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Abstract—As a part of the global decarbonization agenda,
the electrification of the transport sector involving the large-
scale integration of electric vehicles (EV) constitues one of the
key initiatives. However, the introduction of EV loads results
in more variable electrical demand profiles and higher demand
peaks, challenging power system balancing, voltage and network
congestion management. In this paper, a novel optimal load
scheduling approach for a coupled power and transportation
network is proposed. It employs an EV charging demand
forecasting model to generate the temporal-spatial distribution
of the aggregate EV loads taking into account the uncertainties
stemmed from the traffic condition. An AC optimal power
flow (ACOPF) problem is formulated and solved to determine
the scheduling decisions for the EVs, energy storage units as
well as other types of flexible loads, taking into account their
operational characteristics. Convex relaxation is performed to
convert the original non-convex ACOPF problem to a second
order conic program. Case studies demonstrate the effectiveness
of the proposed scheduling strategy in accurately forecasting the
EV load distribution as well as effectively alleviating the voltage
deviation and network congestion in the distribution network
through optimal load scheduling control decisions.

Index Terms—Electric vehicle, load scheduling, network con-
gestion management, power and transportation networks.

NOMENCLATURE

te{l,...,T} Index and set of time periods
e€{l1,...,E} Index and set of electric vehicles
i€{l,...,I} Index and set of traffic nodes

x € {1,...,X} Index and set of coupled nodes

Dy; Distance between traffic node 4 and j

Lder, [arr Departing and arriving positions of EV e

tdep_tarr Departing and arriving times of EV

B, State of charge (SoC) of EV e at time ¢

Bset Threshold SoC for charging of EV e

Bled Required SoC for fulfilling the next day’s
travel plan of EV e

feiits Seit Fast and slow charging status of EV e at node
7 at time ¢

P Aggregate charging power of node i at time
t
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DRP, , Total demand response potential of flexible
loads at coupled node z at time ¢

DR, Total demand response of node z at time ¢

PzL’t, Qg’;‘yt Total active/reactive power at node x at time
t after demand response

P,, PS¢ PL real injected/generated/load power at node z

Q. Q% QL reactive injected/generated/load power at
node x

Uz, 0z voltage and voltage angle at node =

Gy, Bay conductance and susceptance between node
2 and node y

Pg,t Total inflexible demand of node z at time ¢

u,u Minimum and maximum voltage limit

Uzt Voltage of node x at time ¢

S Sus Apparent power flow leaving the reference

' sending node and reaching the reference re-

ceiving node x at time ¢

Sy Thermal capacity of line (z, z")

I. INTRODUCTION

Environment and energy security concerns have paved the
way for the extensive decarbonization of energy systems
through large-scale integration of renewable generation and
electrification of transport and heat sectors, both in China and
beyond [1]. However, this paradigm shift introduces significant
challenges to the operation and development of future power
systems. At the generation side, the high variability and
intermittency of renewable generation challenges the system
balancing. At the demand side, the electrification of transport
and heat sectors not only intensifies the overall electrical
energy consumption, but disproportionately increase the peaks
of overall demand (due to the temporal patterns of users’
driving and heating requirement), which may overload the
distribution network, create voltage deviation and network
congestion [2], [3]. The increase of EV in transportation
network also aggravates the traffic congestion and charging
congestion, namely high charging queueing time [4]. There-
fore, suitably managing the EV charging loads constitutes an
imperative step in secure and economic operation of power
and transportation systems.

The charging options of EV generally include fast and slow
charging. The former involves charging the EV at a charging



station or a charging pile which entails higher range anxiety
and thus higher charging power. This option is primarily
linked to the travel plan or the commuting behavior of EV
users and thus the spatial distribution of EV charging loads.
In this context, charging navigation optimization approaches
are generally employed to manage the fast charging loads
in the presence of the variability and uncertainty stemmed
from the traffic conditions. A stochastic dynamic pricing
and EV charging service management method is proposed
in [5] to provide optimal charging navigation decisions for
EV users when their battery need to be recharged. Authors
in [6] investigate the impact of traffic information on the
driving and charging behaviors of EV users using historical
data. Authors in [7] proposed a charging navigation model
incorporating real-time perception of traffic information and
crowd sensing techniques. Although these previous works take
the impact of traffic condition on EV behaviors into account
in determining the spatial distribution of charging loads, the
temporal flexibility of EV loads (i.e. the ability of EV loads
to shift in time) is neglected.

Slow charging involves charging the EV at home or work-
place while parking for a more significant amount of time.
This option is linked to the temporal load distribution of EV.
In this context, previous research focus lies in DR management
programs for EV fleets or EV aggregators. An uncertainty mit-
igating model is proposed in [8] to optimize the EV charging
time, making uncertainty from different periods compensate
for each other and make use of the temporal flexibility of
EV aggregators. In [9], parking lots with charging facilities
are modeled as load aggregators which optimize the charging
and discharging behaviors of an EV fleet. Workplace charging
of EV enabled by on-roof photovoltaic (PV) panels of smart
buildings is studied in [10], where the Vehicle-to-Grid (V2G)
capability of EV to inject stored energy back to the grid
is also taken into account. Similar optimization approaches
are employed in [11], [12] which examine PV-assisted com-
mercial buildings for EV charging. Although these previous
works contribute to the optimal temporal management of EV
charging loads in the power network, the influence of traffic
condition on the EV navigation and subsequently its charging
behaviors is neglected.

In order to address the limitations of previous works, this
paper proposes a novel load scheduling approach from the
power network operator’s perspective. More specifically, the
interaction between the EVs and the coupled power and trans-
portation networks is analyzed, and a load forecasting model
is developed to accurately forecast the spatial-temporal distri-
bution of the EV charging loads. Given this initial EV load
distribution, an AC optimal power flow (ACOPF) problem is
proposed to optimize the scheduling decisions for EVs, energy
storage units as well as other types of flexible loads, taking
into account their operating characteristics. Unlike [13], [14]
which solve ACOPF in its non-convex form using nonlinear
programming solvers, convex relaxation [15] is performed, and
the ACOPF problem is transformed to a second order conic
program (SOCP), which can be solved more efficiently for an

optimal solution. Case studies based on a real-world system
involving a coupled power and transportation networks in
Nanjing, China demonstrate the effectiveness of the proposed
load scheduling method in effectively alleviating the voltage
deviation and network congestion for the power network,
as well as mitigating the charging queueing time for the
transportation network.

The rest of this paper is organized as follows. Section
IT outlines the proposed traffic-information-informed EV de-
mand forecasting model. Section III details the proposed load
scheduling optimization model. Section IV presents the case
studies and illustrative results demonstrating the value of the
propose method. Finally, Section V concludes.

II. TRAFFIC-INFORMATION-INFORMED EV CHARGING
DEMAND FORECASTING MODEL

A. Interaction Between power and transportation Networks

The interaction between the transportation network, the
power grid, and the EV charging loads is shown in Fig. 1.
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Fig. 1. Interaction between transportation network, power grid and charging
loads of electric vehicles.

In the coupled power and transportation networks, the
driving velocity and path selection of each EV is influenced
by the traffic information, e.g. the traffic flow, the road grade,
road facilities, etc. In addition, the total driving and charging
queuing time also affect the charging decisions of the EV
users, namely the selection of charging time and location,
which is related to the spatial-temporal distribution of the
charging loads. From the grid operator’s perspective, the
traffic information should be available to accurately forecast
the initial charging load distribution and coordinate the load
scheduling.

Meanwhile, after the power grid operator dispatches the
charging loads, the travelling and charging decision of EVs
especially those with fast charging demand, will conversely
result in the change of the traffic condition.



B. Charging Forecasting Model of Single Electric Vehicle

Denoting the distance matrix for the traffic network as D =
(D; ;) € RI*! where i and j are the connecting nodes of a
road. When D;; = 0 the two nodes overlap. Infinite D; ;
means that the two nodes are unconnected.

The departing time t2°P, departing L9°P and the arriving
L™ positions of the EVs are determined via Monte Carlo
simulation. Assuming that EV chooses the shortest path be-
tween L and L™ as commuting path, which is found by
the Dijkstra algorithm. Assuming the shortest path passes in
total of K nodes from the departing node to arriving node.

Denoting the average driving velocity (km/h) between node
i and j as v; ;, it reflects the uncertainty of traffic information
in the traffic network, and is affected by various factors such
as road grade, time, and traffic flow. The velocity model is
shown as (1)-(2). -

vij = arvo/[L+(Cij/Ci)’) (1)

B =az+as(Ci;/Cij)? 2)
where a1, as, ag, and (3 are regression and correction co-
efficients, varying with the road grade. vy is the maximum
velocity allowed on each road. C; ; and C, .j denotes the traffic
flow (which is generated via Monte Carlo simulation) and the
capacity of road (i, j), respectively.

The state of charge (SoC) of EV e at ¢ can be written as:

Bei =1(Be,—1 — AlIAB) 3)
where Al denotes the driving distance from ¢ — 1 and ¢, AB
represents the energy consumption per km. 7 is the efficiency
parameter, indicating the energy loss caused by starting and
braking operations [16]. When the remaining SoC is not
enough to complete the travel plan (i.e. raising range anxiety),
the EV is assumed to charge at the nearest charging station.

Therefore, the arriving time of EV can be calculated as:
sar, tdep ifd=1 4

{tdep+Z§_Q(Ddl,d/Ud1,d+ tChT +twt) if d 75 1 “4)

where Dgy_14 and vg_1,4 represent the distance and the
average driving velocity between node d—1 and d. t°*" and t**
represent the charging time and the waiting time, respectively.
Notably, when the EVs have enough SoC, both teh and twt
are set to zero.
C. Aggregate Charging Forecasting Model

In this paper, EVs are divided into three categories, namely
private car, taxi, and bus. Different categories of vehicles
exhibit distinct driving and charging behaviors. Private cars
typically commute between the user’s home and work place,
and their predefined fast/slow charging power is 120/7 kW.
Electric taxis have irregular travelling behaviors whose charg-
ing power is similar to that of the private cars. Electric buses
shuttle regularly and their predefined fast/slow charging power
is 400/200 kW. The charging status model of the private cars
can be expressed as:

5;71‘,75 =1, if B.; < B3¢t i = Lder
flii=1, if Bey < B3t i # L (5)
el,i,t = Sé,ut = 07 if Be,t 2 BSEt

where fel,i,t and si%t represent the fats/slow charging status
of private car e is at node 7 and ¢; Bget is the minimum level
of SoC to travel from the current position to the destination,
namely it denotes the threshold SoC for charging.

Similarly, the charging status models of electric taxis and
buses can be derived following the same logic of (5). Based
on the derived charging status models which represent the
spatial and temporal distribution of the charging power of
each EV, the forecasted aggregate charging demand of the EV
population can be expressed as:

Ey
Pf,? = Zezl[P})fel,i,t + Pspsi,i,t]-&-
E> E3 b . b o
Zezl[Rfff,i,t + Pfsi,i,t]+ze:1[Pff;i,t + Py Si,i,t]

where Fq, E5, E5 represents the total number of EVs in each
category, Pf and PP denote the fast and slow charging power
of electric private cars and taxis, respectively. PJZZ and PP
denote the fast and slow charging power of electric buses,
respectively. P/ represents the total EV charging loads at
node ¢ and time t before introducing any demand response
actions (as optimized in Section III).

(6)

III. OPTIMAL LOAD SCHEDULING OPTIMIZATION MODEL
A. Scheduling Potential of Flexible Loads

Traffic nodes with charging piles or stations are physically
connected to some nodes of the power network, and this subset
of traffic nodes is referred to as the coupled nodes hereafter.
Notably, more than one traffic nodes can couple with one node
of the power network. In this paper, we assume that the set of
coupled nodes coincides the set of nodes of the power network.

In this section, a load scheduling model is proposed to
optimize the shedding and temporal shifting decisions of EV,
air conditioner (AC) and water heater (WH) charging loads, as
well as the charging/discharging decisions of energy storage
(ES) units, targeted to minimize the average voltage deviation
in the power network. Each coupled node has a dispatching
operator to implement the optimal scheduling decisions.

The demand response potential (DRP) model of an EV can
be expressed as:

0 if Be g+ Pe(tgfgf —t) < Bl

DRP, ; :{

P., if Beyt+ Pe(tie;? —t) > Brea 7

If the participation in the demand response program of EV e

at ¢ results in low SoC level which cannot fulfill the user’s

travel plan for the next day, the DRP is equal to 0; otherwise,

the DRP is equal to the rated charging power of EV P, which

is dependent to the category and charging status of EV e.
The DRP model of an AC can be expressed as:

P,, ifTP,,;< TP;’Zlt
0, otherwise

-DRPa,:v,t = { (8)

where P,, TP;f;, and T'P, ,; denote the rated power of AC,
the target and the operational temperatures, respectively.
The DRP model of an WH can be expressed as:

Py, ifTPy,.+> TP;?;
0, otherwise

DRPw,w,t = { (9)



where P, TP;f;, and T'P,, , ; denote the rated power of WH,

the target and operational temperatures, respectively
Et = (1 — T)Et—l + nfspc At — At/n (10)

es,x,t
where At is the temporal resolution, F; denotes the energy in
the ES unit at time ¢. 7 is the degradation coefficient. PZ , ,
and P, ¢ are the charging and discharging power of ES unit
at ¢, respectlvely. 1¢° and ng® are the charging and discharging
energy efficiency coefficient of ES unit at ¢, respectively.

The aggregate DRP for node = at ¢ can be expressed as:
DRP,; = Z DRPa“+Z DRP,, .+

ZDRP€$t+Z Pges()]

B. Optimal Scheduling Based on SOCP

Based on the above DRP models, the proposed scheduling
model can be formulated as follows.

eaJ,t

Y

£C€9

o, B, CP(PY) 4+ C1(Q%) (12)
DR, < DRP,, (13)
X
P, =P - Pl =U, Zy:(Uy(Gm,yCOS(5z —dy) (14)
+B, ysin(d; — 0y)))
X
Qe=Q% —QL = x%: G ysin(d, — 8, as)
— By yc0s(0; — dy)))
PL =P, + Pl% — DR, (16)
U< U <U (17)
S5 < Saar (18)
1% < S (19)

where C?() and C?() denote the active and reactive power
cost, respectively. Constraint (13) restricts that the actual
demand response is less or equal to the DRP. Constraints (14-
16) express the nodal active and reactive power balance of the
power network. Constraints (17-19) express the voltage and
thermal limits of the power network.

The origianl formulation of the ACOPF problem is non-
convex and NP-hard, to pursue non-convexity and foster higher
computational efficiency, the SOCP convex relaxation tech-
nique to employed. Convex relaxations increase the feasible
space to include the non-convex feasible space.

SOCEP relaxation of the power flow equations involves the
introduction of new variables representing the product of
voltages. Given voltage at node x is represented in rectangular
coordinates as U, = Uy + jUqs, VT € Ny, the squared
voltage magnitude is represented by c,,. New variables c,,
and s., are introduced to represent the real and imaginary
parts of the product of voltages at node x and its conjugate at
node y respectively, Vx,y € Nx. Using these new variables,
the power flow equations (14-15) are changed as (20-21).

X

PS¢ — Pl = 2aGap+ Y (CayGay — SoyBay)  (20)
y#T
X

_szBa:,z + Z(_Cwwa,y - Sa:yGw,y) (21)
y#x

However, the following equality constraints need to be
added to the optimization problem,

*Syz,v{‘jmy} € NL
ny2 + Sa:y2 = Cxxcyyvv{xvy} €ENL

QF - Q=

(22)
(23)

Coy = Cyxy Spy =

where Ny, is the set of lines in the power grid considered.
The addition of the equality constraint (23) makes the new
representation of the power flow equations non-convex. By
changing the equality constraint to an inequality as illustrated
in (24), the power flow equations are a form of SOCP and are
NOW CONvex.

Cay” + Say® < CanCyy, V{z,y} € Ny (24)

Hence, replacing (14-15) with (20-22), the problem is
reformed as (25).

i Cr(PY) 4+ C1(Q%

DR.'c,mPrél}gG7U:c76m ( )+ (Q )

s.t.(13), (16 — 19), (20 — 22), and(24)

IV. CASE STUDIES

The transportation network is simplified from three areas
of Nanjing. The 110kV power grid is built from the real-
world data provided by the State Grid, Nanjing corporation.
The historical EV charging data comes from open access data
in “Telaidian” APP. The number of three types of EVs in
the simulation are 1600, 100, and 70, respectively. The initial
forecasted charging loads are shown as Fig. 2. It can be
observed that the aggregate charging loads reaches the peak
from 18:00 p.m. to 3:00 a.m. the next day. The forecasted
loads of three types of EV are shown as Fig. 3.

(25)

o
Power (kW)

Time (h)
Fig. 2. Forecasted charging loads of electric vehicles.

The profile of aggregate loads before and after scheduling
is shown as Fig. 4. The scheduling redistributes the aggre-
gate flexible loads. However, the uncontrolled charging loads
heavily overlap with other flexible loads such as AC and WH,
leading to severe voltage deviation and network congestion
in the power grid, as is shown in Fig.5. The integration of
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Fig. 3. Forecasted loads of three types of EV.

EV aggravates the voltage deviation, and the voltage deviation
reaches the valley at about 20:00, which is consistent with the
time when the charging load power reaches the peak.

The voltage profile of each node after scheduling is shown
as Fig. 6. The network congestion before and after scheduling
are shown as Fig. 7 and Fig. 8, respectively. It can be seen
that the proposed scheduling method can alleviate voltage
deviation and network congestion, especially for nodes and
transmission lines with unstable operational state.

The influence of the load scheduling on the transportation
network is also analyzed. The hourly average charging queue-
ing time before and after dispatching is shown as Fig. 9. The
result demonstrates the effectiveness of the load scheduling in
reducing charging queueing time.

V. CONCLUSION

Optimal load scheduling in coupled power and transporta-
tion networks plays a vital role towards the secure and
economic operation of power and transportation systems. This
paper proposes a traffic-information-informed EV charging
demand forecasting model to accurately forecast the initial
spatial-temporal distribution of EV charging loads. Further, a
load scheduling optimization model is proposed to determine
the optimal shedding and temporal shifting of EV charging
loads based on the initial distribution of EV loads, as well
as scheduling the operation of energy storage units and other
types of flexible loads, targeted to minimize the average volt-
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Fig. 4. Profile of aggregate loads before and after scheduling.
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Fig. 5. Voltage profile before scheduling.
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Fig. 6. Voltage profile after scheduling.

age deviation of the power network. Case studies are carried
out on a real-world system involving a coupled power and
transportation networks in Nanjing validate the effectiveness
of the proposed method in alleviating the voltage deviation and
network congestion for the power network as well as reducing
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Fig. 7. Network congestion before scheduling.
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Fig. 8. Network congestion after scheduling.

the charging queuing time for the transportation network.
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