
EasyChair Preprint
№ 7733

The Cost of Time Virtualization in Linux
Containers

Xavier Merino and Carlos Otero

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 6, 2022

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

The Cost of Time Virtualization in Linux Containers

Xavier Merino
Dept. Computer Engineering and Sciences

Florida Institute of Technology
Melbourne, FL, USA

xmerino2012@my.fit.edu

Dr. Carlos E. Otero
Dept. Computer Engineering and Sciences

Florida Institute of Technology
Melbourne, FL, USA

cotero@fit.edu

Abstract— With the advent of containerization, applications
are subjected to a dynamic operating model that requires them to
be deployed in ever-changing environments, restarted, updated,
migrated, and even rolled back to previously working versions on
a frequent basis. Because there are no strict guarantees on host
placement or scheduling, an application may be restarted in a new
host or at a later time, thereby losing their sense of time and
refusing service owing to incongruent states. Until now, process
time has been linked to a server. With the recent introduction of
the Linux time namespace, it is now feasible to link time to a
service. Processes under a time namespace can obtain a timeline
of their own, irrespective of the host. Support for the time
namespace is currently lacking in the most popular container
engines. In this work, we present a workflow for building
containers that leverage the time namespace, as well as the first
analysis on the performance cost incurred by virtualizing time in
Linux containers using this namespace. We consider 11 time-
related system calls and their vDSO variants, making this one of
the most comprehensive studies on the overhead of time
virtualization in the literature.

Keywords—virtual time, containers, microservices,
virtualization, namespaces

I. INTRODUCTION
Virtual time is defined as a technique for organizing

distributed systems using a temporal coordinate system that is
more computationally relevant than real time since it supports
mechanisms for synchronization and concurrency control [1].
Virtual time does not have to be connected to real time; in fact,
it is possible to have numerous local virtual clocks that are only
weakly synced and all progressing toward higher virtual times.
They may occasionally jump backwards, but the general trend is
for them to be monotonic. When it comes to virtual time,
multiprocessing systems and distributed systems have some
similarities [2], and each process and action can be described by
the temporal coordinates (𝑥, 𝑡), where 𝑥 is the process and 𝑡 is
the instant in its virtual time. In the absence of virtual time, all
processes share the host's chronology.

To a limited extent, all Linux processes are already under
virtual time. After all, the Linux Completely Fair Scheduler
(CFS) introduces the concept of virtual runtime [3] (i.e., a
measure of the runtime of a thread) for scheduling purposes [4].
Because the aim of CFS' virtual time is to improve the
performance of interactive processes in desktop systems [5], it
is not intended to reach beyond the confines of a host. Today,
however, microservices are designed to be loosely coupled and
scalable, with the ability to make use of disposable resources in

dynamically provisioned settings. As a result, applications are
typically divided into smaller components that are frequently
restarted, updated [6], migrated [7], and even rolled back to
previously well-known versions [8]. This modern operating
model requires processes to be dynamically scheduled and there
are no guarantees that a process, once halted, will resume in the
same host or within a specified time frame. At migration time, a
new process is created on the receiving host, and CFS’s virtual
time notion is insufficient to prevent the process from believing
that it has advanced or regressed in time. This may lead to
service refusal due to an incongruent perception of system time
[9] or a network timeout. This is because the concept of time is
linked to a server rather than a service.

The concept of virtualizing time for each process is not new.
One of the earlier attempts to merge some code into the Linux
kernel allowed a process to keep its own view of time by keeping
offsets that were added to the current system time [10]. At the
time, the only use case was to speed up the gettimeofday()
system call by keeping a copy of time in userspace. However,
the introduction of the vDSO [11], a kernel read-only shared
library mapped into all userspace applications, became the
standard for accelerated system calls and this attempt at virtual
time did not make it to the kernel. Over the years, with the
emphasis on OS-level virtualization techniques that had become
popular as a result of containers, the Linux maintainers added
support for a time virtualization approach, the time namespace
[12]. This enables an application to maintain its own sense of
time using the monotonic and boot time clocks. Unfortunately,
outside of research environments, the usage of this namespace
in microservices is not viable because it is not yet included in
the Open Container Initiative (OCI) specification [13] and thus
is not supported by mainstream container engines [14] [15] and
orchestrators. Furthermore, due to implementation details, this
namespace can only virtualize time reporting but not the rate of
passage of time [16], limiting the full potential of virtual time.

Because of the recent introduction of time namespaces,
support in container engines is non-existent and very little is
known about the impact of virtual time on an application’s
performance. Furthermore, there is no published work on the
performance implications of this new namespace. In this work,
we present a workflow for manually creating containers that
leverage this new feature and present the first assessment of the
overhead of time virtualization in Linux containers. We cover a
wide variety of time-related system calls, and their vDSO
counterparts, that may be impacted by the namespace, including
those that are related to sleep, time reporting, and process timers.
More specifically, we assess the overhead associated with using

time virtualization in two scenarios: (1) when it is used
independently from other container-enabling primitives, and (2)
when all the typical characteristics of a production-grade
container are applied. We compare these findings to a baseline
of no-time virtualization in which the host provides time
information unmodified. We search the literature for prior
virtual time implementations in OS-level virtualization
environments in order to draw comparisons. To the best of our
knowledge, this is the most comprehensive analysis of the
impact of time virtualization on runtime overhead so far.

This work is divided into sections. Section 2 provides a brief
description of timekeeping in Linux and the POSIX clocks that
are available as of kernel version 5.13, as well as the ones which
are virtualized using the newly introduced time namespace. We
also discuss the role that namespaces play in supplying the
primitives required to enable the segregation of processes via
their own worldview, hence allowing the creation of containers.
Section 3 provides a workflow for the manual building of
containers that leverage the time namespace. Section 4 presents
the system calls examined and describes the process used to
collect data on the performance overhead incurred by using time
namespaces at different virtualization levels. Section 5 describes
the methodology used to compare the different virtualization
scenarios. Section 6 discusses the comparison results. Section 7
presents other implementations of virtual time in the literature
and, when available, their performance overhead. Section 8
presents concluding remarks and future avenues of research.

II. BACKGROUND
In this section we present a brief introduction of Linux’s

timekeeping mechanisms and the clocks available for
application use. We also provide an overview of containers and
the Linux primitives that enable them, highlighting the recently
introduced time namespace.

A. Linux Timekeeping
A variety of timekeeping devices (e.g., TSC, PIT, RTC,

ACPI, HPET, and LAPIC) are available in modern hardware
and can serve as clock sources for a system [17]. The purpose of
a clock source is to give a chronology for the system, indicating
where you are in time. In general, a system needs an adequate
clock source that never goes backward, never stops ticking,
avoids discontinuous time jumps, has a reasonable resolution or
frequency, and is easily accessible to userspace code. In practice,
this means that a clock source must be monotonic (i.e., always
increasing), have high precision and a constant frequency, not
move suddenly in time, and offer atomic access regardless of the

underlying hardware design. The TSC (Time Stamp Counter),
an auto-incremented CPU register, is the preferred clock source
on current x86 hardware because the remaining timers do not
meet the criteria or are not always accessible [18]. This is not to
say that TSC is without flaws; rather, the flaws revealed by TSC
are an acceptable compromise when contrasted to the
alternatives.

Timekeeping in Linux is accomplished via the concept of
clocks, which are abstractions on the previously described
hardware counters. Rather than making use of the clock sources
directly (e.g., via the rdtsc instruction for the TSC) [19],
applications can interface with Linux clocks for timekeeping.
This allows for faster access than might be available for a clock
source. For instance, the Completely Fair Scheduler (CFS)
needs timing information very often, and while the clock sources
might be very accurate, access to those is not fast enough. In
such cases, sacrificing accuracy for speed is required, as
accomplished in the CFS via the sched_clock() kernel
function [20]. In other userspace scenarios, such as high-
performance databases and financial applications, the latency
incurred by accessing the clock source may be excessive,
necessitating the compromise of using Linux clocks. Linux has
multiple clock variants and has added several options over time
to accommodate the needs of applications and speed up the
retrieval of information [21]. Table 1 displays a list of Linux
clocks and their features.

Applications may access clock related functionality via
system calls. This may include obtaining the current date and
time, the resolution of a clock, and setting interval timers on top
of existing clocks. Because system calls are expensive due to the
mode switch from user mode to kernel mode, several
optimizations, such as the use of the vDSO (virtual dynamic
shared object) have been implemented, particularly for
frequently used system calls relating to time. The vDSO is a
small, shared library that is mapped into the address space of all
userspace applications to make kernel information available fast
and reduce the calling overhead. See Table 2 for a list of time-
related system calls that we explore in this work.

Nowadays, virtualization has become widespread.
Hypervisor-based virtualization adds complications to
timekeeping. For example, during virtual machine migration,
the TSC value may experience a jump and the frequency may
vary between hosts. As a result, numerous initiatives to improve
the TSC have been recorded , including paravirtualized clocks
(e.g., pvclock, kvmclock, TSC page) [22] and hardware
additions such as TSC scaling. In OS-level virtualization, the

TABLE I. AVAILABLE CLOCKS IN LINUX

Clock Function Introduced Affected by Adjustments
CLOCK_REALTIME Reports the number of seconds since the Epoch. Linux 2.6 Yes
CLOCK_MONOTONIC Reports number of seconds since kernel booted. Linux 2.6 Partially (only adjtime and NTP)
CLOCK_PROCESS_CPUTIME_ID Measures CPU time consumed by all threads of a process. Linux 2.6.12 No
CLOCK_THREAD_CPUTIME_ID Measures CPU time consumed by a thread. Linux 2.6.12 No
CLOCK_MONOTONIC_RAW Like CLOCK_MONOTONIC but without adjustments. Linux 2.6.28 No
CLOCK_REALTIME_COARSE Faster but less precise than CLOCK_REALTIME. Linux 2.6.32 Yes
CLOCK_MONOTONIC_COARSE Like CLOCK_MONOTONIC but less precise. Linux 2.6.32 Partially (only adjtime and NTP)
CLOCK_BOOTTIME Like CLOCK_MONOTONIC but counts suspended time. Linux 2.6.39 Partially (only adjtime and NTP)
CLOCK_REALTIME_ALARM Interval timer on CLOCK_REALTIME with system waking. Linux 3.0 Yes
CLOCK_BOOTTIME_ALARM Interval timer on CLOCK_BOOTTIME with system waking. Linux 3.0 Partially (only adjtime and NTP)
CLOCK_TAI Reports International Atomic Time ignoring leap seconds. Linux 3.10 No

TABLE II. TIME-RELATED SYSTEM CALLS

System Call Description vDSO
(x64)

clock_getres() Finds resolution of the given
clock.

No

clock_gettime() Retrieves the time of the specified
clock.

Yes

gettimeofday() Gives the time since the Epoch in
seconds and microseconds.

Yes

nanosleep() Suspends execution until time has
elapsed or process is killed.

No

clock_nanosleep() Suspends execution until time has
elapsed in specified clock or
process is killed.

No

timer_create() Creates a per-process interval
timer on the specified clock.

No

timer_settime() Starts or stops a specified timer. No
timer_getoverrun() Gets specified timer’s overrun

count.
No

timer_delete() Stops and delete a specified timer. No
timerfd_create() Creates a timer on a specified

clock and returns a file descriptor.
No

timerfd_settime() Starts or stops a file descriptor-
based timer.

No

host OS provides the reference for time for all containerized
loads. Migration of containers is also prone to suffering
discontinuous jumps in time [9].

While this has been addressed for virtual machines, it is still
a challenge in the widely adopted container engines. The
introduction of the time namespace is an attempt to give each
container its own view of time, allowing it to preserve its time
perception even after being migrated.

B. Container & Namespaces
Containers are a type of OS-level virtualization that allows
developers to package an application into an image. Containers
are portable and consistent throughout the development pipeline
because they encapsulate all application needs, allowing for a
smoother transition from development to testing and production
environments [23]. Furthermore, containerized processes are
segregated from the rest of the system, allowing an application
to have its own worldview no matter where it runs. Containers
have grown in popularity and are commonly utilized nowadays
because of their dependability, scalability, and flexibility [24].

A container, unlike a Jail [25] in BSD or a Zone [26] in
Solaris, is not a first-class concept in Linux [27]; instead,
containers are built up of a combination of Linux primitives such
as namespaces and control groups (cgroups). A namespace is a
feature of the Linux kernel that allows an application to have its
own view of a resource that is separate from the global resources
[28]. When paired with cgroups, which allow monitoring and
limiting resource utilization, a container can be limited to using
a specific portion of its available resources (e.g., CPU, RAM,
PIDs, RDMA, block I/O, etc.) [29]. This makes containers
highly flexible and sophisticated, but it also allows for scenarios
that would not be conceivable with Jails and Zones. For
example, an application can be deployed in a container that is
isolated from the rest of the system while sharing only the
network namespace with another container for network traffic
inspection. This type of resource sharing has become
widespread due to the use of container engines and orchestrators

(e.g., Kubernetes, Nomad, Mesos, etc.) and demonstrates
container flexibility.

Traditionally, Linux supported namespacing (i.e., isolating)
the control group root directory, the IPC and POSIX message
queues, network devices and stacks, mount points, process IDs
(PIDs), user and group IDs, and hostnames. Recently, as of
kernel version 5.6, it is possible to isolate boot and monotonic
clocks through the time namespace, giving an application its
own view of time irrespective of the host. In other words, this
enables the use of virtual time in containerized applications.

III. REFERENCE IMPLEMENTATION
In this section, we present a reference implementation for

using the time namespace in containers. Typically, a container
engine (e.g., Docker, podman) would be used to deploy a
container with the default presets. The container engine would
make certain that the appropriate namespaces and control groups
were applied to the application. However, support for the newly
proposed time namespace is not yet implemented in popular
container engines, necessitating manual application
deployment. We demonstrate the building of a standard
container from scratch using the util-linux package's
unshare command [30]. Alternatively, you may achieve the
same result by using the unshare() system call [31] with the
appropriate flags (e.g., CLONE_NEWNET, CLONE_NEWNS,
etc.).

Fig. 1 depicts an activity diagram describing the procedure
required to run an application under a time namespace as
responsibility moves from the host to the newly constructed
container. While this diagram only shows the configuration
needed for the time namespace, it is expected that the other
namespaces have been correctly configured as additional
options to the unshare command. We also assume that the
/proc pseudo-filesystem is mounted in the container.

 The process on the host begins with the download of a base
image from an image repository (#1). This is similar to how

Fig. 1. Workflow to Implement Time Namespaces

Docker uses base images in a Dockerfile with the FROM
command. The image's root filesystem is then extracted (#2).
This is possible with docker export or podman. If the root
filesystem lacks all of the artifacts required to deploy an
application, you should modify it to incorporate those files (#3).
It's worth noting that, unlike Docker, we don't employ a layered
filesystem (e.g., AUFS, OverlayFS) [32], so all modifications to
the root filesystem are persistent. When the root filesystem is
complete, run the unshare command with the proper flags to
utilize the desired namespaces (#4). In addition, similar to how
chroot [33] works, you must select a change of root to the root
filesystem directory. The namespaces are created by the
unshare command (and hence applies the concept of a
container). If the time offsets for the CLOCK_BOOTTIME and
CLOCK_MONOTONIC clocks were not supplied when executing
the unshare command, you will need to change the
container’s /proc/self/timens_offsets file with the
desired offsets (#5). This must be completed before running any
application. After you've established the offsets, you must fork
and use exec to run your application (#6). This can be avoided
if the fork flag is provided to the unshare command. The
application will then run in the specified namespaces, with its
own view of time. We have applied no resource constraints in
our implementation, but we have enabled the use of the mount,
UTS, user, IPC, network, PID, cgroup, and time namespaces.
We used the official Ubuntu 21.10 image as the foundation for
our container and added binaries to the /usr/bin directory to
incorporate other applications.

IV. DATA COLLECTION
We aim to evaluate the performance impact of time

virtualization on applications when compared to a non-
virtualized baseline. We collect execution timing information on
11 time-related system calls and, when available, their vDSO-
accelerated counterparts. In this study, we refer to the collection
of system call data as metrics. The metric name is derived from
the system call name, and when we specify the clock or access
mode, we label it accordingly (i.e., vdso_gettimeofday,
clock_gettime_boottime). Table 2 contains a list of the
system calls that we analyze, their intended use, and whether
they have a vDSO equivalent. Table 3 contains a list of the
metrics for which we collect execution time (in nanoseconds).

We use uftrace [34] to acquire timing information about
system calls. uftrace is a tool primarily inspired by ftrace
that allows the tracing of C/C++ applications built with compiler
instrumentation. uftrace is a robust tool for tracing user space
functions, library functions, Linux kernel functions, and system
events. We chose uftrace over alternatives like strace and
ltrace because it combines the features of those two tools
while having a lower tracing overhead than both.

Based on the extent of virtualization used, we explored three
levels:

1) Non-virtualized: The application is deployed directly on
the host, sharing all accessible global resources. There are no
resource constraints, and the application runs as root. This is
referred to as the baseline level.

TABLE III. METRICS COLLECTED

Metric Description
clock_getres Finds resolution of CLOCK_MONOTONIC.
clock_gettime_
monotonic

Retrieves the time of CLOCK_MONOTONIC.

vdso_clock_
gettime_monotonic

Retrieves the time of CLOCK_MONOTONIC
using the vDSO.

clock_gettime_
boottime

Retrieves the time of CLOCK_BOOTTIME.

vdso_clock_
gettime_boottime

Retrieves the time of CLOCK_BOOTTIME
using the vDSO.

gettimeofday Retrieves the time of CLOCK_REALTIME.
vdso_gettimeofday Retrieves the time of CLOCK_REALTIME

using the vDSO.
nanosleep Suspends execution until time has elapsed in

CLOCK_REALTIME.
clock_nanosleep Suspends execution until time has elapsed in

CLOCK_MONOTONIC.
timer_create Creates a per-process interval timer on

CLOCK_MONOTONIC.
timer_settime Starts or stops a timer on

CLOCK_MONOTONIC.
timer_getoverrun Gets timer’s overrun count (on

CLOCK_MONOTONIC).
timer_delete Stops and delete a specified timer (on

CLOCK_MONOTONIC).
timerfd_create Creates a timer on CLOCK_MONOTONIC and

returns a file descriptor.
timerfd_settime Starts or stops a file descriptor-based timer

(on CLOCK_MONOTONIC).

2) Time Namespace Only: The application is deployed
directly on the host, sharing all global resources except the
system's perception of time. This is accomplished via the time
namespace by setting offsets for the CLOCK_BOOTTIME and
CLOCK_MONOTONIC clocks. There are no resource
constraints, and the application runs as root. This is referred to
as the namespace level.

 3) Container: The application is deployed in a hand-built
container and is isolated by using the eight available namespaces
(i.e., cgroup, IPC, network, mount, PID, time, user, UTS).
Namespaces provide the container with an isolated instance of
the global resource, limiting what is shared. The container uses
Ubuntu 21.10 as its base image. The time namespace was set up
in the same way as the previous namespace scenario, by
providing offsets for the CLOCK_BOOTTIME and
CLOCK_MONOTONIC clocks. There are no resource
constraints, and the application runs as root. This is referred to
as the container level.

We performed the tests in a virtual machine instance (4
vCPUs, 8 GB RAM) hosted in a 12-core AMD Ryzen 9 3900X.
The hypervisor used in the test was Oracle’s VirtualBox. Both
the virtual machine and the host OS were running Ubuntu 21.10
with kernel version 5.13.0-22-generic (x86_64). We made sure
that both the containers and the host OS have the same kernel
version as to avoid any performance issues that could be caused
by “mismatched” kernels [35]. We preferred testing locally over
testing in AWS instances because, although the latest Amazon
Linux AMI contains kernel version 5.10 (which supports time
namespaces), the util-linux packages is outdated (version
2.30.2) and the unshare command does not recognize the time

namespace as a valid option. We also chose the vCPU and RAM
configuration to mimic the resource allocation that AWS
provides to a xlarge, compute-optimized, instance. In terms of
software, the VM made use of Ubuntu’s glibc 2.34-0ubuntu3,
gcc 11.2.0, util-linux 2.36.1, and uftrace v0.9.4. The
host OS had Oracle’s VirtualBox 6.1.26r145957 installed as the
hypervisor. VirtualBox maintains synchronization of all guest-
visible time sources with the monotonic host time [36].

For each system call, we collect 200 records, with each
record representing the average of 1 million system call
executions. This is done to obtain a more representative sample
and to amortize the cost of the initial vDSO call, which normally
results in a page fault [37].

V. COMPARISON METHODOLOGY
We used hypothesis testing to determine whether time

virtualization (with varying degrees of OS-level virtualization)
degrades system performance by increasing the execution time
of time-related system calls as compared to the baseline group.
We divided the tests into three groups based on the extent of OS-
level virtualization used: non-virtualized (n = 200, baseline),
namespace (n = 200), and container (n = 200). We assess
normality using the Shapiro-Wilk’s test and confirm suspicions
of violation of normality by visual inspection of Q-Q plots.
Although not ideal from a statistical standpoint, we maintained
the outliers because there is no reason to reject them or declare
them invalid. We assess homogeneity of variances via Levene’s
test.

A one-way Welch ANOVA was conducted for each metric
that exhibited heteroscedasticity to determine if the execution
time differences between groups with varied levels of OS
virtualization were statistically significantly different. For those
metrics that met the assumption of homogeneity of variances, a
one-way ANOVA was conducted instead. We express the
difference in group means as a null 𝐻! (all group population
means are equal) and alternative 𝐻" hypothesis (the means of
the groups are not equal). These tests are appropriate due to its
robustness against deviation of normality, particularly when
sample sizes are large and equal. For the cases where there is
evidence that the null hypothesis can be rejected (i.e., there is a
statistically significant difference between the means of the
groups), we conduct a post-hoc test (i.e., Tukey HSD for
ANOVA, Games-Howell for Welch’s ANOVA) to determine
where the differences lie. Data is presented as mean ± standard
deviation. In all cases, and for all tests, we report results at the
95% confidence level.

VI. RESULTS AND DISCUSSION
We analyze the collected data and present the results in this

section. To better discuss our findings, we divide the system
calls into three groups depending on their functionality: sleep
(which is concerned with system calls that cause delays), time
(which is concerned with system calls that report time), and
timers (concerned with system calls that arm and disarm per-
process timers). Table 4 summarizes our findings; refer to the
table for more information on the statistical significance of the
tests, the difference between the virtualization levels' means, and
their confidence intervals.

A. Sleep Inducing System Calls
We included clock_nanosleep() and nanosleep()

in the group of system calls that cause delays. Both system calls
implement high-resolution sleep (i.e., suspending the calling
thread's execution) until the specified time expires, a signal
triggers a handler in the calling thread, or the process is
terminated [38] [39]. If the requested time is not an exact
multiple of the clock's granularity, the interval will be rounded
up to the next multiple. We aimed at a 100-millisecond delay per
system call in our experiments. The metrics associated with this
group of system calls have the same name as the system calls
from which they were produced.

Unlike clock_nanosleep(), which counts time against
a user-specified clock, nanosleep() uses the
CLOCK_REALTIME clock in POSIX.1 conforming
implementations. In Linux, CLOCK_MONOTONIC is used for
nanosleep() since it is unaffected by discontinuous jumps
in the system time, an aspect which is required for
nanosleep() when using CLOCK_REALTIME. As a result,
Linux's version is functionally equivalent to the POSIX-
compliant implementation. Another distinction between the two
is that clock_nanosleep() can sleep until an absolute time
has been met, rather than relying on sleep intervals alone. This
provides the user with additional control and stops a process
from sleeping for an extended period if the time has been
adjusted by an administrator or updated via NTP.

The execution time of clock_nanosleep() rose from
the baseline (101.57ms ± 5.61ms) to the namespace (102.19ms
± 6.26ms), to the container level (102.29ms ± 6ms). Similarly,
the execution time of nanosleep() increased from the
baseline (101.12ms ± 2.36ms) to the namespace (101.34ms ±
2.38ms), to the container level (101.59ms ± 3.07ms), in that
order. The differences between the virtualization levels in both
system calls were not statistically significant.

Because the sleep mechanism is mostly dependent on the
scheduler, it was expected that there would be little difference in
sleeping calls across virtualization levels. A sleeping task
surrenders the processor to the scheduler, exposing the sleeping
job to additional scheduling latency, which may result in the
sleeping task not executing immediately after the sleeping
interval ends. Additionally, because the kernel may be executing
other sleeping tasks while the process sleeps, additional sources
of latency may be introduced. As other processes execute, the
tasks may also compete for the instruction cache, potentially
introducing stalls due to cache misses when the process resumes.
While we haven't quantified it, and it's possible to do so using
performance counters, we attempted to limit this effect as much
as possible by running the sleeping tests exclusively. It is critical
to note that Linux is not a real-time operating system and hence
cannot guarantee precise sleep intervals. However, you can rely
on sleeping for an interval close to the specified one [40]
because all processes, including containerized ones, are
scheduled by the same kernel. As a result, Madden [41]
advocated that when monopolizing the processor is not an issue,
the use of nanosleep() be discouraged in favor of busy wait.
Notably, when the Completely Fair Scheduler (CFS) was made
the default scheduler, the granularity of sleeping system calls
improved [42].

TABLE IV. SUMMARY OF FINDINGS

Metric

Descriptives ANOVA Post Hoc Tests

Level Mean
(ns)

Std. Dev
(ns) df1 df2 F Sig. (I) Level (J) Level

Mean
Diff.
 (I-J)

Sig.
95% CI

LB UB

clock_
nanosleep

baseline 1.02E+08 5.61E+06
2 597 0.85 0.426 N/A namespace 1.02E+08 6.26E+06

container 1.02E+08 6.00E+06
nanosleepa baseline 1.01E+08 2.36E+06

2 393 1.48b 0.229 N/A namespace 1.01E+08 2.38E+06
container 1.02E+08 3.07E+06

clock_
getresa

baseline 129.92 2.594
2 392 391.54b <0.001 namespace baseline 3.440c <0.001 2.85 4.03

namespace 133.36 2.383 container 0.405 0.150 -0.11 0.92
container 132.96 1.934 container baseline 3.035 c <0.001 2.50 3.57

clock_
gettime_
boottime

baseline 146.85 1.913
2 597 26.00 <0.001 namespace baseline 1.215 c <0.001 0.77 1.66

namespace 148.06 2.004 container 0.070 0.927 -0.37 0.51
container 147.99 1.751 container baseline 1.145 c <0.001 0.70 1.59

clock_
gettime_
monotonica

baseline 146.09 1.363
2 389 389.29b <0.001

namespace baseline 1.205 c <0.001 0.80 1.61
namespace 147.29 1.999 container 0.380 0.091 -0.05 0.81
container 146.91 1.598 container baseline .825 c <0.001 0.48 1.17

gettimeofdaya baseline 121.37 1.296
2 358 357.90b <0.001 namespace baseline 2.610 c <0.001 2.09 3.13

namespace 123.98 2.833 container 0.535 0.091 -0.06 1.13
container 123.44 2.221 container baseline 2.075 c <0.001 1.65 2.50

timer_
createa

baseline 282.56 5.219
2 396 395.95b <0.001 namespace baseline 3.265 c <0.001 1.94 4.59

namespace 285.83 5.980 container -1.285 0.086 -2.71 0.14
container 287.11 6.097 container baseline 4.550 c <0.001 3.21 5.89

timer_
settimea

baseline 192.23 4.223
2 396 396.08b <0.001 namespace baseline 1.805 c <0.001 0.85 2.76

namespace 194.03 3.666 container -0.780 0.132 -1.73 0.17
container 194.81 4.223 container baseline 2.585 c <0.001 1.63 3.54

timer_
deletea

baseline 227.05 3.822
2 395 395.17b <0.001 namespace baseline 2.620 c <0.001 1.67 3.57

namespace 229.67 4.226 container -0.925 0.098 -1.98 0.13
container 230.59 4.711 container baseline 3.545 c <0.001 2.54 4.55

timer_
getoverruna

baseline 172.18 7.403
2 391 391.33b <0.001 namespace baseline 2.795 c <0.001 1.25 4.34

namespace 174.97 5.636 container -3.190 c <0.001 -4.71 -1.67
container 178.16 7.200 container baseline 5.985 c <0.001 4.27 7.70

timerfd_
createa

baseline 576.83 8.572
2 393 392.70b <0.001 namespace baseline 12.255 c <0.001 10.06 14.45

namespace 589.08 10.017 container -0.390 0.930 -2.91 2.13
container 589.47 11.378 container baseline 12.645 c <0.001 10.27 15.02

timerfd_
settime

baseline 241.17 3.456
2 597 203.84 <0.001 namespace baseline 8.280 c <0.001 7.21 9.35

namespace 249.45 5.407 container -0.335 0.809 -1.60 0.93
container 249.79 5.378 container baseline 8.615 c <0.001 7.55 9.68

vdso_clock_
gettime_
boottimea

baseline 56.81 1.091
2 396 396.44b <0.001

namespace baseline 3.075 c <0.001 2.83 3.32
namespace 59.89 0.947 container -.450 c <0.001 -0.69 -0.21
container 60.34 1.058 container baseline 3.525 c <0.001 3.27 3.78

vdso_clock_
gettime_
monotonica

baseline 56.39 0.769
2 386 386.28b <0.001

namespace baseline 3.565 c <0.001 3.37 3.76
namespace 59.96 0.920 container -.405 c 0.001 -0.66 -0.15
container 60.36 1.212 container baseline 3.970 c <0.001 3.73 4.21

vdso_clock_
gettimeofdaya

baseline 55.36 0.886
2 389 388.98b <0.001 namespace baseline 2.215 c <0.001 1.98 2.45

namespace 57.58 1.114 container -.560 c <0.001 -0.84 -0.28
container 58.14 1.267 container baseline 2.775 c <0.001 2.52 3.03

a. Welch’s ANOVA used because metric exhibited heteroscedasticity.
b. Asymptotically F distributed.

c. The mean difference is significant at the 0.05 level.

B. Time Reporting System Calls
In the category of time reporting system calls, we included

clock_getres(), clock_gettime(),
gettimeofday(), and their vDSO counterparts. This is
because these system calls report time or its precision. The
system calls clock_gettime() and gettimeofday()
obtain time information, whereas clock_getres()
determines a clock's resolution. Unlike clock_gettime(),
which allows you to choose the clock whose time you want to

report, gettimeofday() reports on CLOCK_REALTIME
only [43]. The following metrics are associated with this group:
clock_getres, clock_gettime_monotonic,
clock_gettime_boottime, gettimeofday,
vdso_clock_gettime_monotonic,
vdso_clock_gettime_boottime, and
vdso_clock_gettimeofday. The execution time of all
the metrics in this group was statistically significantly different
amongst virtualization levels.

The execution time of clock_getres() rose from the
baseline (129.92ns ± 2.594ns) to the namespace (133.36ns ±
2.383ns) level. From the namespace to the container level
(132.96ns ± 1.934ns), there was a minor reduction. The
execution time of the gettimeofday() rose from the
baseline (121.37ns ± 1.296ns) to the namespace (123.98ns ±
2.833ns) level. From the namespace to the container (123.44ns
± 2.221ns) level, there was a slight decline. The execution time
of clock_gettime() when CLOCK_BOOTTIME was
specified increased from the baseline (146.85ns ± 1.913ns) to
the namespace (148.06ns ± 2.004ns) level. There was a slight
drop from the namespace to the container (147.99ns ± 1.751ns)
level. When CLOCK_MONOTONIC was specified, the execution
time rose from the baseline (146.09ns ± 1.363ns) to the
namespace (147.29ns ± 1.999ns) level. From the namespace to
the container (146.91ns ± 1.598ns) level, there was a minor
decline. In the aforementioned system calls, the rise from the
baseline to the namespace level, as well as the increase from the
baseline to the container level, were statistically significant,
while the difference between the namespace and container levels
was not.

When evaluating the vDSO equivalents, the execution time
of the accelerated clock_gettime() when
CLOCK_BOOTTIME was specified rose in the following order:
baseline (56.81ns ± 1.091ns), namespace (59.89ns ± 0.947ns),
and container level (60.34ns ± 1.058ns). When using
CLOCK_MONOTONIC, the time rose in the following order:
baseline (56.39ns ± 0.769ns), namespace (59.96ns ± 0.920ns),
and container level (60.36ns ± 1.212ns). The accelerated
gettimeofday() execution’s time grew incrementally from
the baseline (55.36ns ± 0.886ns) to the namespace (57.58ns ±
1.114ns), and the container level (58.14ns ± 1.267ns). All vDSO
calls showed statistically significant increases from the baseline
to the namespace level, as well as from the namespace to the
container level.

The system calls analyzed made use of
CLOCK_REALTIME, CLOCK_MONOTONIC, and
CLOCK_BOOTTIME. Of those three, only
CLOCK_MONOTONIC and CLOCK_BOOTTIME (and their
variants) are virtualized through the time namespace. Every non-
vDSO call has a statistically significant difference from the
baseline to any OS-virtualization level, but not between
execution in a time namespace and a fully namespaced
container. Because CLOCK_REALTIME is shared with the host
OS, we did not expect a major difference between the baseline
and the other virtualization levels when using
gettimeofday(). The increase, however, was not
unreasonably expensive, with our worst-case scenario adding
~2.15% overhead, in line with the 3%-5% percent overhead that
comes with the use of containers [44] [45] [46]. Surprisingly,
adding further virtualization characteristics (i.e., more
namespaces) on top of the time namespace did not result in a
substantial change in system call execution time. This
demonstrates that the time namespace can be added to current
container standards because is within acceptable overhead
margins. When it comes to vDSO accelerated calls, the
difference from the baseline is significant at every level of OS-
virtualization (i.e., from a time namespace only to a full

container) and across virtualization levels. The mean difference
is greater when accessing the CLOCK_MONOTONIC and
CLOCK_BOOTTIME clocks, with differences ranging from
2.83-3.78ns and 3.37-4.21ns, respectively, than when accessing
CLOCK_REALTIME, with a mean difference ranging from
1.98-3.03ns. This could be related to the extra calculations that
the kernel must undertake in order to maintain the time offsets
for the virtualized clocks. We don’t conduct additional tests to
verify that vDSO calls are faster than system calls because (1) it
is out of the scope of this study and (2) this is generally well-
accepted since it has been shown that system calls have a higher
access latency than the vDSO calls. Because of the access
latency, these minor differences noted with the vDSO calls may
have been amortized in the system call results, resulting in non-
statistically significant differences between the namespace and
the container levels.

C. Timer System Calls
We included timer_create(), timer_settime(),

timer_getoverrun(), timer_delete(),
timerfd_create(), and timerfd_settime() under
the category of per-process timers system calls. These system
calls create, arm, disarm, delete, and report on a timer’s overrun
count. The fd variants allow setting up timers through file
descriptors, which is a more event-loop friendly approach (i.e.,
allow the use of select(), poll(), and the epoll API) than
the one provided by conventional timers. The associated metrics
for this system call group carry the same name as the system
calls from which they were derived from. All system calls in this
group had a statistically significant difference in execution time
between virtualization levels.

The execution time of timer_create() increased from
the baseline (282.56ns ± 5.219ns) to the namespace (285.83ns ±
5.980ns), and the container level (287.11ns ± 6.097ns), in that
order. With respect to timer_settime(), the execution time
grew from the baseline (192.23ns ± 4.223ns) to the namespace
(194.03ns ± 3.666ns), and the container level (194.81ns ±
4.223ns), in that order. For timer_delete(), the execution
time increased from the baseline (227.05ns ± 3.822ns) to the
namespace (229.67ns ± 4.226ns), and the container level
(230.59ns ± 4.711ns), in that order. The fd variants exhibited a
similar pattern. The execution time of the
timerfd_create() increased from the baseline (576.83ns
± 8.572ns) to the namespace (589.08ns ± 10.017ns), and the
container level (589.47ns ± 11.378ns), in that order. The
execution time of the timerfd_settime() rose from the
baseline (241.17ns ± 3.456ns) to the namespace (249.45ns ±
5.407ns), and the container level (249.79ns ± 5.378ns), in that
order. The increase from the baseline to the namespace level, as
well as the increase from the baseline to the container level, were
statistically significant in the aforementioned system calls, while
the difference between the namespace and container levels was
not.

The execution time of the timer_getoverrun()
system call climbed from the baseline (172.18ns ± 7.403ns) to
the namespace (174.97ns ± 5.636ns), and the container level
(178.16ns ± 7.200ns). The rise from the baseline to the

namespace level, as well as the increase from the namespace to
the container level, were statistically significant.

The results reveal that there appears to be no discernible
change in execution times for creating, arming, disarming, and
deleting timers on CLOCK_MONOTONIC, in both conventional
and file descriptor system call variants. The file descriptor
variants, on the other hand, exhibit higher mean
execution times, which is most likely owing to the underlying
opened files interacting with the timer itself. The only exception
was timer_getoverrun(), which had statistically
significant differences in execution times across
all virtualization levels. There is no overrun system call
available for the file descriptor variants as this is obtained via
read() on the file descriptor. The time to create a timer
increased by 2.19%, the time to arm/disarm a timer climbed by
3.57%, and the time to delete a timer increased by 1.56% under
our worst-case scenario. The overhead in all circumstances is
less than 4%, which is comparable to the overhead associated
with containerized loads.

VII. RELATED WORKS
Other attempts at virtual time have been documented in the

literature. In our search, we excluded works that made exclusive
use of virtual machines and favored those that used some form
of OS-level virtualization (e.g., namespaces, containers, jails,
zones). From those works, we cover their use of virtual time and
any discussion of the performance overhead that the authors
made available.

Zheng and Nicol [44] developed a virtual time system that
simulated functional and temporal behavior of network
communication by trapping the execution of system calls to
return an illusion of virtual time as required by the simulation
using OpenVZ’s Virtual Environments. This is one of the
earliest attempts at using OS-level virtualization to decouple the
virtualization of execution and time to prevent the execution
from reflecting the host’s serialization of tasks. Their approach
requires changes to the OpenVZ kernel so that tasks are correctly
scheduled and modifications to system calls such as
gettimeofday(). In their experiments they noticed an
overhead of 4.9% over the non-virtualized baseline. Jin et al.
[47] expanded the work and employed this custom kernel to
support a parallel network simulator, S3F. They added the
ability to advance in virtual time only when there is activity in
an application or network. Although unmentioned, we assume
that they inherit the same overhead from Zheng and Nicol’s [44]
work based on their adoption of the custom kernel.

In TimeKeeper, Lamps et al. [48] introduced a set of Linux
kernel modifications to embed Linux Containers (LXC) into
virtual time for network simulation. The main concept is to give
each container a dilated view of time to make it seem as if time
advances more slowly than real time to make network resources
appear faster. To achieve this, they added to the Linux
task_struct to include a time dilation factor (TDF) and
other variables related to timekeeping, exposed an API to
control time operations (e.g., dilation, freeze/unfreeze, time
leaping, etc), modified system calls (e.g., gettimeofday(),
sleep(), poll()), and used hrtimers to schedule the
execution of containers. The choice of hrtimers ended up

affecting the accuracy of virtual time, but in 90% of the cases
they were able to keep virtual time within 4us of the expected
virtual time. This is because their approach lacks flexibility in
scheduling by subjecting a process to a fixed execution time
slice. When evaluating their approach for overhead, they did not
evaluate each modification for overhead but rather how many
containers they could deploy while maintaining the validity of
virtual time. They found that this was related to the time dilation
factor used for the containers: 6/(𝑇𝐷𝐹	 + 	1).

TimeKeeper has been the inspiration for the saga of work
presented by Yan and Jin. In [49] they expanded the fields added
to task_struct and added a pair of system calls to unshare
time and set the dilation factor. They applied those
advancements to the work of Handigol et al. [50], to provide the
emulator, Mininet-Hifi, with the ability of virtual time. They
enhanced it by adding a freezer system capable of stopping and
resuming a container’s virtual time. This was a source of trouble
for Mininet-Hifi since containers use the same system clock of
the physical machine and this leads to a wrong perception of
time because a container’s clock keeps advancing even if it is
not running. In [51] and [52] Yan and Jin reshaped their work
into a Linux namespace, the clock namespace. The final
implementation, VT-Mininet, resembles modern day practices
because there is use of control groups (via Mininet-Hifi),
container primitives, and traffic shaping. In their tests, the
average overhead for a gettimeofday() system call was
13ns. Because some time related system calls are accelerated via
vDSO, the containers are able to bypass the features
implemented by Yan and Jin. As a workaround, they disabled
the use of vDSO for those system calls. Other forks of Mininet
include Containernet [53] where Docker containers are used
instead of the manual combination of container-building
primitives.

Navarro et al. [54] implemented virtual time by using a
counter of time-related system calls invoked by a process. This
ensures a monotonic logical time that can be used to guarantee
reproducibility of execution stages in containerized processes.
In their implementation, they intercept vDSO calls and replace
them with system calls. We are only concerned with the
overhead of their virtual time solution, but this is not explored.
However, the higher access latency of system calls when
compared to vDSO calls is widely documented.

Another use of OS-level virtualization is the use of Jails in
BSD-based systems. Grau et al. [55] used a hybrid approach
combining VMs, Jails, and BSD’s Virtual Routing to provide
time virtualization (based on time dilation) for virtual nodes (i.e.,
network processes). Their evaluation of the system did not
include runtime overhead tests, rather, they focused on the
memory consumption of each virtual node and discovered that
their approach was lighter by consuming less memory than those
implemented under Xen for Linux-based systems.
Unfortunately, we can’t directly compare their approach since
no runtime overhead was given. Hibler et al. [56] modified
Emulab to make use of FreeBSD Jails. Emulab uses the concept
of virtual time to guarantee the ordering of events in an
experiment [57]. The goal of the enhancements was to enable
the emulation of systems larger than the underlying testbed
through light virtualization. There was no mention of the
overhead of virtualization as the authors considered that fidelity

was not as important for small scale simulations. Today, Emulab
is able to use Docker containers as well as virtual machines [58].
In Solaris Zones, starting with Solaris 11, virtual time has been
implemented by allowing each non-global zone to set its own
time via the clock_settime() system call [59].

In comparison to the studies described above, our work
delivers the most comprehensive study on the impact of virtual
time on runtime overhead. Several time-related system calls
were omitted. We did not discuss the system calls time(),
ftime(), sleep(), and clock_settime(). We didn't
include time() and ftime() because they were superseded
by clock_gettime(). We only included
gettimeofday() as a point of comparison with the research
mentioned in this section as it has also been supplanted by
clock_gettime(). The sleep() system call is not
covered because it is implemented via nanosleep() [60]. We
exclude clock_settime() because the time of a time
namespace can only be set once, hence all applications that get
forked after the initial setup inherit this configuration. It is worth
noting that the official Linux namespace outperforms the
alternatives and, unlike many other studies, can operate with
accelerated vDSO calls.

VIII. CONCLUSIONS & FUTURE WORK
Virtualizing time is not a novel concept. It has been explored

in the literature for hypervisor-based and OS-level virtualization
systems. Recently, with the widespread adoption of containers,
a new Linux primitive was added, the time namespace. This
allows processes to “unshare” their perception of time from the
host system. By decoupling their timelines, processes are able to
keep their own perception of time, regardless of the host on
which they execute. There is little information available about
the performance overhead of time virtualization. In previous
attempts, researchers focused primarily on the ability to dilate
and virtualize time as a means of multiplexing resources, rather
than as an intrinsic feature of a process. To meet the
requirements of today’s dynamic operating models, and as the
microservices trend becomes stronger, the concept of time must
be tied to a service rather than a server.

In this work we presented a workflow to leverage the newly
introduced time namespace for creating containers that possess
their own view of time. We subsequently tested 11 time-related
system calls and their vDSO counterparts for runtime overhead
when time virtualization was used. We evaluated the overhead
associated with employing time virtualization in two scenarios:
(1) when used independently from other container-enabling
primitives, and (2) when all normal characteristics of a
production-grade container are applied. We demonstrated that
the runtime performance of a process running in a time-
namespace differs little from that of a process running in a fully
namespaced container. In our experiments, the performance
impact was of less than 4% in the worst-case scenarios, with
most system calls exhibiting an increase of ~2% in runtime.
Because virtualizing time may have an impact on applications
that rely heavily on timing mechanisms, it is critical to analyze
the impact of virtual time in containers, particularly as they are
becoming the typical approach of delivering applications in the
cloud. According to our findings, applications running in virtual

time will incur low overhead, comparable to that of currently
employed OS-level virtualization techniques.

In the future, we intend to add a storage overlay solution to
our handmade containers so that we can carry out direct
comparisons against Docker containers.

REFERENCES
[1] D. Jefferson, "Virtual Time," ACM Transactions on Programming

Languages and Systems, vol. 7, no. 3, pp. 404-425, 1985.
[2] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed

System," in Concurrency: the Works of Leslie Lamport, New York, NY,
USA, Association for Computing Machinery, 2019, pp. 179-196.

[3] The Kernel Development Community, "CFS Scheduler," 2022. [Online].
Available: https://www.kernel.org/doc/html/latest/scheduler/sched-
design-CFS.html#overview.

[4] C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam and W. Fun, "Fairness
and interactive performance of O(1) and CFS Linux kernel schedulers,"
in International Symposium on Information Technology, Kuala Lumpur,
Malaysia, 2008.

[5] J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel, R. Gouciem, J.
Lawall, G. Muller and J. Sopena, "The Battle of the Schedulers: FreeBSD
ULE vs. Linux CFS," in USENIX ATC '18, 2018.

[6] B. Burns, B. Grant, D. Oppenheimer, E. Brewer and J. Wilkes, "Borg,
Omega, and Kubernetes: Lessons learned from three container-
management systems over a decade," Queue, vol. 14, no. 1, pp. 70-93,
2016.

[7] L. Ma, S. Yi and Q. Li, "Efficient service handoff across edge servers via
docker container migration," in SEC '17: Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, San Jose, CA, 2017.

[8] X. Merino, C. Otero, M. Ridley and D. Elliott, "Managed Containers: A
Framework for Resilient Containerized Mission Critical Systems," in
IEEE 11th International Conference on Cloud Computing (CLOUD), San
Francisco, CA, USA, 2018.

[9] D. Elliott, "Vanishing Connections: Application Resiliency through
Cross-Network TCP Migration," Florida Institute of Technology,
Melbourne, FL, 2018.

[10] J. Dike, "[RFC] PATCH 0/4 - Time virtualization," 13 4 2006. [Online].
Available: https://lkml.org/lkml/2006/4/13/172.

[11] M. Frysinger, "vdso(7)," 27 8 2021. [Online]. Available:
https://man7.org/linux/man-pages/man7/vdso.7.html.

[12] M. Kerrisk, "time_namespaces(7) - Linux manual page," 27 08 2021.
[Online]. Available: https://man7.org/linux/man-
pages/man7/time_namespaces.7.html#:~:text=Time%20namespaces%20
virtualize%20the%20values,unspecified%20point%20in%20the%20past
%22..

[13] opencontainers, "Add support for time namespace #1062," [Online].
Available: https://github.com/opencontainers/runtime-spec/pull/1062.

[14] "Support time namespaces #2345," [Online]. Available:
https://github.com/opencontainers/runc/issues/2345.

[15] "Adding time namespace to the containers #39163," [Online]. Available:
https://github.com/moby/moby/issues/39163.

[16] "Introduce Time Namespace," 12 11 2019. [Online]. Available:
https://lore.kernel.org/lkml/20191112012724.250792-3-
dima@arista.com/t/.

[17] V. Kuznetsov, "An Introduction to Timekeeping in Linux VMs," 2017.
[Online]. Available: https://opensource.com/article/17/6/timekeeping-
linux-vms.

[18] VMware, Inc., "Timekeeping in VMware Virtual Machines," VMWare,
Inc., 2008.

[19] Intel Corporation, "Using the RDTSC Instruction for Performance
Monitoring," 1998. [Online]. Available:
https://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf.

[20] The Kernel Development Community, "Clock sources, Clock events,
sched_clock() and delay timers," 2022. [Online]. Available:
https://www.kernel.org/doc/html/latest/timers/timekeeping.html.

[21] M. Kerrisk, A. Brouwer and N. Clifford, "clock_gettime(3) — Linux
manual page," 11 04 2020. [Online]. Available:
https://www.man7.org/linux/man-pages/man3/clock_gettime.3.html.

[22] Red Hat, Inc., "Timekeeping Virtualization for x86-Based Architectures,"
2010. [Online]. Available:
https://www.kernel.org/doc/html/latest/virt/kvm/timekeeping.html?highl
ight=clock.

[23] Microsoft, "What is a container?," 2022. [Online]. Available:
https://azure.microsoft.com/en-us/overview/what-is-a-
container/#overview.

[24] Google Cloud, "What are containers?," [Online]. Available:
https://cloud.google.com/learn/what-are-containers.

[25] The FreeBSD Project, "Chapter 15. Jails," in FreeBSD Handbook.
[26] D. Price and A. Tucker, "Solaris Zones: Operating System Support for

Consolidating Commercial Workloads," LISA, vol. 4, pp. 241-254, 2004.
[27] J. Frazelle, "Research for practice: security for the modern age,"

Communications of the ACM, vol. 62, no. 1, pp. 43-45, 2019.
[28] M. Kerrisk and E. W. Biederman, "namespaces(7) — Linux manual

page," 27 08 2021. [Online]. Available: https://man7.org/linux/man-
pages/man7/namespaces.7.html.

[29] M. Kerrisk and S. Hallyn, "cgroups(7) — Linux manual page," 27 08
2021. [Online]. Available: https://www.man7.org/linux/man-
pages/man7/cgroups.7.html.

[30] M. Kerrisk, "unshare(1) — Linux manual page," 20 06 2021. [Online].
Available: https://www.man7.org/linux/man-
pages/man1/unshare.1.html.

[31] M. Kerrisk and J. Desai, "unshare(2) — Linux manual page," 22 03 2021.
[Online]. Available: https://www.man7.org/linux/man-
pages/man2/unshare.2.html.

[32] Docker Inc., "Docker storage drivers," 2021. [Online]. Available:
https://docs.docker.com/storage/storagedriver/select-storage-driver/.

[33] D. Eckhard, "chroot(2) — Linux manual page," 22 03 2021. [Online].
Available: https://man7.org/linux/man-pages/man2/chroot.2.html.

[34] N. Kim, "uftrace: A function (graph) tracer for C/C++ userpace
programs," [Online]. Available: https://uftrace.github.io/slide/#1.

[35] G. Borello, "In search of 0xffffffffff600400: troubleshooting containers,
system calls and performance," 16 1 2018. [Online]. Available:
https://sysdig.es/blog/troubleshooting-containers/.

[36] Oracle Corporation, "9.11. Fine Tuning Timers and Time
Synchronization," 2022. [Online]. Available:
https://www.virtualbox.org/manual/ch09.html#fine-tune-timers.

[37] A. Vagin, "[PATCH 4/6] arm64/vdso: Handle faults on timens page," 2 6
2020. [Online]. Available:
https://lkml.iu.edu/hypermail/linux/kernel/2006.0/02544.html.

[38] M. Kerrisk, "clock_nanosleep(2) — Linux manual page," 22 03 2021.
[Online]. Available: https://man7.org/linux/man-
pages/man2/clock_nanosleep.2.html.

[39] M. Kerrisk and M. Kuhn, "nanosleep(2) — Linux manual page," 22 03
2021. [Online]. Available: https://man7.org/linux/man-
pages/man2/nanosleep.2.html.

[40] M. Sollfrank, F. Loch, S. Denteneer and B. Vogel-Heuser, "Evaluating
Docker for Lightweight Virtualization of Distributed and Time-Sensitive
Applications in Industrial Automation," IEEE Transactions on Industrial
Informatics, vol. 17, no. 5, pp. 3566 - 3576, 2020.

[41] M. M. Madden, "Challenges Using Linux as a Real-Time Operating
System," NASA Langley Research Center, Hampton, VA, 2020.

[42] Red Hat, Inc., "usleep(3) and nanosleep(2) have better granularity with
CFS scheduler in RHEL6," 14 October 2015. [Online]. Available:
https://access.redhat.com/solutions/186663.

[43] D. Eckhard, "gettimeofday(2) — Linux manual page," 22 03 2021.
[Online]. Available: https://www.man7.org/linux/man-
pages/man2/gettimeofday.2.html.

[44] Y. Zheng and D. M. Nicol, "A Virtual Time System for OpenVZ-Based
Network Emulators," in 2011 IEEE Workshop on Principles of Advanced
and Distributed Simulation, Nice, France, 2011.

[45] W. Felter, A. Ferreira, R. Rajamony and J. Rubio, "An updated
performance comparison of virtual machines and Linux containers," in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), Philadelphia, PA, USA, 2015.

[46] A. Torrez, T. Randles and R. Priedhorsky, "HPC Container Runtimes
have Minimal or No Performance Impact," in IEEE/ACM International
Workshop on Containers and New Orchestration Paradigms for Isolated
Environments in HPC (CANOPIE-HPC), Denver, CO, USA, 2019.

[47] D. Jin, Y. Zheng, H. Zhu, D. M. Nicol and L. Winterrowd, "Virtual Time
Integration of Emulation and Parallel Simulation," in SCS 26th Workshop
on Principles of Advanced and Distributed Simulation, Zhangjiajie,
China, 2012.

[48] J. Lamps, D. M. Nicol and M. Caesar, "TimeKeeper: a lightweight virtual
time system for linux," in Proceedings of the 2nd ACM SIGSIM/PADS
conference on Principles of advanced discrete simulation - SIGSIM-
PADS '14, Denver, Colorado, USA, 2014.

[49] J. Yan and J. Dong, "A lightweight container-based virtual time system
for software-defined network emulation," Journal of Simulation, vol. 11,
no. 3, pp. 253-266, 2017.

[50] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz and N. McKeown,
"Reproducible network experiments using container-based emulation," in
8th international conference on Emerging networking experiments and
technologies - CoNEXT '12, Nice, France, 2012.

[51] J. Yan and D. Jin, "A Virtual Time System for Linux-container-based
Emulation of Software-defined Networks," in SIGSIM-PADS '15:
SIGSIM Principles of Advanced Discrete Simulation, London, UK, 2015.

[52] J. Yan and D. Jin, "VT-Mininet: Virtual-time-enabled Mininet for
Scalable and Accurate Software-Define Network Emulation," in
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, Santa Clara, CA, 2015.

[53] M. Peuster, H. Karl and S. van Rossem, "MeDICINE: Rapid prototyping
of production-ready network services in multi-PoP environments," in
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Palo Alto, CA, USA, 2016.

[54] O. S. Navarro Leija, K. Shiptoski, R. G. Scott, B. Wang, N. Renner, R. R.
Newton and J. Devietti, "Reproducible Containers," in ASPLOS '20:
Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, 2020.

[55] A. Grau, S. Maier, K. Herrmann and K. Rothernel, "Time Jails: A Hybrid
Approach to Scalable Network Emulation," in 22nd Workshop on
Principles of Advanced and Distributed Simulation, Roma, Italy, 2008.

[56] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K.
Webb and J. Lepreau, "Large-scale Virtualization in the Emulab Network
Testbed," in 2008 USENIX Annual Technical Conference (USENIX ATC
08), 2008.

[57] C. Siaterlis, A. Perez Garcia and B. Genge, "On the Use of Emulab
Testbeds for Scientifically Rigorous Experiments," IEEE
Communications Surveys & Tutorials, vol. 15, no. 2, pp. 929-942, 2013.

[58] E. Eide, R. Ricci, J. Van der Merwe, L. Stoller, K. Webb, J. Duerig, G.
Wong, K. Downie, M. Hibler and D. Johnson, "The Emulab Manual:
Virtual Machines and Containers," 3 7 2020. [Online]. Available:
http://docs.emulab.net/virtual-machines-
advanced.html#%28part._docker-containers%29.

[59] Oracle Corporation, "Configurable Resources and Properties for Zones,"
October 2017. [Online]. Available:
https://docs.oracle.com/cd/E53394_01/html/E57855/z.config.ov-
3.html#VLZCRgpwbj.

[60] T. Koenig, "sleep(3) — Linux manual page," 22 03 2021. [Online].
Available: https://www.man7.org/linux/man-pages/man3/sleep.3.html.

