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Abstract—Fault diagnosis of planetary gearboxes under time-

varying running conditions is a highly challenging topic due to 

the frequency complexity and time variability of vibration signals. 

Conventional statistics are unsuitable to describe such 

nonstationary signals. Time-frequency analysis can extract the 

frequency components of nonstationary signals and their time 

variability, but expertise knowledge is required. In order to 

address the issue of fault diagnosis under time-varying conditions, 

an intelligent fault diagnosis method is proposed, by exploiting 

the capability of convolutional neural networks in image 

processing. Firstly, the time-frequency representations of signals 

are constructed, and are treated as images. Such images are 

compressed, and their RGB weighted averages are used for 

further image processing. Secondly, a convolutional neural 

network (CNN) is established for intelligent fault pattern 

identification. Convolutional calculation is exploited to adaptively 

extract the features of time-frequency images, and a multi-layer 

perceptron network is trained to diagnose planetary gearbox 

faults under time-varying speeds. The proposed method is 

validated experimentally. 

Keywords- convolutional neural work; fault diagnosis; 

planetary gearbox; time-varying speed 

I.  INTRODUCTION 

Planetary gearboxes are widely used in many sorts of 
machinery for their merits of large transmission ratio, excellent 
load-bearing capacity in a compact structure. Under poor 
operating circumstances and alternating heavy loads, the key 
component, such as sun, planet and ring gears, are prone to 
damage. Once damage occurs, it will develop gradually, and 
eventually lead to breakdown of entire machine. Therefore, 
planetary gearbox fault diagnosis is an important topic. 

In practice, planetary gearboxes often run under 
nonstationary conditions. In this case, fault diagnosis is a 
highly challenging issue. Planetary gearbox fault diagnosis 
relies on detecting fault characteristic frequencies and 
monitoring their magnitude changes. However, the unique 
structure and intricate kinematics of planetary gearboxes lead 
to complex vibration signals, which makes it difficult to 
identify fault characteristic frequencies. Recently, many 
researchers have made contributions to planetary gearbox fault 

diagnosis in perspective of dynamic analysis and signal 
analysis [1-3]. Nevertheless, most of reported studies assume 
that planetary gearboxes run under stationary conditions, which 
means fault characteristic frequencies are constant. However, 
in practice, the running speed and/or load of planetary 
gearboxes are usually time-varying. This leads to nonstationary 
vibration signals and time-varying fault characteristic 
frequencies, and further adds difficulty to fault diagnosis. 

For nonstationary signals, time-frequency analysis has been 
demonstrated effective to extract frequency contents and their 
time variability. Well-known time-frequency analysis methods 
include short time Fourier transform (STFT), wavelet 
transform, Wigner-Ville distribution, and empirical mode 
decomposition, etc. However, for fault diagnosis of planetary 
gearbox under nonstationary conditions, they suffer from poor 
time-frequency resolution and/or pseudo interferences, which 
hinders fault features extraction. In order to overcome this 
difficulty, researchers have made some improvements [4-10]. 
For example, Feng et al. [4,5] studied time-frequency analysis 
methods based on iterative generalized demodulation and 
synchrosqueezing transform, and effectively extract time-
varying fault frequencies of planetary gearboxes under 
nonstationary conditions. Chen et al. [6,7] proposed order 
spectrum analysis methods based on amplitude demodulation, 
frequency demodulation, and iterative generalized time-
frequency reassignment for planetary gearbox fault diagnosis 
under nonstationary conditions. Besides, Chen et al. [8] studied 
the time-frequency features of planetary gearbox torsional 
vibration signals under nonstationary condition. Wang et al. [8] 
extracted the entropy feature of vibration signal phase angle for 
failure detection of planetary gearbox under nonstationary 
condition. Guan et al. [9] mapped the original nonstationary 
signal into a smooth signal in angle domain, then extracted 
planetary gearbox fault features through synchrosqueezing 
transform. Hu et al. [10] used high-order synchrosqueezing 
transform to reveal the time-frequency features of planetary 
gearbox fault vibration signals under nonstationary conditions. 
The above publications contribute to planetary gearbox fault 
diagnosis under nonstationary conditions, but most of the work 
involve expert’s participation and rely on data analyst’s 
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knowledge to identify fault characteristic frequencies manually. 
The subjective factors may affect the fault diagnosis accuracy. 

Intelligent fault diagnosis provides an approach to avoid 
subject factors. In some latest reports, intelligent fault diagnosis 
strategies have been proposed for intelligent fault identification 
of planetary gearboxes [11-13]. Liu et al. [11] decomposed the 
signal into intrinsic mode functions (IMF) with EEMD and 
investigated the dependence between the raw signal and each 
IMF by Archimedean Copulas, applied the associated 
indicators to form a dependence-based feature vector, and 
classified gear faults by a multi-class support vector machine. 
Li et al. [12] used modified hierarchical permutation entropy 
(AMMF) to extract fault features, and employed a binary tree 
support vector machine to identify gear fault patterns. Wang et 
al. [13] combined generative adversarial networks (GAN) and 
stacked denoising autoencoders (SDAE) to generate new 
samples for expanding the sample size and automatically 
extract effective fault features, and discriminated their 
authenticity and fault categories. However, most of intelligent 
diagnosis methods use 1D indices as input features. These 1D 
indices are usually statistical indicators of signals under 
stationarity assumption, and are unsuited for nonstationary 
conditions. Therefore, intelligent fault diagnosis of planetary 
gearboxes under nonstationary conditions is still a challenging 
topic. 

Recently, convolutional neural network (CNN) has the 
merit of mining representative information and sensitive 
features from raw data, and has been demonstrated an effective 
approach for intelligent fault diagnosis of machinery. Jing et al. 
[14] used a convolutional neural network to extract features 
automatically from vibration signals for gearbox fault diagnosis. 
Zhao et al. [15] acquired three different types of dynamic 
encoder information from the raw position sequence and 
constructed multivariate encoder information by data fusion, 
and diagnosed faults using a convolutional neural network. 
However, most of these publications use 1D indicators as 
inputs to CNN, and therefore focus on constant conditions only. 
The capability of CNN in 2D image processing has not been 
well exploited in machinery fault diagnosis field. 

In this paper, we propose an intelligent method to address 
the issue of planetary gearbox fault diagnosis under 
nonstationary conditions, by exploiting both the capability of 
time-frequency analysis in nonstationary signal processing and 
that of CNN in image pattern identification. We extract time-
varying fault features through time-frequency analysis, solving 
the problem due to nonstationary conditions. Then, we treat 
time-frequency representations as images, input them to CNN, 
realizing intelligent fault pattern identification. This framework 
is robust to the time-frequency resolution and possible pseudo 
interferences, and therefore any time-frequency analysis 
methods are applicable. Moreover, it can be generalized to fault 
diagnosis of any machinery under nonstationary conditions. 

The remainder of this paper is organized as follows. In 
Section 2, fundamentals of CNN are introduced. In Section 3, a 
CNN-based intelligent diagnosis method is presented. Next, it 
is validated using a planetary gearbox experimental dataset in 
Section 4. Finally, conclusions are drawn in Section 5. 

II. AN INTRODUCTION OF CONVOLUTIONAL 

NEURAL NETWORK 

A. Convolutional computation and feature learning 

Convolutional computation plays an important role in 
analysis mathematics which consists of continuous 
convolution and discrete convolution. Convolutional 
computation involved in convolutional neural network is the 
latter, and the computational formulation is presented in (1), 
where i denotes the ith discrete data point in a series while n 
denotes an integral time shift. In another word, convolutional 
computation can be regarded as a mathematical operator to 
generate a third function y for measuring product of function x 
and h which has been reversed and time shifted. 

         *
i

y n x i h n i x n h n




              (1) 

However, in practical application of convolutional neural 
network, the input is generally image. Next, a description of 
two-dimensional convolutional computation in detail is given. 

For example, suppose the input data is XR
56

, where 5 and 6 

are dimensions of the data, and another operator HR
33

, 
called convolution kernel or convolution filter, is utilized to 
carry out the computation with stride 1. The concrete instances 
and computation process are presented in Fig. 1 and Fig. 2. 
From Fig.2, we can see that size of the convolution kernel 
determines the size of sub-field participated in the 
computation while elements in the sub-field determines 
contributions of the input data to the results called features. 
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Fig. 1 Two-dimensional input data and convention kernel: (a) 

Input X (b) convention kernel H 
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Fig. 2 Two-dimensional convolution computation process: 
(a) The first convolution operation and the feature (b) the 
second convolution operation and the feature (c) the third 
convolution operation and the feature (d) the twelfth 
convolution operation and the feature 

Generally, in the process of traditional fault diagnosis of 
rotating machine, features are first constructed and extracted 
with expertise from raw signal, then further used to train 
models, and finally classified for detecting faulty components 
automatically. In recent years, feature learning technology 
replaces feature engineering gradually, where features are 
hand-crafted with expertise for specific task. Different from 
feature engineering, feature learning technology outputs a new 
representation of raw signal, which should be better for 
classification than raw input data by learning a transformation 
or transformations of raw data with learnable parameters. 

In our study, a concrete convolution kernel is given in 
Fig.1 (b) for a brief explanation of convolution computation, 
elements of which originally should be unknown, and required 

to be trained in practical application of CNN. The trained 
convolution kernel is finally used for learning optimal features. 

B. Multi-layer perceptron 

After feature learning, features are used to train models, 
most of which derive from multi-layer perceptron (MLP) 
neural network structure and classified for fault identification. 
As a feedforward neural network, MLP consists of input layer, 
hidden layer or layers, and output layer. A schematic structure 
of MLP is presented in Fig. 3, where x1 denotes the data input 

in the first neuron of input layer, 
2

11  denotes the weight value 

from first neuron in the first layer to first neuron in the second 

layer, and 
2

1y  denotes the output of first neuron in the second 

layer. In a MLP, neurons in the same layer are independent, 
while neurons in adjacent layers are fully-connected. The data 
are input to the input layer and transmitted along the array 
direction. Each neuron in the latter layer will receive the 
weighted value of all the neurons in a former layer. The 
relationship is presented in (2), where l means the lth layer, m 
denotes the mth neuron in lth layer, k is the number of neurons 
in l-1th layer, i is the ith neuro in it, b is a bias, and f denotes 
an active function. Here f can be sigmoid, tanh, and relu, 
which are presented in (3) - (5). 

 

 
Fig. 3. A schematic structure of MLP 
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C. Convolutional neural network 

Much research has indicated that CNN works very well in 

image identification and classification [16]. In order to 

adaptively extract features of time-frequency map of analyzed 

signal collected from planetary gearbox under variable speed 

condition, a CNN-based model is proposed. The primary 
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model of CNN is called neurocognitive machine, which is a 

biophysical model inspired by the neural mechanism of the 

visual system. In fact, CNN can be regarded as a special multi-

layer perceptron or feed-forward neural network, which has 

properties of local connection and weight sharing. Generally, a 

CNN consists of input layer, convolutional layer, pooling layer, 

fully-connected layer and output layer, which are presented in 

Fig.4.  

 

 
Fig. 4. A schematic structure of CNN (with two kernels) 

 
Compared with Fig.3, a CNN can be presented as a 

combined model with part of convolutional calculation and a 
MLP. Through convolutional calculation carried out by 
several combined layers, i.e. convolutional layers and pooling 
layers, features of images are adaptively extracted and 
dimension-reduced. Then, the MLP will further extract 
dimension-reduced features layer by layer for more brief 
representation of the original input data and classify the new 
features. Descriptions of each layer in detail are as follows: 

1) Input layer: for image input, the input layer can process 
image pixels directly. 

2) Convolutional layer: in the convolutional layer, each 
rectangular block is called a feature map. From the example of 
a two-dimensional convolutional operation presented in Fig.2, 
it can be seen that a feature map corresponds to a feature 
matrix obtained by convolutional operation, and the number of 
neurons in a feature map is the same as that of elements in the 
matrix. The sub-block of input data or a feature map, involved 
in one convolutional calculation, is called a partial receptive 
field, while the weighted matrix is called a convolutional 
kernel, which is presented in Fig.1. Besides, each feature map 
corresponds to only one convolutional kernel, and a single 
neuron in a feature map corresponds to a local receptive field, 
and all neurons in a feature map share the weights in the 
kernel. The weights of a kernel are generally unknown and 
needed to be initialized and trained. However, sometimes the 
convolutional kernel can also be given with fixed weights, 
such as a Gabor filter [17]. The convolutional layer extracts 
feature of input data through convolutional calculation, and 
different kernels focus on different features. With more 
convolution kernels, richer features of input data can be 
extracted. 

3) Pooling layer: it is also called down-sampling layer, and 
has several feature maps, which have one-to-one 

correspondence to the former feature maps. The neurons in 
feature maps of pooling layer are connected to corresponding 
local receptive field of former layer, and the receptive fields 
do not overlap. The main purpose of this layer is to reduce the 
feature dimension without losing feature information and 
improve the efficiency of the network. The commonly used 
pooling methods mainly include maximum pooling, i.e. 
extracting the maximum value in the local receptive field, 
mean value pooling, i.e. averaging all the elements in the local 
receptive field, and randomly pooling [18]. In a CNN model, 
the convolutional layer and pooling layer are usually regarded 
as a unit and called combined convolutional layer. A CNN 
model can have a few of combined convolutional layers, and 
the combined convolutional layers can be full-connected or 
not. With more combined convolutional layers, the more 
abstract features can be obtained. 

4) Fully-connected layer: Corresponding to the hidden 
layer of a MLP, a CNN model may include one or more fully-
connected layers or may not include any fully-connected layer. 
Each neuron in the fully-connected layer is connected to all 
neurons in the previous layer, so that local information with 
class discrimination in the pooling layer can be integrated. The 
active function is generally sigmoid.  

5) Output layer: The values of the last layer of fully-
connected layer are transmitted to the output layer, and the 
number of neurons in output layer is set according to a specific 
task. 

 

III. CNN-BASED MODELS OF INTELLIGENT 

DIAGNOSIS 

For the fault diagnosis of planetary gearbox under variable 
speed condition, the intelligent diagnosis model based on 
CNN is shown in Fig. 5. The steps are as follows: 

1) Acquire vibration signals under variable speed 
conditions and divide the signals into training samples and test 
samples. 

2) The short time Fourier transform method is used to 
obtain the time-frequency map of the analyzed sample signal 
and compress the time-frequency into a small size. 

3) Transform the RGB image into a gray one and use the 
weighted average algorithm to calculate the weighted average 
of the R, G, and B components, and calculate them according 
to (6). 

0.2989 0.5870 0.1140Ave R G B              (6) 

4) Input the time-frequency grayscale image of training 
samples into the convolutional neural network model and train 
the network model parameters. The model structure can refer 
to the convolutional neural network structure in the Deep 
Learn Toolbox open source library in [19]. 

5) Testing samples are used to test the model, and faults of 
planetary gearbox under variable speed condition are 
diagnosed. 
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Fig. 5 Flow chart of CNN-based intelligent diagnosis 

model 

IV. VALIDATION OF THE PROPOSED MODEL 

A. Experimental configuration 

In this section, the proposed method is validated by lab 
experimental data set under variable speed. Fig.6 presents the 
experimental set-up. The motor is connected to the input shaft 
through a torque-speed sensor to drive the sun gear. The 
torque-speed sensor is used to measure the torsional vibration 
and speed. The output shaft of the planetary gearbox is 
connected to the planet carrier and applied a load provided by 
an electromagnetic brake. Several acceleration sensors are 
mounted on the base of planetary gearbox and top of planetary 
gearbox case for measuring vibrations. The configuration 
parameters of the planetary gearbox are listed in Table 1, 
which can help to derive relationships between sun gear 
rotating frequency and characteristic frequencies as listed in 
Table 2. Fig.7 shows the figures of gears with manual damage 
for simulation. Therefore, we carried out four cases of running 
conditions i.e. (1) healthy baseline case with all gears healthy, 
(2) sun gear fault case with a local fault on the sun gear alone, 
(3) planet gear fault case with a local fault on one of the planet 
gears alone, and (4) ring gear fault case with a local fault on 
the ring gear alone. For each case, the motor speed varies from 
0-25Hz in a period of 15 seconds which includes 3 seconds for 
start delay, 10 seconds for speeding up from 0 to 25Hz and 2 
seconds for operating at 25Hz and the experiment will be 
repeated for 50 times. In this study, we analyze signal from 
sensor on the top of the gearbox and the vibration signals are 
collected at a sampling rate of 20480Hz. Therefore, we will 
obtain 200 data sets for all the cases with 307200 data points 
in each set. For convenience, resample the signal at a new 
sampling rate of 1024 Hz, and only the points collected from 

the 3th second to the 13th second will be utilized for analysis 
in each set. Thus, a final analyzed single set contains 10240 
points. Divide each set into 10 segments, which are coded 
from 1 to 10, and put segments from 1 to 5 into a sample, 
segments from 2 to 6 into a sample, and so on, then 6 samples 
are available for each set of signals. Then, we can obtain 300 
samples for each state, while each sample contains 5120 data 
points. Select 150 samples among them randomly for training, 
others for testing. Finally, the training samples for four states 
are totally 600, while testing samples are 600. The signal 
waveform, Fourier spectrum for each case are shown in Fig. 8. 
The speed curve is presented in Fig.9. 

 

1-drive motor, 2-tachometor, 3-planetary gearbox, 4-

accelerometer, 5-electromagnetic brake, 6-signal acquisition 

equipment 

Fig.6 Experimental system 

 

Table. 1 The gear parameters of planetary gearbox 

Gear Sun Ring Planet(number) 

teeth 13 92 38(3) 

Note: () Number of planet gears in parenthesis. 

 

 

Table.2 Characteristic frequencies (Hz) 
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(b) 

  
(c) 

Fig. 7 Gears with manual damage. (a) sun gear fault (b) planet 

gear fault (c) ring gear fault. 
 

 
(a)                                             (b) 

 
(c)                                             (d) 

 
(e)                                             (f) 

 
(g)                                             (h) 

Fig. 8 The signal waveform, Fourier spectrum of one 

experiment for each case. (a,b) Healthy baseline, (c,d) Faulty 

outer race, (e,f) Faulty rolling element, (g,h) Faulty inner race. 
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Fig. 9 Speed curve 

B. Planetary gearbox fault identification under variable 

speed condition 

The time-frequency maps are obtained by STFT as 

presented in Fig.10. Label normal, sun gear fault, planet gear 

fault, ring gear fault under variable speeds with 1,2,3,4 

respectively. 
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Fig.10. Time-frequency representations under different 

time-varying speeds. (a) normal, (b) sun gear, (c) planet gear, 

(d) ring gear  

A CNN model is established with parameters listed in 

Table.3, which are taken as the same of the toolbox model, 

since the toolbox model is widely and effectively used for 

features extraction of image [19]. This study shows the trend 

of error rate with changeable iteration times, which is 

presented in Fig. 11. 

Table.3 Parameters of the CNN model 

Parameters 
Neural 

network 

Output 

maps 

Kernel 

size 
scale 
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rate 
batch 

Iteration 

number 
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6-5-12-

5-4 
6 or 12 5 2 0.1 8 100 
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Fig.11. Error rate  

 

Fig.11 shows that after 60 iterations, the error rate comes 

close to zero. All the testing samples are diagnosed correctly, 

which are presented in Table.4. 

 

Table.6 Diagnosis rate of the CNN model 

Signals/Label T1 T2 A1=(T1/T2) 100% 

Sun gear fault/1 150 150 100% 

Planet gear fault/2 150 150 100% 

Ring gear fault/3 150 150 100% 

Note: T1 - test samples classified properly, T2 - all test samples, A- 
identification rate 

 

In a summary, the experiment shows that, for signals 

generated and collected under variable speeds, the features 

of time-frequency maps can be adaptively extracted by a 

CNN model, and the model trained with the features can 

diagnose the testing samples at a high accuracy. Besides, 

the proposed method has no limitation of time-frequency 

analysis methods, and is free from poor time-frequency 

analysis precision and pseudo interference. 

V. CONCLUSIONLS 

In our study, the signal can be analyzed with any time-
frequency analysis method such as STFT, Wavelet Transform, 
Wigner-Ville distribution and empirical mode decomposition 
(STFT is used in our study) to obtain the corresponding time-
frequency map, which is taken as the input of the model 
proposed based on CNN for fault diagnosis of planetary 
gearbox under variable speed condition. Then, the features of 
the map can be adaptively extracted by the CNN-based model, 
which are used to train the model and classified for fault 
diagnosis. Therefore, the model is free from poor time-
frequency analysis precision and pseudo interference which 
are common problems in traditional time-frequency analysis. 
In the model, parameters of CNN are taken as the same of the 
toolbox model. Finally, the method is verified by an 
experiment. Results show that the testing samples are 
diagnosed at a high accuracy. 

ACKNOWLEDGMENT 

This work is supported by National Natural Science 
Foundation of China (51875034, 51475038) and doctoral 
research startup fund (BKY-2018-05). 

REFERENCES 

 
[1] X. H. Liang, M. J. Zuo, Z. P Feng, “Dynamic modeling of gearbox faults: 

A review,” Mechanical Systems and Signal Processing, vol. 98, pp. 852-
876, Jan. 2018. 

[2] P. D. Samuel, D. J. Pines, “A review of vibration-based techniques for 
helicopter transmission diagnostics,” Journal of Sound and Vibration, 
vol. 282, no. 1-2, pp. 475-508, Apr. 2005. 

[3] C. G. Cooley, “A review of planetary and epicyclic gear dynamics and 
vibrations research,” Applied Mechanics Reviews, vol. 66, no. 4, pp. 1-
15, Jul. 2014. 

[4] Z. P. Feng, X. W. Chen, M. Liang, et al, “Time-frequency demodulation 
analysis based on iterative generalized demodulation for fault diagnosis 
of planetary gearbox under nonstationary conditions,” Mechanical 
Systems and Signal Processing, vol. 62-63, pp. 54-74, Oct. 2015. 

[5] Z. P. Feng, X. W. Chen, M. Liang, “Joint envelope and frequency order 
spectrum analysis based on iterative generalized demodulation for 
planetary gearbox fault diagnosis under nonstationary conditions,” 
Mechanical Systems and Signal Processing, vol. 76-77, pp. 242-264, 
Aug. 2016. 

[6] X. W. Chen, Z. P. Feng, “Iterative generalized time-frequency 
reassignment for planetary gearbox fault diagnosis under nonstationary 
conditions,” Mechanical Systems and Signal Processing, vol. 80, pp. 
429-444, Dec. 2016. 

[7] X. W. Chen, Z. P. Feng, “Time-frequency analysis of torsional vibration 
signals in resonance region for planetary Gearbox fault diagnosis under 
variable speed conditions,” IEEE Access, vol. 5, pp. 21918-21926, 2017. 



2019 Prognostics & System Health Management Conference—Qingdao 
 (PHM-2019 Qingdao) 

[8] K. Feng, K. S. Wang, Q. Ni, et al, “A phase angle based diagnostic 
scheme to planetary gear faults diagnostics under non-stationary 
operational conditions,” Journal of Sound and Vibration, vol. 408, pp. 
190-209, Nov. 2017. 

[9] Y. P. Guan, M. Liang, D. S. Necsulescu, “A velocity synchro-squeezing 
transform for fault diagnosis of planetary gearboxes under nonstationary 
conditions,” Journal of Mechanical Engineering Science, vol. 231, no. 
15, pp. 2868-2884, Aug. 2017. 

[10] Y. Hu, X. T. Tu, F. C. Li, et al, “Joint hight-order synchro-squeezing 
transform and multi-taper empirical wavelet transform for fault 
diagnosis of wind turbine planetary gearbox under non-stationary 
conditions,” Sensors, vol. 18, pp. 150, Jan. 2018. 

[11] L. B. Liu, X. H. Liang, M. J. Zuo, “A dependence-based feature vector 
and its application on planetary gearbox fault classification,” Journal of 
Sound and Vibration, vol. 431, pp. 192-211, Jun. 2018. 

[12] Y. B. Li, G. Y. Li, Y. T. Yang, X. H. Liang, M. Q. Xu, “A fault 
diagnosis scheme for planetary gearboxes using adaptive multi-scale 
morphology filter and modified hierarchical permutation entropy,” 
Mechanical Systems and Signal Processing, vol. 105, pp. 319-337, Dec. 
2017. 

[13] Z. R. Wang, J. Wang, Y. R. Wang, “An intelligent diagnosis scheme 
based on generative adversarial learning deep neural networks and its 

application to planetary gearbox fault pattern recognition,” 
Neurocomputing, vol. 310, pp. 213-222, May. 2018. 

[14] L. Y. Jing, M. Zhao, P. Li, X. Q. Xu, “A convolutional neural network 
based feature learning and fault diagnosis method for the condition 
monitoring of gearbox,” Measurement, vol. 111, pp. 1-10, Jul. 2017. 

[15] J. Y. Jiao, M. Zhao, J. Lin, J. Zhao, “A multivariate encoder information 
based convolutional neural network for intelligent fault diagnosis of 
planetary gearboxes,” Knowledge-Based Systems, vol. 160, pp. 237-250, 
Jul. 2018.  

[16] F. Y. Zhou, L. P. Jin, J. Dong, “Review of convolutional neural 
network,” Chinese journal of computers, vol. 40, no. 6, pp. 1230-1250, 
Jun. 2017. 

[17] A. Stuhlsatz, J. Lippel, T. Zielke, “Feature extraction with deep neural 
networks by a generalized discriminant analysis,” IEEE Transactions on 
Neural Networks and Learning Systems, vol. 23, no. 4, pp. 596-608, Apr. 
2012. 

[18] N. T. Huang, H. J. Chen, G. W. Cai, “Mechanical fault diagnosis of high 
voltage circuit breakers based on variational mode decomposition and 
multi-layer classifier,” Sensors, vol. 1887, no. 16, pp. 1-19, Nov. 2016. 

[19] Y. J. Li, T. Zhang, Introduction to deep learning and case studies. 
Beijing: Machinery Industry Press, 2016, pp. 221-227.

 


