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Abstract—Power systems sometimes experience various types
of faults, and fault location in power systems has become
increasingly complex with the growing complexity of distribution
networks and the diversity of measurement data. This paper
proposes a fault location method for power systems based on a
Graph Convolutional Neural Network (GCN) and incorporates
an attention mechanism to further improve the accuracy and
stability of fault location.

By collecting real power grid data, fault data is simulated
for model training and testing. Measurement points are treated
as nodes in the graph, and node connections are constructed
based on the power grid structure. The GNN is used to interact
node information, while a Transformer model with an attention
mechanism aggregates and predicts the information. Additionally,
the paper compares the proposed model with several existing
methods, demonstrating the accuracy and stability of the model
for fault location in power systems.

Index Terms—GCN, Transformer, Fault Location, Power Sys-
tem, Deep Learning

I. INTRODUCTION

Power systems are sometimes threatened by various faults,
leading to power outages that can cause significant economic
losses. Therefore, it is crucial to accurately locate and swiftly
clear faults after they occur to ensure the rapid restoration
of the power system. The DC control and protection system
is a key component in maintaining the stable operation of
power systems. Fault location in power systems has long
been a challenging problem. To address this issue, several
computational methods based on power systems have been
proposed. Traditional fault location methods in distribution
networks mainly include approaches based on voltage sags
[1], impedance [2], traveling waves [3], and automatic outage
mapping [4]. These methods primarily rely on voltage and cur-
rent measurements to estimate fault impedance and location.
While these traditional methods have their advantages, they
cannot effectively integrate measurement data from different
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buses, limiting their ability to leverage diverse observation
data. Moreover, these methods often have stringent data
requirements and struggle with missing data. Additionally,
they are difficult to apply to complex grid topologies due
to the challenges in modeling such intricate structures and
incorporating grid topology information.

To address the limitations of traditional methods in these
scenarios, several machine learning approaches have been
introduced for fault location in power systems, such as hybrid
models of Principal Component Analysis (PCA) and Support
Vector Machines (SVM), PCA combined with Random Forest
(RF), and Multi-Layer Perceptron (MLP). Thukaram et al. first
used SVM to classify fault types and then employed Artificial
Neural Networks (ANN) to identify fault locations [5]. Aslan
et al. used spectral characteristics measured after the fault and
input feature-extracted data into an ANN for fault location
[6]. Although these machine learning methods have improved
accuracy compared to traditional approaches, they still struggle
to model the topology of distribution networks and are difficult
to apply across different power system topologies.

As power systems become increasingly complex, the vol-
ume of related data metrics has also grown substantially,
making it difficult for traditional methods to address fault
location in large-scale power systems. In recent years, with
the rapid advancement of computational power, deep learn-
ing methods have been widely applied across various fields,
particularly in solving and optimizing problems in complex
data scenarios. Due to its strong generalization capabilities
and ability to handle complex data, deep learning has also
been gradually applied to fault location in power systems.
De Freitas et al. proposed a novel fault location method
for power distribution systems using a Gated Graph Neural
Network (GGNN) to handle the non-uniform features and
unique topological structures of distribution networks, offering
strong generalization across different grid topologies [7]. Chen
et al. introduced a new Graph Convolutional Network (GCN)-



based method to address fault location in power systems
[8]. This approach utilizes multiple measurement data points
and considers the system’s topology, improving fault location
accuracy and adapting to different system topologies and noise
conditions.

Based on the above discussion, most research on fault
location in power systems applies deep learning methods
through graph networks. Graph networks are naturally suited
to the complex topology of power systems and have strong
expressive power for distribution networks. They can fully
leverage the topological information of power systems and
harness the potential of vast amounts of power system data
for fault location. Building on previous research, this paper
combines Graph Convolutional Neural Networks (GCN) in
deep learning with expert knowledge bases and attention
mechanisms to further enhance the accuracy and generalization
of deep learning methods for fault location and decision-
making in power systems.

II. METHODOLOGY

This paper primarily leverages the measured parameters
of power systems and their network topology to construct
a graph network, and the overall model flowchart is shown
in Figure 1. The measured electrical parameters are treated
as nodes in the graph, with CNNs used to extract features
from the measurement values as node attributes. Edges are
created between nodes based on the distribution network
structure. A Graph Convolutional Neural Network (GCN) is
then used to train and infer from the graph data representing
the power system. Finally, the node attributes after graph
convolution are aggregated using a Transformer model based
on an attention mechanism, yielding the fault location results
for the distribution network.
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Fig. 1. The overall model flowchart.

A. DataSet

In order to train the model used in this paper, real distri-
bution network structure and parameter data were collected.
However, since faults occur rarely in real-world scenarios, the
collected fault data is insufficient to support model training.
Therefore, in addition to the collected real fault data, Matlab
was used to simulate the real distribution network structure
and generate a large amount of fault data under these simulated
network conditions. The simulated fault data, combined with

the real fault data, were used together as the training and
testing sets for the model. A simple simulation network based
on Matlab is shown in Figure 2. Approximately 300 real fault
data points were collected, and around 7,000 fault data points
were generated through simulation. These were divided into a
test set and a training set in a 2:8 ratio for model training and
inference.

Fig. 2. Matlab Simulation Network Structure

B. Graph Presentation

In order to process fault data using a graph network, the
fault data must first be represented as a graph. First, faults
are automatically generated and the current, voltage, and
other data from the distribution network are measured. These
measurement points are treated as nodes in the graph, and
CNN is used to extract features from these measurements as
node attributes, which also helps eliminate the influence of
different units between measurements.

Based on some existing studies [9], this paper designs the
CNN structure for feature extraction, as shown in Table I.
Assuming the input measurement data on the nodes is of
size (N, 1), after feature extraction through the convolutional
layers, a node feature vector of size (500, 1) is obtained as
the node attribute.

TABLE I
CONVOLUTION LAYER STRUCTURE

Layer Name Number of
Filters Filter Size Stride

Conv1D 64 16 1
MaxPool1D - 2 2
Conv1D 128 16 1
MaxPool1D - 2 2
Conv1D 32 8 1
MaxPool1D - 2 2
Conv1D 32 8 1
Conv1D 16 4 1
Flatten to 0D - - -
FC 500 - -
FC 500 - -
FC 500 - -

For the edges in the graph, the nodes are connected based on
the connections in the distribution network’s topology, thereby



constructing the graph’s edges. In this way, the fault data is
transformed into input data represented by a graph structure.

C. GCN

After constructing the nodes and edges in the graph, this
paper employs a Graph Convolutional Neural Network (GCN)
to facilitate information interaction within the graph.

In recent years, GCN have achieved significant progress,
with various applications demonstrating their great potential in
handling non-Euclidean structured data. For example, Zhao et
al. used spatio-temporal graph neural networks to model traffic
road networks as graph structures for predicting traffic flow,
density, and speed [10]; Qi et al. applied GNN and LSTM
to predict PM2.5 levels, treating detection stations as nodes
and using the spatial distances between them to define the
adjacency matrix and construct the graph [11]. In the field of
power systems, many studies have also applied GNN for fault
location. Building on this research, this paper abstracts fault
data into a graph structure and uses GCN to perform the fault
location task.

GCN Pooling

Input GNN Output

Fig. 3. The structure of the GCN model.

The main process of graph convolution is shown in Equation
1. By performing the graph convolution operation according
to this equation, information interaction within the graph can
be achieved, resulting in a deeper representation of the graph’s
information. The overall process is illustrated in Figure 3.

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(1)

where H(l), H(l+1) ∈ RN×D represent the node feature
matrices at layers l and l+1 in the graph convolutional layer,
respectively. Ã = A + IN is the adjacency matrix, with the
identity matrix IN added to prevent zero elements on the
diagonal of the adjacency matrix. D̃ is the degree matrix of
the adjacency matrix, used for normalization. W (l) represents
the learnable parameters, and σ(·) is the activation function.

D. Transformer

After completing the graph convolution, the attributes of
the nodes and edges in the graph are obtained. This paper
uses a Transformer model based on the attention mechanism

to aggregate the information in the graph and obtain the final
fault location information.

Transformer, proposed by Vaswani et al. in the field of
Natural Language Processing (NLP), is a self-attention-based
model that overcomes the limitations of traditional Recurrent
Neural Networks (RNNs) in handling sequential data [12]. It
improves the model’s parallelization capabilities and has led to
significant performance improvements in related tasks. Beyond
its applications in NLP, the advantages of the model have
also made it highly successful in the image domain, providing
inspiration for applying this structure to the fault location task
in this paper [13].

The Transformer structure mainly consists of three compo-
nents: self-attention, feed-forward neural networks, and layer
normalization. First, the attention scores are calculated, as
shown in Equation 2.

Q = WQ ∗X,K = WK ∗X,V = WV ∗X

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

(2)

where dk is the dimension of the vectors, X is the node
feature matrix, and WQ,WK ,WV are the learnable parameter
matrices.

Then, a feed-forward neural network is used to perform a
nonlinear transformation on the attention value sequence. The
transformation relationship is shown in Equation 3.

FFN(x) = GELU (xW1 + b1)W2 + b2

GELU(x) = 0.5x
(
1 + tanh

[√
2/π

(
x+ 0.044715x3)]) (3)

Finally, layer normalization is applied to process the se-
quence data, as shown in the equation4.

µ(l) =
1

n(l)

n(l)∑
i=1

z
(l)
i

σ(l)2 =
1

n(l)

n(l)∑
k=1

(
z
(l)
i − µ(l)

)2

z̃(l) =
z(l) − µ(l)

√
σ(l) + ϵ

⊙ γ + β ⇐ LNγ,β

(
z(l)

)
(4)

where z(l) is the input of the neurons at layer l, with a
dimension of n(l). µ(l) and σ(l) are the mean and variance,
respectively. γ and β are the learnable parameter vectors for
scaling and shifting, and ϵ is a small constant added to prevent
division by zero.

This paper aggregates the graph attribute information after
graph convolution using the Transformer model, replacing
the pooling operation typically found in graph convolution,
effectively extracting information from the graph and further
improving the accuracy of fault location.

III. RESULTS AND DISCUSSION

This paper uses a simulated fault data set to train and
test the model, obtaining fault location information in the
power system. It also replicates some existing studies that



employ traditional methods and deep learning approaches for
fault location in power systems, comparing their results with
those of the proposed model to demonstrate the improvements
achieved in fault location. Additionally, the paper analyzes
and discusses some experimental results, highlighting the
significant potential of applying deep learning methods in the
field of fault location in power systems.

A. Experiments Procession

The model in this paper is built on the TensorFlow platform
and runs on a system equipped with an Intel(R) i9-9900KF
CPU and an NVIDIA GeForce RTX 2080 Ti GPU for training.
During training, the batch size is set to 64, and the Adam
optimizer is used with an initial learning rate of 0.0001 and a
decay factor of 0.3. The loss function employed is the average
negative log-likelihood, with the number of training epochs set
to 100. The training process is illustrated in Figure 4.

Fig. 4. Loss curve within training procession.

B. Experiment Results

The fault location model in this paper is essentially a
classification task model, where the information for earthquake
location is determined by whether a fault occurs at a specific
position in the graph. For classification tasks, accuracy is
used for evaluation. To demonstrate the effectiveness of the
proposed model for fault location in power systems, the actual
results are compared with those of other models. Under the
same dataset conditions, the accuracy of different methods for
the fault data test set is calculated, and the results are shown
in Table II.

In the comparative methods reproduced in this paper, there
are both traditional approaches, such as SVM and RF, as
well as deep learning methods like ANN and GCN. From
the comparison results, it can be observed that all methods,
when using the same test set, have accuracy for traditional
fault location methods in the range of approximately 83 85%,
while deep learning methods achieve over 90% accuracy.
Furthermore, compared to Chen et al.’s GCN method, the

TABLE II
MODEL PERFORMANCE COMPARISON

Methods Precision
SVM 83.43 %
RF 83.57%
ANN 85.38%
GCN 91.65%
Paper Method 92.73%

GCN+Transformer approach adopted in this paper also shows
a certain degree of improvement in fault location accuracy.

Although the proposed method does not show a significant
improvement in accuracy compared to other GCN-based fault
location methods, this paper also compares the performance of
both methods in terms of stability. The current GCN methods
heavily depend on the accuracy of the data. To test the stability
of the methods, this paper processes the fault data set by
masking some measurement values from a set of fault data,
effectively constructing incomplete fault data. The results of
the comparison under these conditions are shown in Figure 5.

Fig. 5. Stability Comparison. The x-axis represents the completeness of the
data after masking, while the y-axis represents the accuracy.

The comparison results indicate that the method proposed in
this paper is more prominent in terms of stability compared to
other GCN methods. In real fault scenarios, it is possible that
complete measurement data cannot be obtained, which tests
the model’s stability. In such cases of data absence, the model
should still be capable of making accurate location estimates.
By masking the data to simulate the real-world scenario of
data loss and using the model for location estimation, we can
evaluate the model’s stability. The results show that the model
in this paper can still provide accurate location estimates even
in scenarios with data loss, demonstrating its stability.

IV. CONCLUSION

This paper primarily studies the application of deep learning
methods in the problem of fault location in power systems.
First, a large amount of fault data is generated through
simulation based on collected real data. The dataset is then rep-
resented as a graph structure, with measurement data as nodes



and the relationships between edges constructed according to
the actual distribution network structure. After representing
the data as a graph structure, this paper proposes using the
GCN+Transformer method for location estimation.

Upon obtaining the results, a comparison is made with exist-
ing fault location methods, revealing that the proposed method
shows an improvement in accuracy over current approaches.
Additionally, the proposed method is compared with other
GCN-based fault location methods to test the model’s location
accuracy in scenarios with data loss. The results demonstrate
that the model proposed in this paper exhibits better stability
and can be more effectively applied in real-world situations
involving data absence.
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