air resistance factor (kg/m) 
and ௗ

ௗ௧
 is a differential operator. For control purposes, 

the model output is the speed 𝑣 and the manipulated 
input is the engine thrust 𝐹௘௡௚. The road slope is 𝜃 
considered as a load disturbance. 

The effect of air resistance in the equation (1) lies on 
the negative sign of the force and in its parameter 𝑏 
which contains physical properties of the vehicle 
resisting its engine force. Also, the model (1) does not 
include the variable measuring the distance to the front 
vehicle. This is to be added later, and once completed, 
it brings in another load disturbance. 

The equilibrium point of the non-linear differential 
equation (2) can be found by expressing the model as  

𝑣ᇱ(𝑡) =
ଵ

௠
𝐹௘௡௚(𝑡) − 𝑔 sin 𝜃 (𝑡) −

௕

௠
𝑣ଶ(𝑡)  (3) 

In steady state,  𝑣ᇱ(𝑡) = 0 equaling to a constant speed 
which results in an equilibrium condition 

𝐹௘௡௚(𝑡) = 𝑏𝑣ଶ(𝑡) + 𝑚𝑔 sin 𝜃 (𝑡) (4) 

At any time, the thrust generated by a vehicle’s engine 
depends on the speed and the slope of the road. 

Figure 2 illustrates the required engine thrust for speed 
up to 120 km/h and for road slope up to 10 %. In this 
context, the road slopes are percentages of right angle, 
that is, 5 % corresponds to an angle of 5 % ∙ 90° =
1.8°. The required engine force increases rapidly for 
increasing speed but linearly for increasing road slope. 

 

Figure 2. Required engine thrust of a vehicle to 
maintain a constant speed for speeds and road slopes. 

4 Linearization of vehicle model 

For simulation, the non-linear model such as (2) or (3) 
could be used. However, control design gets much 
simpler if the model is linear. In addition, the linear 
model is more comprehensible providing with insight to 
the model properties such as dynamics and gains. 

For linearization, the non-linear differential equation is 
formulated as 

𝑓(𝑡) = 𝑚𝑣ᇱ(𝑡) − 𝐹௘௡௚(𝑡) + 𝑚𝑔 sin 𝜃 (𝑡) + 𝑏𝑣ଶ(𝑡) =

0   (5) 

The sine term sin 𝜃 (𝑡) can be eliminated in the 
equation by observing that for small values of 𝜃(𝑡) the 
sine terms equals to a slope itself: sin 𝜃 (𝑡) ≈ 𝜃(𝑡). 

Now, the equation (5) is simplified to 

𝑓(𝑡) = 𝑚𝑣ᇱ(𝑡) − 𝐹௘௡௚(𝑡) + 𝑚𝑔 𝜃 (𝑡) + 𝑏𝑣ଶ(𝑡) = 0 

   (6) 

For linearization, the first order Taylor series expansion 
of the function (6) is  

𝑑𝑓(𝑡) ≈ ∆𝑓(𝑡) =
డ௙

డ௩ᇲ(௧)
∆𝑣ᇱ(𝑡) +

డ௙

డி೐೙೒(௧)
∆𝐹௘௡௚(𝑡) +

డ௙

డఏ(௧)
∆𝜃(𝑡) +

డ௙

డ௩(௧)
∆𝑣(𝑡)  (7) 

where ∆ indicates small differences from the nominal, 
linear values of variables. After applying the Taylor 
series expansion, the linearized function is  

∆𝑓(𝑡) = 𝑚∆𝑣ᇱ(𝑡) − ∆𝐹௘௡௚(𝑡) + 𝑚𝑔∆𝜃(𝑡) +

2𝑏𝑣଴∆𝑣(𝑡) = 0   (8) 

where 𝑣଴ is speed used for linearization. 

The resulted equation is a first-order ordinary 
differential equation of speed. The equation could be 
solved explicitly for ∆𝑣(𝑡) but that is not necessary as 
the equation can be Laplace-transformed to a transfer 
function which is much more applicable for control 
design and simulation. 

5 Transfer function models 

For both control design and gaining a better 
understanding of the vehicle model, the linearized 
model (8) is given in Laplace-domain as 

𝑚൫𝑠 ∙ ∆𝑣(𝑠) − ∆𝑣(0)൯ + 2𝑏𝑣଴∆𝑣(𝑠) − ∆𝐹௘௡௚(𝑠) +

𝑚𝑔∆𝜃(𝑠) = 0   (9) 

where 𝑠 is a Laplace-domain variable replacing time 𝑡. 
By assuming the speed difference being to zero in zero 
time, that Is, ∆𝑣(0) = 0, the equation is final: 

𝑚𝑠∆𝑣(𝑠) + 2𝑏𝑣଴∆𝑣(𝑠) − ∆𝐹௘௡௚(𝑠) + 𝑚𝑔∆𝜃(𝑠) = 0

   (10) 

Now, by arranging the terms in (10), the Laplace 
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equation is given as 

∆𝑣(𝑠) =
ଵ

௠௦ାଶ௕௩బ
∆𝐹௘௡௚(𝑠) −

௠௚

௠௦ାଶ௕௩బ
∆𝜃(𝑠) (11) 

There are two input variables, engine thrust ∆𝐹௘௡௚  and 
road slope ∆𝜃(𝑠), and one output variable, speed ∆𝑣. 
There are two transfer functions 𝑃௘௡௚(𝑠) and 𝑃ఏ(𝑠), 
one for each input variable 

∆𝑣(𝑠) = 𝑃௘௡௚(𝑠) ∙ ∆𝐹௘௡௚(𝑠) + 𝑃ఏ(𝑠) ∙ ∆𝜃(𝑠) (12) 

where the transfer functions are 

𝑃௘௡௚(𝑠) =
∆௩(௦)

∆ி೐೙೒(௦)
=

భ

మ್ೡబ
೘

మ್ೡబ
௦ାଵ

=
௞೐೙೒

ఛ௦ାଵ
  (13a) 

𝑃ఏ(𝑠) =
∆௩(௦)

∆ఏ(௦)
= −

೘೒

మ್ೡబ
೘

మ್ೡబ
௦ାଵ

=
௞ഇ

ఛ௦ାଵ
  (13b) 

Both transfer functions (13a, 13b) have static gains 
𝑘௘௡௚ =

ଵ

ଶ௕௩బ
 and 𝑘ఏ = −

௠௚

ଶ௕௩బ
 indicating how much 

speed is eventually changed if one of the inputs is 
changed in a stepwise manner by a certain amount. The 

units for the gains are 
೘

ೞ

ே
 (engine) and 

೘

ೞ

௥௔ௗ
 (road slope). 

The static gains have opposite signs as they have 
opposite impacts on speed: a positive change in engine 
thrust causes a positive speed change whereas a 
positive chain in road slope (going uphill) causes a 
negative change in speed. 

For example, if the nominal (linearized) speed is 𝑣଴ =

80 
௞௠

௛
=

଼଴

ଷ.଺
 

௠

௦
 , air resistance factor 𝑏 = 0.57 

௞௚

௠
 and 

vehicle mass 1220 kg with a 80 kg driver is 𝑚 = 1300 kg 
(as per Suzuki Vitara 4WD 2019) and gravity constant 
𝑔 = 9.82 𝑚/𝑠ଶ, then the static gains are 𝑘௘௡௚ ≈

0.039 
೘

ೞ

ே
 and 𝑘ఏ ≈ −504 

೘

ೞ

௥௔ௗ
. Now, if the engine 

thrust is increased rapidly by 10 N, the speed is 
increased finally by 0.39 m/s if the road slope does not 
change at the same time. Similarly, if the road slope is 
changed only by 1/10 ° (≈ 0,00175 𝑟𝑎𝑑), the speed is 
decreased eventually by 0.88 m/s. 

Both transfer functions (13a, 13b) are stable as they 
both have a single, real-valued negative pole 𝑝 =

−
ଶ௕௩బ

௠
. Consequently, the system output speed settles 

to a bounded value if an input (engine thrust or road 
slope) has a bounded change.  

The transfer functions have time constant 𝜏 =
௠

ଶ௕௩బ
 in 

common. The unit for the time constant is second. The 
time constant is an indicator of the speed of the system: 
the smaller the time constant, the faster the system is. 
For the values (Suzuki Vitara) given before, the time 
constant for a vehicle would be 𝜏 ≈ 52 𝑠. For a rapid 
stepwise change in road slope or engine thrust, appr. 
63 % of the final speed change is achieved in 52 
seconds. 

6 Model parameters 

The transfer functions contain four parameters: vehicle 
mass with a driver, air resistance factor, nominal speed 
and gravitational constant. As the last parameter is 
rather constant, the truly interesting parameters 
affecting the model are mass, air resistance and 
nominal speed. Table 1 shows the relationships 
between the primary model parameters (mass, air 
resistance, nominal speed) and transfer function 
parameters (static gain and time constant). 

Table 1. Impact table of model parameters (mass, air 
resistance, nominal speed) affecting model properties 
(time constant and static gains). 

Model 
parameters 

Time 
constant 𝝉 

Static gain 
𝒌𝒆𝒏𝒈 

(absolute 
value) 

Static gain 
𝒌𝜽 

(absolute 
value) 

Vehicle mass 
𝑚 Increases No impact Increases 

Air resistance 
𝑏 Decreases Decreases Decreases 

Nominal 
speed 𝑣଴ Decreases Decreases Decreases 

Table 1 clearly indicates that if the vehicle mass is 
increased by having more load or passengers, the time 
constant increases making the vehicle as a system 
slower. Then, a change in road slope or engine thrust 
results in a speed change which is slower than for a 
smaller mass. An increased vehicle mass increases also 
the static gain for a road slope model 𝑃ఏ  but, 
surprisingly, it has no impact on the static gain for an 
engine model 𝑃௘௡௚.  

Increasing air resistance and nominal speed cause a 
decrease in time constant for both systems and for both 
static gains making both models 𝑃௘௡௚  and 𝑃ఏ  faster and 
more reagent. The only difference in causality comes 
from the opposite sign of the static gains 𝑘௘௡௚ and 𝑘ఏ. 

In literature, air friction coefficient is typically 
expressed as a function of air density 𝜌, cross-sectional 
area 𝐴 and drag coefficient 𝐶ௗ: 

𝑏 =
ଵ

ଶ
𝜌𝐴 ∙ 𝐶ௗ    (14) 

Air density is not constant but varies according to air 
temperature and pressure. For simplicity, the air 
density is assumed to be 𝜌 = 1.20

௞௚

௠య which applies for 
+20 ℃ air temperature and 1 bar atmosphere 
pressure. The cross-section area of a vehicle is assumed 
to be 𝐴 ≈ 2.86 𝑚ଶ (as per Suzuki Vitara 4WD 2019 with 
width 1775 mm and height 1610 mm) and 𝐶ௗ = 0.33. 
With the given values, the air resistance factor is 𝑏 ≈
0.57. 

Figure 3 shows open loop step responses for linearized 
models (13a, 13b). In simulations, the engine thrust has 
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been increased by 10 N showing the resulted speed 
change with respect to time. Similarly, the road slope 
has been increased by 1/10 ° showing its impact on the 
speed, too. The simulations are independent showing 
the speed dynamics when only one of the input 
variables, engine thrust or road slope, is changed at a 
time another remaining unchanged. 

 

Figure 3. Open-loop step responses for linearized 
transfer function models (13a, 13b). Upper: speed vs. 
engine thrust using model 𝑃௘௡௚. Lower: speed vs. road 
slope using model 𝑃ఏ .  

The mass of the vehicle 𝑚 affects both time constant 𝜏 
and static gain 𝑘ఏ of the road slope model 𝑃ఏ . The mass 
is variant as it includes not only the vehicle but also a 
driver with possible passengers. At any time, the real 
mass depends on passengers. Table 2 shows how much 
the time constant alone is affected as a function of 
passengers. It shows that the change can be about +25 
% at the maximum. This observation gives rise to 
consideration of robustness of control design to 
guarantee closed-loop robustness and stability. 
Furthermore, adaptive control strategy could be 
considered. 

Table 2. Impact of number of passengers on vehicle 
dynamics (time constant). 

Nr of 
passengers 

Total 
mass 
(kg) 

Time constant 𝝉 
(sec) 

Time constant 
change (%) 

0 1300 51.7 0 

1 1380 54.9 +6.2 % 

2 1460 58.1 +12.3 % 

3 1540 61.2 +15.5 % 

4 1620 64.4 +24.6 % 

 

7 Control strategy for ACC 

Vehicle or ACC manufactures typically implement their 
ACC control schemes as a black-box realization with no 
transparency to vehicle owners and drivers. User 
manuals have very little information available on the 
details of the applied ACC control strategy. However, 
operability of the ACC with available driver-specific 
settings is well instructed in manuals. 

For control engineering education, the ACC leaves 
several options for designing a control strategy. Each 
strategy has its benefits and pitfalls. In this paper, the 
proposed PID control design for ACC incorporates two 
PID controllers with overriding control features. 

The control objective of the ACC is to secure safe driving 
by limiting the distance to a vehicle in front driving to 
the same direction. Another objective is to provide with 
a good target speed regulation by attenuating load 
disturbances such as road slope and air resistance 
changes. The third objective is to have a smooth 
setpoint response for a changed speed setpoint. 

The selected control strategy involves two feedback 
controllers. The primary controller is for regulating the 
vehicle speed as set by a driver. There is an inbuilt 
speed sensor in a vehicle providing with a real-time 
measurement of the vehicle speed. The speed 
controller (PI controller) reacts on the target speed and 
the measured speed. 

Another PI controller is for keeping the safety distance 
to a vehicle driving in front. There is a radar measuring 
the distance between the cars and the controller reacts 
on the measured distance comparing it to the user-
selected safety distance which is the setpoint for the 
safety distance controller. The usage of two controllers 
for manipulating one variable is called limiting control 
or overriding control. 

Table 3. ACC strategy in terms of signals and features. 
Signal or 
feature 

Speed control Safety distance 
control 

Setpoint Speed set by 
driver 

Distance set by 
driver 

Measurement Speed sensor Radar 

Control output Engine thrust Engine thrust 

Controller type Proportional-
Integral 

Proportional-
Integral 

Control 
strategy 

Limiter control 

(minimum selection) 

The derived, linear transfer function model (12) does 
not include a safety distance as an input or a parameter. 
However, the safety distance between the vehicle and 
another vehicle in front is a significant variable which 
requires attention. The safety distance is typically 
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measured using a scanning radar mounted on the 
vehicle’s front. The radar returns a distance to a vehicle 
in front. The distance is an important measurement 
that can be used as a safety measure for implementing 
adaptive cruise control (ACC). For simplicity, it is 
assumed that the measurement is well calibrated 
returning precise measurements. Table 3 collects the 
essence of the selected ACC strategy in terms of signals 
and control features. 

Figure 4 illustrates the ACC strategy with two 
controllers: speed and distance controller. Both 
controllers have their setpoints and measurements for 
speed and distance to a vehicle driving in front. The 
controllers manipulate the vehicle’s engine thrust but 
only one of the controllers is permitted to control at a 
time. There is a minimum selector for selecting the 
smaller of two control signals. This is to guarantee that 
the speed controller may not increase the speed if 
there is a vehicle inside the safety distance, that is, 
safety distance setpoint for the distance controller. The 
minimum selected control is taken to the engine 
causing speed and distance to a vehicle in front which 
are measured and fed back to the controllers. 

 

 
 
 
 
 
Setpoints 
   
  Engine thrust 

 

 

Figure 4. Block diagram of ACC control strategy. 

8 Controller tuning 

As the open-loop dynamics involves only first-order 
dynamics, a standard PI controller (Proportional-
Integral) with only two tuning parameters 𝑘௣ 
(proportional gain) and 𝑡௜  (integral time) is adequate for 
control. The PI controller is of the ISA standard from 

𝑢(𝑡) = 𝑘௣ ቀ𝑒(𝑡) +
ଵ

௧೔
∫ 𝑒(𝜏)𝑑𝜏

௧

଴
ቁ  (15) 

where 𝑢 is the PI controller output for regulating the 
vehicle’s engine thrust 𝑢(𝑡) = 𝐹௘௡௚(𝑡) and  𝑒 is a 
control error 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡).between the target 
speed 𝑟 and the real-time speed measurement 𝑦. 

The control objectives are smooth speed setpoint 
following and good load disturbance attenuation with 
adequate robustness to model uncertainties. As the 
open-loop dynamics of the model between the engine 
force and the speed involves no dead time in practice, 
the PI controller can be tuned to  

𝑘௣ =
ଵ

௞೐೙೒

ఛ

ఛೞ೐೟
   (16a) 

𝑡௜ = min (𝜏, 4𝜏௦௘௧)  (16b) 

where the tuning guidelines follow the SIMC tuning 
method by Skogestad (Vilanova & Visioli, chapter by 
Skogestad & Grimmholt, 2012) with closed-loop time 
constant 𝜏௦௘௧  being the only design parameter for an 
engineer to choose. By selecting 𝜏௦௘௧ < 𝜏, the PI 
controlled feedback vehicle is targeted to be faster than 
in open-loop with no speed controller. The tuning 
method is known to provide tunings with robustness to 
model uncertainties. 

Figure 5 plots setpoint and load disturbance responses 
for a PI controlled speed for different PI tunings with .  
The upper-left corner shows setpoint responses when 
a driver has changed a setpoint target by +1 m/s (ca. 3.6 
km/h) at time 𝑡 = 0. As the nominal speed for a linear 
model is  𝑣଴ = 80 k/m, the actual speed target is ca. 
83.6 km/h being 80 km/h before the change. The lower-
left corner shows the controller output (engine thrust) 
required on top of the appr. 281 N which is required to 
maintain speed of 80 km/h before the change. The 
maximum required engine thrust change immediately 
after the setpoint change is almost 100 N but the final 
thrust change is only ca. 25.4 N for keeping the new 
speed target. 

The upper-right corner shows load disturbance 
responses when a road slope has changed by 1 ° at time 
𝑡 = 0. The speed target remains unchanged as 80 km/h 
but the road slope change causes a minor decrease in 
speed which is at worst less than -0.02 m/s (ca. 0.07 
km/h) and most probably goes unnoticed by a driver. 
The lower-right corner shows the controller output 
(engine thrust) on top of 281 N. 

 

Figure 5. Closed-loop step responses for a PI controlled 
vehicle speed. Left: vehicle speed setpoint response 
(upper) and controlled engine thrust (lower). Right: 
vehicle speed load response (upper) and controlled 
engine thrust (lower). 
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9 Simulation results 

The final simulation illustrated in figure 6 involves 
simulation of the feedback system as shown in figure 4. 
The speed PI controller was tuned to 𝜏௦௘௧ = 0.6 ∗ 𝑇 =
31.2 giving 𝑘௣ = 42 and 𝑡௜ = 𝑇 = 52 whereas the 
distance PI controller was tuned to be more aggressive 
by setting 𝑘௣ = 42 and 𝑡௜ = 26. The target speed 
initially is zero corresponding 22.2 m/s (80 km/h). At 
time of 30 seconds, a driver changes the target speed 
by 3 m/s (ca. 10.8 km/h). The ACC control strategy 
increases engine thrust to reach a new setpoint. At the 
same there is another vehicle in front which originally 
was three meters more far than a preset safety 
distance. The speed change takes the vehicle in front 
close, just about at the safety distance level which is set 
to zero in simulation. 
 
This change is not adequate for the distance controller 
to take over. However, the car in front starts driving a 
bit slower making the safety distance smaller than the 
preset margin (set at zero in simulation) causing the 
distance PI controller to decrease its output. And it 
does not take long when its output is smaller than the 
output of the speed controller making it the controller 
in charge through the minimum selector as in figure 4. 
Finally, the speed is adaptively set to a lower level (app. 
-10 km/h) which is exactly the speed of the car driving 
in front making the safety distance be exactly at the 
pre-set level. 

 
 
Figure 6. Simulation of ACC control strategy. 
 
10 Discussion on adaptive control 

The ACC adapts to a changing distance between two 
vehicles. However, it does not adapt to changes in 
vehicle dynamics. As shown in table 3, there can be a 
relative change of +25 % in time constant if the number 
of passengers is changed from zero to four. That 
changes open-loop dynamics remarkably and gives rise 
to discussion on adaptive control features to improve 
the ACC control strategy’s robustness to altering 

dynamics. Any PI controller should be tuned quite 
sluggishly to provide with a such a stability margin 
(maximum sensitivity or gain/phase margins) that it 
would cope with any number of passengers and still 
provide with stabilizing control. And sluggishness is far 
from expectations of any driver driving a vehicle under 
cruise control. 

Adaption would require recognition of vehicle mass. 
Most probably, the easiest way to do that would be 
sensing if a seat is carrying a passenger or any load in 
general. This would require only a few mass gauges, 
one for each seat and one for a trunk.  

As the nominal speed 𝑣଴ is also a parameter affecting 
the open-loop dynamics, and, hence, the controller 
tuning, it could be similarly taken into consideration in 
an adaptive manner. Dealing with a nominal speed 
would not require additional sensors as the speed is 
already being measured as a primary variable. 

11 Conclusion 

The resulted feedback simulation model of the ACC can 
be used for control engineering education. More 
importantly, the whole engineering process of vehicle 
modelling, control design and tuning with simulation 
can be used as a case example for control engineering 
education at different stages of education level. 
Starting with modelling, the complexity of control 
engineering can be increased by introducing control 
design objectives and, finally, control design and 
tuning. Obviously, the simulation model also gives rise 
to design and simulate other control strategies than the 
one given by the author, not to mention, adaption 
mechanisms discussed in the previous section that 
could be applied to enhance the control performance. 

 
References 
 
[1] Bengtsson J., Adaptive Cruise Control and Driver 

Modelling, Department of Automatic Control, Lund 
Institute of Technology, 93 p., 2001. 

[2] Gäfvert M., Topics in Modeling, Control and 
Implementation in Automotive Systems, Lund 
Institute of Technology, Lund, 190 p., 2003. 

[3] Kim S., Design of the Adaptive Cruise Control 
Systems: an Optimal Control Approach, University of 
California, Berkeley, 121 p., 2012. 

[4] Miyata S., et. al., Improvement of Adaptive Cruise 
Control Performance, EURASIP Journal on Advances 
in Signal Processing, Vol. 2010, 2010. 

[5] Vilanova R., A. Visioli, PID Control in the Third 
Millennium: Lessons Learned and New Approaches, 
Springer, 2012. 

[6] Åström K.J., T. Hägglund, PID Controllers: Theory, 
Design and Tuning, Second edition, ISA, 1995. 

 

0 200 400 600
-4

-2

0

2

4

m
/s

Speed

0 200 400 600
-100

-50

0

50

100

N

Speed control

0 200 400 600
-2

-1

0

1

2

m

Safety distance

0 200 400 600
-100

0

100

200

N

Distance control

0 100 200 300 400 500 600

Time (min)

-100

0

100

200

N

Selected control


