
EasyChair Preprint

№ 362

Local Soundness for QBF Calculi

Martin Suda and Bernhard Gleiss

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 20, 2018



Local Soundness for QBF Calculi?

Martin Suda and Bernhard Gleiss

TU Wien, Vienna, Austria

Abstract. We develop new semantics for resolution-based calculi for
Quantified Boolean Formulas, covering both the CDCL-derived calculi
and the expansion-derived ones. The semantics is centred around the
notion of a partial strategy for the universal player and allows us to show
in a local, inference-by-inference manner that these calculi are sound. It
also helps us understand some less intuitive concepts, such as the role
of tautologies in long-distance resolution or the meaning of the “star” in
the annotations of IRM-calc. Furthermore, we show that a clause of any
of these calculi can be, in the spirit of Curry-Howard correspondence,
interpreted as a specification of the corresponding partial strategy. The
strategy is total, i.e. winning, when specified by the empty clause.

1 Introduction

The ongoing interest in the problem of Quantified Boolean Formulas (QBF) has
resulted in numerous solving techniques, e.g. [22, 19, 10, 23, 11], as well as various
resolution-based, clausal calculi [21, 28, 2, 20, 5] which advance our understanding
of the techniques and formalise the involved reasoning.

While a substantial progress in terms of understanding these calculi has al-
ready been made on the front of proof complexity [2, 20, 5–7, 4, 8, 13, 26, 18, 17],
the question of semantics of the involved intermediate clauses has until now re-
ceived comparatively less attention. In many cases, the semantics is left only
implicit, determined by the way in which the clauses are allowed to interact via
inferences. This is in stark contrast with propositional or first-order logic, in
which a clause can always be identified with the set of its models.

In this paper, we propose to use strategies, more specifically, the partial
strategies for the universal player, as the central objects manipulated within a
refutation. We show how strategies arise from the formula matrix and identify
operations for obtaining new strategies by combining old ones. We then provide
the missing meaning to the intermediate clauses of the existing calculi by seeing
them as abstractions of these strategies. This way, we obtain soundness of the
calculi in a purely local, modular way, in contrast to the global arguments known
from the literature, which need to manipulate the whole refutation, c.f. [16,
15, 5]. While the advantage of having a general model theory could be (as in
other logics) immense, modularity in itself is already a very useful property as
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Fig. 1. QBF resolution calculi [6] and their simulation order.

it enables the notion of a sound inference, an inference which can be added to a
calculus without the need to reprove soundness of the whole calculus.

Semantical arguments of soundness have already appeared in the literature,
but so far they only targeted simpler calculi (see “the lower part” of Fig. 1)
and each with a different method. Semantical soundness is straightforward for
Q-Res [24, 27] and can be extended to LD-Q-Res via the notion of a shadow
clause [3] introduced for the purpose of strategy extraction [1]. On the front
of expansion-derived calculi, a translation from QBF to first-order logic [25]
suggests how to interpret derivations of (up to) IR-calc with the help of first-
order model theory [14, 9]. Strategies introduced in this paper provide a single
semantic concept for proving soundness of all the calculi in Fig. 1, including the
expansion-derived calculus IRM-calc and the CDCL-derived calculus LQU+-Res,
covering the remaining weaker calculi via simulations.

We are able to view the above mentioned abstraction as providing a specifica-
tion for a strategy when understood as a program. This relates our approach to
the Curry-Howard correspondence: We can see the specification clause as a type
and the derivation which lead to it and for which a strategy is the semantical
denotation as the implementing program. The specification of the empty clause
can then be read as “my strategy is total and therefore winning.”

Contributions. The main contributions of this paper are as follows.

– We introduce winning strategies for the universal player as the central no-
tion of a new semantics for QBF calculi (Sect. 3). Subsequently, we identify
operations to manipulate and combine strategies and prove them sound in
a semantical and local way (Sect. 4).

– We argue that the inference rules in both CDCL-derived calculi such as
LQU+-Res and the expansion-derived ones including IRM-calc can be seen
as abstractions of operations on strategies (Sect. 5 and Sect. 6).

– A strategy abstracting to the empty clause can be readily used to certify that
the input formula is false. We show that there are small IRM-calc refutations



which only have exponential winning strategies for the universal player in
our formalism (Sect. 7). This opens the question whether there are more
compact representations of strategies that could be manipulated as easily.

2 Preliminaries

A Quantified Boolean Formula (QBF) in the prenex form Φ = Π.ϕ consists of a
quantifier prefix Π and a matrix ϕ. The prefix Π is a sequence of distinct quan-
tified variables Q1v1 . . . Qkvk, where each Qi is either the existential quantifier
∃, in which case vi is called an existential variable, or the universal quantifier
∀, in which case vi is called a universal variable. Each variable is assigned an
index ind(vi) = i. We denote the set of all the existential variables X and the
set of all the universal variables U . The matrix ϕ is a propositional formula. We
say that a QBF Φ is closed if the variables of the matrix var(ϕ) are amongst
V = {v1, . . . , vk} = X ∪̇ U . We will only consider closed QBFs here.

A literal l is either a variable v, in which case it has polarity pol(v) = 1, or
a negation v̄, which has polarity pol(v̄) = 0. We define the variable of a literal
var(l) = v in both cases. We also extend index to literals via ind(l) = ind(var(l)).
By l̄ we denote the complement of a literal l, i.e. l̄ = v if l = v̄ and l̄ = v̄ if l = v.
Accordingly, pol(l̄) = 1− pol(l).

We will be dealing with QBFs with the matrix in Conjunctive Normal Form
(CNF). A clause is a disjunction of literals. A clause is called a tautology if it
contains a complementary pair of literals. A propositional formula ϕ is in CNF
if it is a conjunction of clauses. It is customary to treat a clause as the set of its
literals and to treat a formula in CNF as the set of its clauses.

An assignment α : S → {0, 1} is a mapping from a set of variables S to
the Boolean domain {0, 1}. Whenever S ⊇ var(ϕ), the assignment α can be
used to evaluate a propositional formula ϕ in the usual sense. We say that two
assignments are compatible, if they agree on the intersection of their respective
domains. We denote by σ ‖ τ that σ and τ are not compatible, i.e. that there is
v ∈ dom(σ) ∩ dom(τ) such that σ(v) 6= τ(v).

In the context of a fixed QBF Φ = Π.ϕ, we represent assignments as strings
of literals strictly ordered by the variable index. For example, given a QBF with
prefix Π = ∀x∃y∀u the assignment α = {0/x, 1/u} can be written simply as x̄u.
We introduce the prefix order relation on strings �, where σ � τ denotes that
there is a string ξ such that σξ = τ . An assignment α is called full if dom(α) = V.

3 Policies and Strategies

A QBF is often seen as specifying a game of the existential player against the
universal player who alternate at assigning values to their respective variables
trying to make the formula true (resp. false) under the obtained assignment. In
such a game it is natural to represent the individual moves by literals.

The central notion of our semantics is a strategy, which we obtain as a special
case of a policy. Policies are best understood as (non-complete) binary trees with
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Fig. 2. A tree representation of the policy P from Example 1.

nodes labeled by variables (in an order respecting the index) and edges labeled
by the Boolean values. However, to streamline the later exposition we adopt an
equivalent set-theoretical approach for representing trees in the form of prefix-
closed sets of strings. The correspondence will be demonstrated on examples.

A policy P is a set of assignments such that for every assignment σ and for
every literal l and k

1) σl ∈ P implies σ ∈ P (P is prefix-closed),
2) σl, σk ∈ P implies var(l) = var(k) (P is consistently branching).

The trivial policy Pε = {ε} where ε is the empty string (which stands for the
empty assignment ε : ∅ → {0, 1}), will be in figures denoted by ⊥.

An assignment σ is maximal in P , if σ ∈ P and for every τ � σ if τ ∈ P then
τ = σ. A full assignment α : V → {0, 1} is according to a policy P , also written

P |= α,

if it is compatible with some σ maximal in P . We say that a policy P suggests a
move l in the context σ if σl ∈ P , but σl̄ /∈ P . We say that a policy P branches
on a variable x in the context σ if both σx ∈ P and σx̄ ∈ P .

Example 1. Any full assignment α is according to Pε. On the other hand, there
is no full assignment α according to the empty policy P∅ = ∅.

For the given prefix ∃x∃y∀z consider the policy P = {ε, x, xz, x̄, x̄z̄}. It sug-
gests the move z in the context x and the move z̄ in the context x̄. It does not
suggest a move for the variable x, but it branches on x, and neither suggests a
move for nor branches on y.

Policy P is rendered as a tree in Fig. 2. Each node of the tree corresponds to
a string in P , the root to the empty string ε, and each Boolean value labelling
an edge marks the polarity of the “last” literal in a corresponding string.

The following central definition captures the notion a strategy. A policy P
is a strategy for the universal player if, when both players play according to
P , the universal player wins by making the matrix false. Moreover, a strategy
is winning if the existential player cannot “escape her fate” by ignoring some
moves suggested to her and thus playing out the game in a way for which the
policy does not provide any guarantees to the universal player.



Definition 1. Let us fix a QBF Φ = Π.ϕ. A policy P is a partial strategy for
the universal player, or simply a strategy, if for every full assignment α

P |= α ⇒ α 6|= ϕ.

A strategy P is total or winning, if it is non-empty and does not suggest any
move for the existential player, i.e. whenever it suggests a move l then var(l) ∈ U .

Example 2. Let us consider the false QBF Φ = ∃x∃y∀z.(x∨z)∧(x̄∨z̄). The policy
P from Example 1 is a strategy for the universal player, because xyz, xȳz, x̄yz̄
and x̄ȳz̄, i.e. all the maximal assignments according to P , each make the for-
mula’s matrix false. P is actually a winning strategy, as it is non-empty and does
not suggest a move for either x or y.

Lemma 1. A closed QBF Φ = Π.ϕ is false if and only if there is a policy P
which is a winning strategy for the universal player.

A winning strategy for the universal player is essentially the same object1 as a
Q-counter-model as defined, e.g., by Samulowitz and Bacchus [24]. Thus, since
every false QBF has a Q-counter-model, it also has a winning strategy in the
sense of Definition 1. Complementarily, if there is a winning strategy for the
universal player, the corresponding QBF must be false.

4 Operations on Strategies

Our aim is to give meaning to the clauses manipulated by the various resolution-
based calculi for QBF in terms of partial strategies. Before we can do that,
we equip ourselves with a set of operations which introduce partial strategies
and create new strategies from old ones. Notice that the property of preserving
strategies constitutes the core of a local soundness argument: if a sequence of
operations turns a set of policies that are partial strategies into a total strategy,
we have certified that an input formula must be false.

Axiom: To turn a non-tautological clause C from the matrix ϕ into a partial
strategy PC , we just form the prefix closure of the assignment C̄ falsifying C:

PC =
{
σ | σ � C̄

}
.

PC is obviously a non-empty policy. To check that PC is indeed a partial strategy
we notice it suggests exactly the moves which make C false.

Specialisation: Specialisation is an operation which takes a policy P and adds an
extra obligation for one of the players by suggesting a move. At the same time
the sub-strategy that follows is specialised for the new, more specific context.

Definition 2 (Specialisation). Let P be a policy, σ ∈ P an assignment and
k a literal. We can specialise P at σ with k, provided

1) if σ = σ0l0 for some assignment σ0 and a literal l0 then ind(l0) < ind(k),
2) if there is a literal l1 such that σl1 ∈ P then ind(k) < ind(l1).2

1 For technical reasons, we allow branching on universal variables.
2 Note that l1 may not be unique, but its index is (because of consistent branching).
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Fig. 3. Specialising a policy at x with y.

Under such conditions the specialisation of P at σ with k is defined as

Pσ,k = {ξ | ξ ∈ P, ξ � σ} ∪ {ξ | ξ ∈ P, ξ ‖ σ} ∪ {σkτ | στ ∈ P} .

Conditions 1) and 2) ensure that Pσ,k is a set of assignments. Checking that Pσ,k

is a policy is a tedious exercise. Finally, to see that Pσ,k is a partial strategy
whenever P is, let us consider a full assignment α such that Pσ,k |= α. This
means that α is compatible with some ξ maximal in Pσ,k. Now it is easy to see
that ξ is either also maximal in P or it is of the form σkτ and στ is maximal in
P . In the latter case, since α is compatible with σkτ it is also compatible with
στ . Thus we learn that α 6|= ϕ as we assumed P to be a partial strategy.

Example 3. When viewing a strategy as a tree, specialisation becomes simply
an insertion of a node. In Fig. 3, we specialise the policy P from our running
example at the assignment x (i.e. the upper branch) with the move y. The
resulting strategy P x,y = {ε, x, xy, xyz, x̄, x̄z̄} is visualized in the right tree in
Fig. 3. Note that we are able to insert y at that position, since x < y < z.

Combining: Policies P and Q can be combined if they, at respective contexts
σ ∈ P and τ ∈ R, suggest a move over the same variable v but of opposite
polarity. The combined policy R extends both P and Q in a specific way and
creates a new branching on v at the point where the contexts σ and τ “meet”.
In full generality, there can be more than one such context σi ∈ P and τj ∈ R
and the combined policy caters for every pair (σi, τj) in the described way.

Before we formally define Combining, we need to introduce some auxiliary
notation: We make use of the fact that for any non-empty non-trivial policy
P , all non-empty assignments which are according to P start with the same
variable v (either positive or negated). We can therefore decompose P into the
set containing the empty assignment, the set containing all the assignments of
P which start with v and all the assignments of P which start with v̄.3

Lemma 2 (Decomposition). For every non-empty, non-trivial policy P there
is a unique variable v such that P can be decomposed as

P = Pε ∪̇ v(P v) ∪̇ v̄(P v̄),

3 In the tree perspective, decomposition basically just says that every non-empty tree
has a root node labeled by some variable v and a left and right sub-tree.



where Pε = {ε} is the trivial policy, and for any set of assignments R and a
literal l we define Rl = {σ | lσ ∈ R} and lR = {lσ | σ ∈ R}.

The sets P v and P v̄ are actually policies and at least one of them is non-
empty. We call the variable v the principal variable of P .

Proof. A non-empty, non-trivial policy P contains an assignment l of length one
(P is prefix-closed) and if it contains another assignment of length one k 6= l
then k = l̄ (P is consistently branching). The decomposition then follows. ut

We now formally introduce Combining. The definition is recursive and pro-
ceeds by case distinction.

Definition 3 (Combining). Let P suggest a move l at every context σ ∈ S ⊆
P and Q suggest a move l̄ at every context τ ∈ T ⊆ Q. The combined policy
P [S/T ]Q (the literal l being left implicit) is defined recursively as follows:

– The base case: P [{ε}/{ε}]Q = P ∪Q.
– The corner cases: P [∅/T ]Q = P , P [S/∅]Q = Q, and P [∅/∅]Q = P .4

– For the recursive cases, let P = Pε ∪ vP v ∪ v̄P v̄ and Q = Pε ∪ wQw ∪ w̄Qw̄
be the decompositions of P and Q. We compare the indices of v and w:

• If ind(v) < ind(w), we set

P [S/T ]Q = Pε ∪ v (P v [Sv/T ]Q) ∪ v̄
(
P v̄
[
Sv̄/T

]
Q
)
,

• if ind(v) > ind(w), we set

P [S/T ]Q = Pε ∪ w (P [S/Tw]Qw) ∪ w̄
(
P
[
S/T w̄

]
Qw̄
)
,

• and, finally, if v = w, we set:

P [S/T ]Q = Pε ∪ v (P v [Sv/T v]Qv) ∪ v̄
(
P v̄
[
Sv̄/T v̄

]
Qv̄
)
.

Let us comment on the individual cases and how they relate to each other.
First, because a policy cannot suggest the same move at two distinct but com-
patible contexts, we observe that the contexts in S (and also in T ) must be
pairwise incompatible. Thus if ε ∈ S then, in fact, S = {ε}. This justifies why
the base case only focuses on the singletons. Second, the corner cases are special
in that we do not intend to combine policies for an empty set of contexts S
or T , but they are useful as they make the recursive cases simpler. Finally, to
justify that for the recursive cases we can always assume that the argument poli-
cies are non-empty, non-trivial (and therefore have a decomposition), we notice
that neither the empty nor the trivial policy suggest any move at any context.
Therefore, their presence as arguments is covered by the corner cases.

Example 4. In Fig. 4, we combine a strategy P1 at position x and a strategy
P2 at position ȳ into strategy P3. Note that P1 and P2 are implicitly getting
specialised using ȳ resp. x so that they share a common prefix, i.e. xȳ.
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Fig. 4. An example which combines strategies P1 and P2 into strategy P3.
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Fig. 5. Combining the two strategies on the left into the strategy on the right.

Fig. 5 demonstrates “multiplicative essence” behind combining, where we, in
general, observe how every pair σi ∈ S, τi ∈ T gives rise to an independent
branching over the pivot l.

It should be clear that combining two policies gives a policy. Furthermore,
one can check that whenever P and Q are non-empty, then so is P [S/T ]Q. This
observation will be used in the soundness proof below, but is also important in
its own right. We never want to end up with the empty strategy as the result of
performing an operation as the empty strategy can never be a winning one.

We prove soundness of the Combining operation under the condition that a
pair of involved contexts σ ∈ S and τ ∈ T never disagree on suggesting a move
“along the way” to l. We formalise this intuition by setting for any σ in P

σ/P = {k | τ � σ, τ 6= σ, P suggest k in τ} ,

and defining that P and Q are combinable along S and T if σ/P is compatible
with τ/Q for every σ ∈ S and τ ∈ T .

4 The last is an arbitrary choice.



Lemma 3 (Soundness of Combining). Let P and Q be non-trivial strategies
with S ⊆ P and T ⊆ Q as in Definition 3. Furthermore, let S 6= ∅ 6= T and P
and Q be combinable along S and T . Then for every full assignment α

P [S/T ]Q |= α ⇒ P |= α or Q |= α.

In other words, the Combining operation is sound under the stated conditions.

Proof. Let α be a full assignment such that P [S/T ]Q |= α. This means there is
a maximal ξ ∈ P [S/T ]Q compatible with α. We will show by induction along
the computation of P [S/T ]Q that there is an assignment µ maximal either in P
or in Q such that µ ⊆ ξ. (Here µ ⊆ ξ denotes the subset relation of assignments
understood as functions, i.e. as sets of output/input pairs.) Since µ ⊆ ξ implies
that µ is compatible with α, we obtain either P |= α or Q |= α, as required.

The base case: If ξ is maximal in P [{ε}/{ε}]Q = P ∪ Q, it is either of the
form lξ0 in which case it is maximal in P or of the form l̄ξ0 in which case it is
maximal in Q. In both cases, we just set µ = ξ.

We will not need induction hypothesis for the corner cases, as we maintain
S 6= ∅ 6= T , and will invoke them directly.

For the recursive cases, let P = Pε ∪ vP v ∪ v̄P v̄ and Q = Pε ∪ wQw ∪ w̄Qw̄
be the respective decompositions of P and Q. To be able to use the induc-
tion hypothesis we realise that whenever vσ0/P is compatible with wτ0/Q then
σ0/P

v is compatible with wτ0/Q as well as with τ0/Q
w. (Similarly for v̄ and w̄.)

Moreover, we keep in mind that S = vSv ∪̇ v̄Sv̄ and T = wTw ∪̇ w̄T w̄.
Let us now assume that ind(v) < ind(w). By Lemma 2 at least one of P v and

P v̄ is non-empty. Therefore P v [Sv/T ]Q 6= ∅ or P v̄ [Sv̄/T ]Q 6= ∅, and ξ 6= ε. Let
us now assume, without the loss of generality, that ξ is of the form vξ0 and P v

is non-empty. If Sv = ∅ then P v [Sv/T ]Q = P v and µ = ξ is maximal in P . If,
on the other hand, Sv 6= ∅, there is, by the induction hypothesis, an assignment
µ0 ⊆ ξ0 maximal either in P v or in Q. In the former case we obtain µ = vµ0

maximal in P , in the latter µ = µ0 maximal in Q.
Because the case ind(v) > ind(w) is symmetrical, let us last focus on the case

where v = w. We can proceed analogously and either invoke the corner case or
the induction hypothesis as soon as we realise that ξ 6= ε. A problem could arise
if, out of P v and P v̄, the only non-empty one would be, say, P v (again by appeal
to Lemma 2) while the non-empty one of Qv and Qv̄ would be the “opposite”
Qv̄. Then we would have both P v [Sv/T v]Qv = P v̄ [Sv̄/T v̄]Qv̄ = ∅. However,
that would mean there is σ ∈ S of the form vσ0 and τ ∈ T of the form v̄τ0 such
that P suggests v in ε ≺ σ and Q suggest v̄ in ε ≺ τ . A contradiction with our
assumption that σ/P is compatible with τ/Q. ut

The statement of soundness in Lemma 3 may appear counter-intuitive at
first sight in that it, rather than providing an implication with a conjunction
on the left-hand side, shows an implication with a disjunction on the right-hand
side. This form, caused by our focus on the universal player, is, however, what
we need here. Intuitively, we ultimately obtain a winning strategy, which can for
each play provide a clause from the input matrix that has been made false.



(Axiom){
lτ

x
C | l ∈ C, x = var(l), x ∈ X

}
C ∈ ϕ is a non-tautological clause and τxC =

{
k̄ | k ∈ C, var(k) ∈ U<x

}
.

{xτ∪ξ} ∪ C1 {x̄τ∪σ} ∪ C2
(Resolution)

instσ(C1) ∪ instξ(C2)

dom(τ), dom(ξ), dom(σ) are mutually disjoint and rng(τ) ⊆ {0, 1}.

C ∪ {lµ} ∪ {lσ}
(Merging)

C ∪ {lξ}

dom(µ) = dom(σ) and ξ = {µ(u)/u | µ(u) = σ(u)} ∪ {∗/u | µ(u) 6= σ(u)} .

C (Instantiation)
instτ (C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 6. The rules of the expansion-derived calculus IRM-calc.

5 Local Soundness of Expansion-derived Calculi

Let us recall the expansion-derived (also called instantiation-based) calculi for
QBF [5]. These operate on annotated clauses, clauses consisting of literals with
annotations. An annotation can be described as a partial mapping from variables
to {0, 1, ∗}. We will treat them analogously to assignments.

An annotated literal lσ consists of a literal l over an existential variable
var(l) = x and, as an annotation, carries an assignment σ with rng(σ) ⊆ {0, 1},
resp. {0, 1, ∗} in the case of IRM-calc, and with dom(σ) ⊆ U<x , where

U<x = {u ∈ U | ind(u) < ind(x)}

denotes the set of the universal dependencies of x ∈ X . An annotated clause is a
set of annotated literals. An auxiliary instantiation function instτ (C) “applies”
an assignment τ to all the literals in C maintaining the above domain restriction:

inst τ (C) =
{
l(στ)�U<

x | lσ ∈ C and var(l) = x
}
.

Fig. 6 describes the rules of the most complex expansion-derived calculus
IRM-calc. One obtains IR-calc by dropping the Merging rule, which is the only
rule introducing the value ∗ into annotations.5 Moreover, ∀Exp+Res combines
Axiom with Instantiation to obtain “ground” annotated axioms in the first step.

5 There is also a simpler way of describing the Resolution rule for IR-calc, which does
not rely on inst. However, the presentation in Fig. 6 is equivalent to it.
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Fig. 7. A strategy P for the prefix ∃w∀x∃y∃z.

In other words, for any conclusion C of the Axiom rule as stated in Fig. 6 and
any substitution τ with dom(τ) = U and rng(τ) ⊆ {0, 1}, instτ (C) is an Axiom
in ∀Exp+Res. Standalone Instantiation is then not needed in ∀Exp+Res.

5.1 Local Soundness for IR-calc

We start by providing semantics to the clauses of IR-calc and proving local
soundness of this calculus. This, while not being the most general result, allows
us to explain the key concepts in the cleanest way.

Our plan is to equip ourselves with an abstraction mapping which turns a
partial strategy into an IR-calc clause and, in particular, any winning strategy
into the empty clause. We then show that IR-calc is sound by considering its
inferences one by one and observing that whenever there are strategies which
abstract to the premises of an inference, there is a sound operation on the strate-
gies (in the sense of Sect. 4) the result of which abstracts to its conclusion.

Definition 4 (IR-calc abstraction). The IR-calc abstraction of a policy P is

AIR(P ) =
{
l(σ�U) | P suggests a move l̄ in the context σ, var(l) ∈ X

}
.

We can see that AIR(P ) records the moves suggested for the existential player
as literals and the presence of universal variables in the corresponding contexts
as annotations. AIR(P ) is understood as a clause, i.e. as a formal disjunction.

Example 5. Consider the strategy P visualized in Fig. 7. We have AIR(P ) =
ȳ1/x ∨ z̄1/x ∨ y. Note that the first two literals of the clause correspond to the
upper branch of P , while the third literal corresponds to the lower branch. Also
notice how the branching on w is abstracted away in AIR(P ).

Axiom: It is easy to see that the IR-calc Axiom corresponding to C is actu-
ally AIR(PC), where PC is the axiom strategy corresponding to C as defined
in Sect. 4. Notice that PC does not forget the universal literals past the last
existential one, which cannot be restored from the corresponding IR-calc axiom.



Example 6. Consider a formula ∃x∀u∃y∀v.ϕ, where ϕ contains a clause C =
x∨u∨ȳ∨v. The Axiom strategy corresponding to C is PC = {ε, x̄, x̄ū, x̄ūy, x̄ūyv̄}.
Furthermore, we have

AIR-calc(P
C) = x ∨ ȳ0/u,

which is exactly the Axiom IR-calc introduces for C.

Instantiation: The Instantiation inference in IR-calc takes a clause C and τ , an
assignment to some universal variables with rng(τ) ⊆ {0, 1}, and derives

inst τ (C) =
{
l(στ)�U<

x | lσ ∈ C and var(l) = x
}
.

We show that Instantiation of clauses corresponds to Specialisation of strategies.

Lemma 4. Let P be a partial strategy and τ an assignment with dom(τ) ⊆ U
and rng(τ) ⊆ {0, 1} as above. Then there is a partial strategy Pτ which can be
derived from P by a sequence of Specialisation operations such that

inst τ (AIR(P )) = AIR(Pτ ).

Proof (Sketch). We start working with P and modify it in several steps, denoting
the intermediate strategy P ′ (as if it was a variable in an imperative program-
ming language). We take the bindings l from τ one by one and for each modify
P ′ by consecutively specialising it with l at every context σ ∈ P ′ for which it is
allowed (in the sense of Definition 2). This, in particular, means we skip those
contexts at which P ′ already suggests a move for var(l). ut

Resolution: The Resolution inference in IR-calc can be defined as:

C0 ∪ {lτ} D0 ∪ {l̄τ} .
C0 ∪D0

Our aim is to simulate resolution of clauses as combining of strategies. We will
succeed provided IR-calc does not derive a tautology and, in some cases, our new
strategy will be actually stronger than what IR-calc is allowed to believe.

Lemma 5. Let C = C0 ∪ {lτ} and D = D0 ∪ {l̄τ} be IR-calc clauses. For every
partial strategy PC and PD such that C = AIR(PC) and D = AIR(PD) if C0∪D0

does not contain a complementary pair of literals then there exists a partial
strategy P obtained as a combination of PC and PD over the literal l such that

AIR(P ) ⊆ C0 ∪D0.

Proof (Sketch). Let us define

S =
{
σC | PC suggests l̄ at σC and (σC � U) = τ

}
,

T = {σD | PD suggests l at σD and (σD � U) = τ} .
(1)

and set P = PC [S/T ]PD.
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Fig. 8. A Combining operation which cannot be captured exactly by IR-calc.

To see that P is indeed a partial strategy we appeal to Lemma 3. Since
lτ ∈ AIR(PC) we obtain S 6= ∅ and similarly for l̄τ ∈ AIR(PD) and T 6= ∅.
Furthermore, to see that PC and PD are combinable along S and T , let us, for
the sake of contradiction, assume that there is a σC ∈ S and σD ∈ T such that
σC/PC and σD/PD are not compatible. This means that PC suggests a move k
at some context τC ≺ σC and PD suggests a move k̄ at some context τD ≺ σD,
with var(k) ∈ X . However, this contradicts our assumption that C0∪D0 does not
contain a complementary pair of literals, because it implies that kτ0 ∈ AIR(PC) =
C0 and k̄τ0 ∈ AIR(PD) = D0 for the unique τ0 = (τC � U) = (τD � U). This
verifies the assumptions of Lemma 3.

The second part of our claim, i.e. AIR(P ) ⊆ C0 ∪ D0, is, similarly to the
proof of Lemma 3, shown by induction along the computation of PC [S/T ]PD.
Formally, we check there that

AIR(PC) ∪ AIR(PD) ⊇ AIR(PC [S/T ]PD),

and, moreover, that whenever S and T are defined by the comprehensions (1)
then AIR(PC [S/T ]PD) ∩ {lτ , l̄τ} = ∅, i.e. all the occurrences of the pivot get
eliminated from the abstraction of the combined strategy. ut

Example 7. Given a prefix ∃x∃y∃z, let us consider strategies P1, P2 as visualized
in Fig. 8 and the corresponding IR-clauses AIR(P1) = C1 = y ∨ z and AIR(P2) =
C2 = ȳ. Resolving the two clauses in IR-calc over the pivot y generates the clause
C = z. In contrast, combining the strategies P1 and P2 yields the strategy P3

visualized in Fig. 8, which abstracts to the clause AIR(P3) = ⊥. Note that C
contains the literal z, which does not appear in AIR(P3). We thus observe that
the resolution operation may strictly over-approximate the combine operation.

Example 7 reveals that it is not always the case that AIR(P ) = C0 ∪D0, as
our abstraction can sometimes become stronger than what the calculus realises.
To formally capture this discrepancy, we extend our exposition by one additional



“twist”, which we will bring to much greater use below when providing analo-
gous semantics for IRM-calc and LQU+-Res. Namely, we will use our abstraction
mapping to provide a simulation relation between the clauses of a calculus and
partial strategies. In the case of IR-calc here, we define

C ∼IR P ≡ C ⊇ AIR(P ).

Now we just need to reprove Lemma 5 under the assumptions C ∼IR PC
instead of C = AIR(PC) (and similarly for D and PD). This is straightforward
if we recall the corner cases of the combining operation on strategies. Here, we
can resolve over a pivot “which is not there” by simply reusing as P the strategy
corresponding to such vacuous premise and calling it the result. It can be seen
that this way we obtain an AIR(P ) that is a subset of C0 ∪D0 as required.

5.2 What Needs to Be Done Differently for IRM-calc?

The IRM-calc extends IR-calc by allowing for the ∗ value in annotations that
is obtained by Merging together literals lµ and lσ which do not fully agree in
their respective annotations, i.e. µ ‖ σ.6 This is complemented by a more general
version of Resolution, which behaves as “unifying” the annotations of the pivots
while treating opposing ∗ as non-unifiable (recall Fig. 6).

While we do not show it here in full detail due to lack of space, we claim
that the ∗ of IRM-calc does not, per se, carry any logical meaning, but simply
provides a commitment of the calculus to resolve away the involved literals in
a specific way. In other words, it is always sound to set a binding to ∗ in an
annotation (even for a previously “unbound” universal variable).

We say that an annotation σ∗ is a ∗-specialisation of an annotation σ if for
any u ∈ dom(σ∗) whenever σ∗(u) 6= ∗ then σ∗(u) = σ(u) .

Definition 5 (IRM-calc Simulation Relation). We say that an IRM-calc
clause C is simulated by a strategy PC , written C ∼IRM PC , if

for every lσ ∈ AIR(PC) there is lσ
∗
∈ C s.t. σ∗ is a ∗-specialisation of σ.

Analogously to Lemma 5, we can simulate IRM-calc Resolution via the Com-
bining operation on strategies. The l moves of the pivot literals in the premise
strategies are not in general suggested at “universally identical contexts” (c.f. (1)
from the proof of Lemma 5), but at compatible contexts nevertheless, because
of unifiability of the corresponding IRM-calc pivots.

6 Local Soundness for CDCL-derived Calculi

Fig. 9 presents the rules of LQU+-Res, the strongest CDCL-derived calculus we
study in this paper. It combines the ∀-Red rule common to all CDCL-derived

6 We actually do not need the usually stated assumption dom(µ) = dom(σ).



(Axiom)
C

C is non-tautological clause from the matrix.

D ∪ {u}
(∀-Red)

D

Literal u is universal and ind(u) ≥ ind(l) for all l ∈ D.

C0 ∪ {v} D0 ∪ {v̄}
(Res)

C0 ∪D0

Whenever l ∈ C0 and l̄ ∈ D0 for a literal l then var(l) ∈ U and ind(l) > ind(v).

Fig. 9. The rules of the most general CDCL-derived calculus LQU+-Res.

calculi with a particular resolution rule Res, the pivot of which can be any
variable v ∈ V. Notice that LQU+-Res is allowed to create a tautology, provided
the new complementary pair is universal and has an index greater than the
pivot. We will learn that these tautologies are never logically vacuous – in the
corresponding strategy the complementary pair is “separated” by the pivot.

The ∀-Red rule is extra-logical from the perspective of our semantics. It does
not correspond to any operation on the side of the interpreting strategy, which
stays the same. We resolve this nuance by providing an abstraction which exposes
a strategy as a fully ∀-reduced clause, but we allow for non-reduced clauses in
derivations via our simulation relation. We start with an auxiliary definition.

We say that a context σ is universally trailing in a policy P , if for every
τ � σ if P suggests a move l in τ then var(l) ∈ U .

Definition 6 (LQU+-Res Abstraction and Simulation). The LQU+-Res
abstraction ALQU+ of a policy P and the simulation relation ∼LQU+ between a
LQU+-Res clause and a policy are defined, respectively, as follows:

ALQU+(P ) =
{
l | P suggests l̄ in σ and σ is not universally trailing in P

}
,

C ∼LQU+ P ≡ C ⊇ ALQU+(P ).

Let us now show that ∼LQU+ is indeed a simulation of LQU+-Res derivations
in terms of operations on partial strategies.

Axiom: Let PC be the axiom strategy corresponding to C ∈ ϕ as defined in
Sect. 4. One can check that ALQU+(PC) is the ∀-reduct of C and we thus have
C ∼LQU+ PC because a reduct only possibly removes literals.

∀-Red: As discussed above, the ∀-Red is simulated by the identity mapping on
the side of strategies. To see this is always possible we just realise the following.



Lemma 6. Let a policy P suggest a move l̄ in context σ which is not universally
trailing in P . Then there is a literal k ∈ ALQU+(P ) such that ind(k) > ind(l).

Example 8. Let us work in the context of Π = ∃x∀u∃y. LQU+-Res can derive
the clause C = u ∨ y by resolving the axioms x̄ ∨ u and x ∨ y over the pivot
x. Notice that C cannot be ∀-reduced. At the same time, the corresponding
strategy P = {ε, x, xū, x̄, x̄ȳ} records that x is a universally trailing context and
its abstraction ALQU+(P ) = {y} does not contain u.

Resolution: Both the possibility of a universal pivot and the creation of tautolo-
gies can be uniformly handled on the side of strategies.

Lemma 7. Let C = C0∪{v} and D = D0∪{v̄} be the premises of a LQU+-Res
Resolution inference. Furthermore, let PC and PD be partial strategies such that
C ∼LQU+ PC and D ∼LQU+ PD. Then there exists a partial strategy P obtained
as a combination of PC and PD over the literal v̄ such that

(C0 ∪D0) ∼LQU+ P.

Proof (Sketch). Analogously to the proof of Lemma 5 we define

S = {σ | PC suggests v̄ in σ and σ is not universally trailing in PC} ,
T = {τ | PD suggests v in τ and τ is not universally trailing in PD} .

and set P = PC [S/T ]PD. ut

7 Winning Strategies are Worst-Case Exponential for
IRM-calc Proofs

There is a family of QBFs which do not have polynomial winning strategies
in the sense of Definition 1, but do have polynomial IRM-calc refutations. This
has two main consequences: 1) It is not possible to design an algorithm which
generates winning strategies from IRM-calc refutations such that the strategies
are polynomial in the size of the refutation. 2) We cannot use partial strategies
as a calculus for polynomially simulating IRM-calc.

Example 9. For every natural n consider the false formula

Fn := ∃e1 . . . en∀u1 . . . un.
∨
i

(ei = ui).

If P is a winning strategy for the universal player on Fn, it needs to assign ui
to 1 if and only if the existential player assigns ei to 1. In order words, P needs
to branch on every ei. Therefore, each ei doubles the number of branches of P
from which we conclude that the size of P is exponential in n.
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Fig. 10. A refutation of C(Fn) from Example 9.

We clausify Fn using Tseitin-variables t1, . . . , tn for the disjuncts and use De
Morgan’s laws for the negated equivalences. This gives the following formula:

C(Fn) := ∃e1 . . . en∀u1 . . . un∃t1 . . . tn. (t1 ∨ · · · ∨ tn)

∧ (e1 ∨ u1 ∨ t1) ∧ (e1 ∨ u1 ∨ t1)

...

∧ (en ∨ un ∨ tn) ∧ (en ∨ un ∨ tn)

Now consider the IRM-calc refutation of C(Fn) shown in Fig. 10. The proof starts
from the clause C := t1 ∨ · · · ∨ tn and contains n auxiliary sub-proofs where the

i-th sub-proof resolves the axiom clauses ei ∨ ti
0/ui and ei ∨ ti

1/ui over the pivot

ei followed by a merge, which results in a unit Di = ti
∗/ui . The proof proceeds

by resolving C with the clauses D1, . . . , Dn using trivial resolution, i.e. the first
resolution step resolves C with D1 to get a clause C1, and any other of the
i resolution steps resolves Ci−1 with Di to get Ci. Each Ci contains exactly
the literals ti+1, . . . , tn annotated with (∗/u1, . . . , ∗/ui). In particular, the n-th
resolution step results in the empty clause.

The proof has 2n inferences and is therefore linear in the size of n.

8 Conclusion and Future Work

We showed how partial strategies can be used as the central semantic objects
in QBF. We identified operations which manipulate and combine strategies and
proved their soundness in a local, modular way. Furthermore, we described how
existing state-of-the-art calculi can be seen to operate on abstractions of these
strategies and clarified the local semantics behind their inferences.

While a general model theory does not need to be computationally effective to
be useful, in the case of QBF the computational aspects pertaining to strategies
seem of great practical importance. Our paper opens several streams of future



work along these lines: 1) We intend to combine the operations on strategies
presented in this work with the solving-algorithm from [10], which uses strategies
directly in the solving process. 2) We would like to use the obtained insights to
derive a uniform calculus which polynomially simulates both IRM and LQU+-
Res. 3) Continuing the direction of Sect. 7, we would like to clarify whether
the exponential separation between strategies and refutations can be extended
from IRM-calc to IR-calc or even to ∀Exp+Res. 4) We want to generalise our
strategies by using more expressive data structures. In particular, we would like
to see whether the operations we identified can be extended to BDDs, i.e. to
a representation in which strategies are fully reduced and merged. We envision
that doing so could yield a polynomial strategy extraction algorithm for IRM-calc
which produces much simpler strategies than existing algorithms.
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