
EasyChair Preprint
№ 7733

The Cost of Time Virtualization in Linux
Containers

Xavier Merino and Carlos Otero

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 6, 2022



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

The Cost of Time Virtualization in Linux Containers 
 

Xavier Merino 
Dept. Computer Engineering and Sciences 

Florida Institute of Technology 
Melbourne, FL, USA 

xmerino2012@my.fit.edu 

Dr. Carlos E. Otero 
Dept. Computer Engineering and Sciences 

Florida Institute of Technology 
Melbourne, FL, USA 

cotero@fit.edu 

Abstract— With the advent of containerization, applications 
are subjected to a dynamic operating model that requires them to 
be deployed in ever-changing environments, restarted, updated, 
migrated, and even rolled back to previously working versions on 
a frequent basis. Because there are no strict guarantees on host 
placement or scheduling, an application may be restarted in a new 
host or at a later time, thereby losing their sense of time and 
refusing service owing to incongruent states. Until now, process 
time has been linked to a server. With the recent introduction of 
the Linux time namespace, it is now feasible to link time to a 
service. Processes under a time namespace can obtain a timeline 
of their own, irrespective of the host. Support for the time 
namespace is currently lacking in the most popular container 
engines. In this work, we present a workflow for building 
containers that leverage the time namespace, as well as the first 
analysis on the performance cost incurred by virtualizing time in 
Linux containers using this namespace. We consider 11 time-
related system calls and their vDSO variants, making this one of 
the most comprehensive studies on the overhead of time 
virtualization in the literature. 

Keywords—virtual time, containers, microservices, 
virtualization, namespaces 

I. INTRODUCTION 
Virtual time is defined as a technique for organizing 

distributed systems using a temporal coordinate system that is 
more computationally relevant than real time since it supports 
mechanisms for synchronization and concurrency control [1]. 
Virtual time does not have to be connected to real time; in fact, 
it is possible to have numerous local virtual clocks that are only 
weakly synced and all progressing toward higher virtual times. 
They may occasionally jump backwards, but the general trend is 
for them to be monotonic. When it comes to virtual time, 
multiprocessing systems and distributed systems have some 
similarities [2], and each process and action can be described by 
the temporal coordinates (𝑥, 𝑡), where 𝑥 is the process and 𝑡 is 
the instant in its virtual time. In the absence of virtual time, all 
processes share the host's chronology. 

To a limited extent, all Linux processes are already under 
virtual time. After all, the Linux Completely Fair Scheduler 
(CFS) introduces the concept of virtual runtime [3] (i.e., a 
measure of the runtime of a thread) for scheduling purposes [4]. 
Because the aim of CFS' virtual time is to improve the 
performance of interactive processes in desktop systems [5], it 
is not intended to reach beyond the confines of a host. Today, 
however, microservices are designed to be loosely coupled and 
scalable, with the ability to make use of disposable resources in 

dynamically provisioned settings. As a result, applications are 
typically divided into smaller components that are frequently 
restarted, updated [6], migrated [7], and even rolled back to 
previously well-known versions [8]. This modern operating 
model requires processes to be dynamically scheduled and there 
are no guarantees that a process, once halted, will resume in the 
same host or within a specified time frame. At migration time, a 
new process is created on the receiving host, and CFS’s virtual 
time notion is insufficient to prevent the process from believing 
that it has advanced or regressed in time. This may lead to 
service refusal due to an incongruent perception of system time 
[9] or a network timeout. This is because the concept of time is 
linked to a server rather than a service. 

The concept of virtualizing time for each process is not new. 
One of the earlier attempts to merge some code into the Linux 
kernel allowed a process to keep its own view of time by keeping 
offsets that were added to the current system time [10]. At the 
time, the only use case was to speed up the gettimeofday() 
system call by keeping a copy of time in userspace. However, 
the introduction of the vDSO [11], a kernel read-only shared 
library mapped into all userspace applications, became the 
standard for accelerated system calls and this attempt at virtual 
time did not make it to the kernel. Over the years, with the 
emphasis on OS-level virtualization techniques that had become 
popular as a result of containers, the Linux maintainers added 
support for a time virtualization approach, the time namespace 
[12]. This enables an application to maintain its own sense of 
time using the monotonic and boot time clocks. Unfortunately, 
outside of research environments, the usage of this namespace 
in microservices is not viable because it is not yet included in 
the Open Container Initiative (OCI) specification [13] and thus 
is not supported by mainstream container engines [14] [15] and 
orchestrators. Furthermore, due to implementation details, this 
namespace can only virtualize time reporting but not the rate of 
passage of time [16], limiting the full potential of virtual time. 

Because of the recent introduction of time namespaces, 
support in container engines is non-existent and very little is 
known about the impact of virtual time on an application’s 
performance. Furthermore, there is no published work on the 
performance implications of this new namespace.  In this work, 
we present a workflow for manually creating containers that 
leverage this new feature and present the first assessment of the 
overhead of time virtualization in Linux containers. We cover a 
wide variety of time-related system calls, and their vDSO 
counterparts, that may be impacted by the namespace, including 
those that are related to sleep, time reporting, and process timers. 
More specifically, we assess the overhead associated with using 



time virtualization in two scenarios: (1) when it is used 
independently from other container-enabling primitives, and (2) 
when all the typical characteristics of a production-grade 
container are applied. We compare these findings to a baseline 
of no-time virtualization in which the host provides time 
information unmodified. We search the literature for prior 
virtual time implementations in OS-level virtualization 
environments in order to draw comparisons. To the best of our 
knowledge, this is the most comprehensive analysis of the 
impact of time virtualization on runtime overhead so far. 

This work is divided into sections. Section 2 provides a brief 
description of timekeeping in Linux and the POSIX clocks that 
are available as of kernel version 5.13, as well as the ones which 
are virtualized using the newly introduced time namespace. We 
also discuss the role that namespaces play in supplying the 
primitives required to enable the segregation of processes via 
their own worldview, hence allowing the creation of containers. 
Section 3 provides a workflow for the manual building of 
containers that leverage the time namespace. Section 4 presents 
the system calls examined and describes the process used to 
collect data on the performance overhead incurred by using time 
namespaces at different virtualization levels. Section 5 describes 
the methodology used to compare the different virtualization 
scenarios. Section 6 discusses the comparison results. Section 7 
presents other implementations of virtual time in the literature 
and, when available, their performance overhead. Section 8 
presents concluding remarks and future avenues of research.  

II. BACKGROUND 
In this section we present a brief introduction of Linux’s 

timekeeping mechanisms and the clocks available for 
application use. We also provide an overview of containers and 
the Linux primitives that enable them, highlighting the recently 
introduced time namespace. 

A. Linux Timekeeping 
A variety of timekeeping devices (e.g., TSC, PIT, RTC, 

ACPI, HPET, and LAPIC) are available in modern hardware 
and can serve as clock sources for a system [17]. The purpose of 
a clock source is to give a chronology for the system, indicating 
where you are in time. In general, a system needs an adequate 
clock source that never goes backward, never stops ticking, 
avoids discontinuous time jumps, has a reasonable resolution or 
frequency, and is easily accessible to userspace code. In practice, 
this means that a clock source must be monotonic (i.e., always 
increasing), have high precision and a constant frequency, not 
move suddenly in time, and offer atomic access regardless of the 

underlying hardware design. The TSC (Time Stamp Counter), 
an auto-incremented CPU register, is the preferred clock source 
on current x86 hardware because the remaining timers do not 
meet the criteria or are not always accessible [18]. This is not to 
say that TSC is without flaws; rather, the flaws revealed by TSC 
are an acceptable compromise when contrasted to the 
alternatives.  

Timekeeping in Linux is accomplished via the concept of 
clocks, which are abstractions on the previously described 
hardware counters. Rather than making use of the clock sources 
directly (e.g., via the rdtsc instruction for the TSC) [19], 
applications can interface with Linux clocks for timekeeping. 
This allows for faster access than might be available for a clock 
source. For instance, the Completely Fair Scheduler (CFS) 
needs timing information very often, and while the clock sources 
might be very accurate, access to those is not fast enough. In 
such cases, sacrificing accuracy for speed is required, as 
accomplished in the CFS via the sched_clock() kernel 
function [20]. In other userspace scenarios, such as high-
performance databases and financial applications, the latency 
incurred by accessing the clock source may be excessive, 
necessitating the compromise of using Linux clocks. Linux has 
multiple clock variants and has added several options over time 
to accommodate the needs of applications and speed up the 
retrieval of information [21]. Table 1 displays a list of Linux 
clocks and their features.  

Applications may access clock related functionality via 
system calls. This may include obtaining the current date and 
time, the resolution of a clock, and setting interval timers on top 
of existing clocks. Because system calls are expensive due to the 
mode switch from user mode to kernel mode, several 
optimizations, such as the use of the vDSO (virtual dynamic 
shared object) have been implemented, particularly for 
frequently used system calls relating to time. The vDSO is a 
small, shared library that is mapped into the address space of all 
userspace applications to make kernel information available fast 
and reduce the calling overhead. See Table 2 for a list of time-
related system calls that we explore in this work.  

Nowadays, virtualization has become widespread. 
Hypervisor-based virtualization adds complications to 
timekeeping. For example, during virtual machine migration, 
the TSC value may experience a jump and the frequency may 
vary between hosts.  As a result, numerous initiatives to improve 
the TSC have been recorded , including paravirtualized clocks 
(e.g., pvclock, kvmclock, TSC page) [22] and hardware 
additions such as TSC scaling. In OS-level virtualization, the  

TABLE I.  AVAILABLE CLOCKS IN LINUX 

Clock Function Introduced Affected by Adjustments 
CLOCK_REALTIME Reports the number of seconds since the Epoch. Linux 2.6 Yes 
CLOCK_MONOTONIC Reports number of seconds since kernel booted. Linux 2.6 Partially (only adjtime and NTP) 
CLOCK_PROCESS_CPUTIME_ID Measures CPU time consumed by all threads of a process.  Linux 2.6.12 No 
CLOCK_THREAD_CPUTIME_ID Measures CPU time consumed by a thread. Linux 2.6.12 No 
CLOCK_MONOTONIC_RAW Like CLOCK_MONOTONIC but without adjustments. Linux 2.6.28 No 
CLOCK_REALTIME_COARSE Faster but less precise than CLOCK_REALTIME. Linux 2.6.32 Yes 
CLOCK_MONOTONIC_COARSE Like CLOCK_MONOTONIC but less precise. Linux 2.6.32 Partially (only adjtime and NTP) 
CLOCK_BOOTTIME Like CLOCK_MONOTONIC but counts suspended time. Linux 2.6.39 Partially (only adjtime and NTP) 
CLOCK_REALTIME_ALARM Interval timer on CLOCK_REALTIME with system waking. Linux 3.0 Yes 
CLOCK_BOOTTIME_ALARM Interval timer on CLOCK_BOOTTIME with system waking. Linux 3.0 Partially (only adjtime and NTP) 
CLOCK_TAI Reports International Atomic Time ignoring leap seconds. Linux 3.10 No 



TABLE II.  TIME-RELATED SYSTEM CALLS 

System Call Description vDSO 
(x64) 

clock_getres() Finds resolution of the given 
clock. 

No 

clock_gettime() Retrieves the time of the specified 
clock. 

Yes 

gettimeofday() Gives the time since the Epoch in 
seconds and microseconds. 

Yes 

nanosleep() Suspends execution until time has 
elapsed or process is killed. 

No 

clock_nanosleep() Suspends execution until time has 
elapsed in specified clock or 
process is killed. 

No 

timer_create() Creates a per-process interval 
timer on the specified clock. 

No 

timer_settime() Starts or stops a specified timer. No 
timer_getoverrun() Gets specified timer’s overrun 

count. 
No 

timer_delete() Stops and delete a specified timer. No 
timerfd_create() Creates a timer on a specified 

clock and returns a file descriptor. 
No 

timerfd_settime() Starts or stops a file descriptor-
based timer. 

No 

 

host OS provides the reference for time for all containerized 
loads. Migration of containers is also prone to suffering 
discontinuous jumps in time [9].  

While this has been addressed for virtual machines, it is still 
a challenge in the widely adopted container engines. The 
introduction of the time namespace is an attempt to give each 
container its own view of time, allowing it to preserve its time 
perception even after being migrated.  

B. Container & Namespaces 
Containers are a type of OS-level virtualization that allows 
developers to package an application into an image. Containers 
are portable and consistent throughout the development pipeline 
because they encapsulate all application needs, allowing for a 
smoother transition from development to testing and production 
environments [23]. Furthermore, containerized processes are  
segregated from the rest of the system, allowing an application 
to have its own worldview no matter where it runs. Containers 
have grown in popularity and are commonly utilized nowadays 
because of their dependability, scalability, and flexibility [24]. 

A container, unlike a Jail [25] in BSD or a Zone [26] in 
Solaris, is not a first-class concept in Linux [27]; instead, 
containers are built up of a combination of Linux primitives such 
as namespaces and control groups (cgroups). A namespace is a 
feature of the Linux kernel that allows an application to have its 
own view of a resource that is separate from the global resources 
[28]. When paired with cgroups, which allow monitoring and 
limiting resource utilization, a container can be limited to using 
a specific portion of its available resources (e.g., CPU, RAM, 
PIDs, RDMA, block I/O, etc.) [29]. This makes containers 
highly flexible and sophisticated, but it also allows for scenarios 
that would not be conceivable with Jails and Zones. For 
example, an application can be deployed in a container that is 
isolated from the rest of the system while sharing only the 
network namespace with another container for network traffic 
inspection. This type of resource sharing has become 
widespread due to the use of container engines and orchestrators 

(e.g., Kubernetes, Nomad, Mesos, etc.) and demonstrates 
container flexibility.  

Traditionally, Linux supported namespacing (i.e., isolating) 
the control group root directory, the IPC and POSIX message 
queues, network devices and stacks, mount points, process IDs 
(PIDs), user and group IDs, and hostnames. Recently, as of 
kernel version 5.6, it is possible to isolate boot and monotonic 
clocks through the time namespace, giving an application its 
own view of time irrespective of the host. In other words, this 
enables the use of virtual time in containerized applications. 

III. REFERENCE IMPLEMENTATION 
In this section, we present a reference implementation for 

using the time namespace in containers. Typically, a container 
engine (e.g., Docker, podman) would be used to deploy a 
container with the default presets. The container engine would 
make certain that the appropriate namespaces and control groups 
were applied to the application. However, support for the newly 
proposed time namespace is not yet implemented in popular 
container engines, necessitating manual application 
deployment. We demonstrate the building of a standard 
container from scratch using the util-linux package's 
unshare command [30]. Alternatively, you may achieve the 
same result by using the unshare() system call [31] with the 
appropriate flags (e.g., CLONE_NEWNET, CLONE_NEWNS, 
etc.).  

Fig. 1 depicts an activity diagram describing the procedure 
required to run an application under a time namespace as 
responsibility moves from the host to the newly constructed 
container. While this diagram only shows the configuration 
needed for the time namespace, it is expected that the other 
namespaces have been correctly configured as additional 
options to the unshare command. We also assume that the 
/proc pseudo-filesystem is mounted in the container.  

 The process on the host begins with the download of a base 
image from an image repository (#1). This is similar to how 

 
Fig. 1. Workflow to Implement Time Namespaces 



Docker uses base images in a Dockerfile with the FROM 
command. The image's root filesystem is then extracted (#2). 
This is possible with docker export or podman. If the root 
filesystem lacks all of the artifacts required to deploy an 
application, you should modify it to incorporate those files (#3). 
It's worth noting that, unlike Docker, we don't employ a layered 
filesystem (e.g., AUFS, OverlayFS) [32], so all modifications to 
the root filesystem are persistent. When the root filesystem is 
complete, run the unshare command with the proper flags to 
utilize the desired namespaces (#4). In addition, similar to how 
chroot [33] works, you must select a change of root to the root 
filesystem directory. The namespaces are created by the 
unshare command (and hence applies the concept of a 
container). If the time offsets for the CLOCK_BOOTTIME and 
CLOCK_MONOTONIC clocks were not supplied when executing 
the unshare command, you will need to change the 
container’s /proc/self/timens_offsets file with the 
desired offsets (#5). This must be completed before running any 
application. After you've established the offsets, you must fork 
and use exec to run your application (#6). This can be avoided 
if the fork flag is provided to the unshare command. The 
application will then run in the specified namespaces, with its 
own view of time. We have applied no resource constraints in 
our implementation, but we have enabled the use of the mount, 
UTS, user, IPC, network, PID, cgroup, and time namespaces. 
We used the official Ubuntu 21.10 image as the foundation for 
our container and added binaries to the /usr/bin directory to 
incorporate other applications.  

IV. DATA COLLECTION 
We aim to evaluate the performance impact of time 

virtualization on applications when compared to a non-
virtualized baseline. We collect execution timing information on 
11 time-related system calls and, when available, their vDSO-
accelerated counterparts. In this study, we refer to the collection 
of system call data as metrics. The metric name is derived from 
the system call name, and when we specify the clock or access 
mode, we label it accordingly (i.e., vdso_gettimeofday, 
clock_gettime_boottime). Table 2 contains a list of the 
system calls that we analyze, their intended use, and whether 
they have a vDSO equivalent. Table 3 contains a list of the 
metrics for which we collect execution time (in nanoseconds). 

We use uftrace [34] to acquire timing information about 
system calls. uftrace is a tool primarily inspired by ftrace 
that allows the tracing of C/C++ applications built with compiler 
instrumentation. uftrace is a robust tool for tracing user space 
functions, library functions, Linux kernel functions, and system 
events. We chose uftrace over alternatives like strace and 
ltrace because it combines the features of those two tools 
while having a lower tracing overhead than both.  

Based on the extent of virtualization used, we explored three 
levels:  

1) Non-virtualized: The application is deployed directly on 
the host, sharing all accessible global resources. There are no 
resource constraints, and the application runs as root. This is 
referred to as the baseline level. 

  

TABLE III.  METRICS COLLECTED 

Metric Description 
clock_getres Finds resolution of CLOCK_MONOTONIC. 
clock_gettime_ 
monotonic 

Retrieves the time of CLOCK_MONOTONIC. 

vdso_clock_ 
gettime_monotonic 

Retrieves the time of CLOCK_MONOTONIC 
using the vDSO. 

clock_gettime_ 
boottime 

Retrieves the time of CLOCK_BOOTTIME. 

vdso_clock_ 
gettime_boottime 

Retrieves the time of CLOCK_BOOTTIME 
using the vDSO. 

gettimeofday Retrieves the time of CLOCK_REALTIME. 
vdso_gettimeofday Retrieves the time of CLOCK_REALTIME 

using the vDSO. 
nanosleep Suspends execution until time has elapsed in 

CLOCK_REALTIME. 
clock_nanosleep Suspends execution until time has elapsed in 

CLOCK_MONOTONIC. 
timer_create Creates a per-process interval timer on 

CLOCK_MONOTONIC. 
timer_settime Starts or stops a timer on 

CLOCK_MONOTONIC. 
timer_getoverrun Gets timer’s overrun count (on 

CLOCK_MONOTONIC). 
timer_delete Stops and delete a specified timer (on 

CLOCK_MONOTONIC). 
timerfd_create Creates a timer on CLOCK_MONOTONIC and 

returns a file descriptor. 
timerfd_settime Starts or stops a file descriptor-based timer 

(on CLOCK_MONOTONIC). 
 

2) Time Namespace Only: The application is deployed 
directly on the host, sharing all global resources except the 
system's perception of time. This is accomplished via the time 
namespace by setting offsets for the CLOCK_BOOTTIME and 
CLOCK_MONOTONIC clocks. There are no resource 
constraints, and the application runs as root. This is referred to 
as the namespace level.  

 3) Container: The application is deployed in a hand-built 
container and is isolated by using the eight available namespaces 
(i.e., cgroup, IPC, network, mount, PID, time, user, UTS). 
Namespaces provide the container with an isolated instance of 
the global resource, limiting what is shared. The container uses 
Ubuntu 21.10 as its base image. The time namespace was set up 
in the same way as the previous namespace scenario, by 
providing offsets for the CLOCK_BOOTTIME and 
CLOCK_MONOTONIC clocks. There are no resource 
constraints, and the application runs as root. This is referred to 
as the container level. 

We performed the tests in a virtual machine instance (4 
vCPUs, 8 GB RAM) hosted in a 12-core AMD Ryzen 9 3900X. 
The hypervisor used in the test was Oracle’s VirtualBox. Both 
the virtual machine and the host OS were running Ubuntu 21.10 
with kernel version 5.13.0-22-generic (x86_64). We made sure 
that both the containers and the host OS have the same kernel 
version as to avoid any performance issues that could be caused 
by “mismatched” kernels [35]. We preferred testing locally over 
testing in AWS instances because, although the latest Amazon 
Linux AMI contains kernel version 5.10 (which supports time 
namespaces), the util-linux packages is outdated (version 
2.30.2) and the unshare command does not recognize the time 



namespace as a valid option. We also chose the vCPU and RAM 
configuration to mimic the resource allocation that AWS 
provides to a xlarge, compute-optimized, instance. In terms of 
software, the VM made use of Ubuntu’s glibc 2.34-0ubuntu3, 
gcc 11.2.0, util-linux 2.36.1, and uftrace v0.9.4.  The 
host OS had Oracle’s VirtualBox 6.1.26r145957 installed as the 
hypervisor. VirtualBox maintains synchronization of all guest-
visible time sources with the monotonic host time [36]. 

For each system call, we collect 200 records, with each 
record representing the average of 1 million system call 
executions. This is done to obtain a more representative sample 
and to amortize the cost of the initial vDSO call, which normally 
results in a page fault [37]. 

V. COMPARISON METHODOLOGY 
We used hypothesis testing to determine whether time 

virtualization (with varying degrees of OS-level virtualization) 
degrades system performance by increasing the execution time 
of time-related system calls as compared to the baseline group. 
We divided the tests into three groups based on the extent of OS-
level virtualization used: non-virtualized (n = 200, baseline), 
namespace (n = 200), and container (n = 200). We assess 
normality using the Shapiro-Wilk’s test and confirm suspicions 
of violation of normality by visual inspection of Q-Q plots. 
Although not ideal from a statistical standpoint, we maintained 
the outliers because there is no reason to reject them or declare 
them invalid. We assess homogeneity of variances via Levene’s 
test.  

A one-way Welch ANOVA was conducted for each metric 
that exhibited heteroscedasticity to determine if the execution 
time differences between groups with varied levels of OS 
virtualization were statistically significantly different. For those 
metrics that met the assumption of homogeneity of variances, a 
one-way ANOVA was conducted instead. We express the 
difference in group means as a null 𝐻!  (all group population 
means are equal) and alternative 𝐻" hypothesis (the means of 
the groups are not equal). These tests are appropriate due to its 
robustness against deviation of normality, particularly when 
sample sizes are large and equal. For the cases where there is 
evidence that the null hypothesis can be rejected (i.e., there is a 
statistically significant difference between the means of the 
groups), we conduct a post-hoc test (i.e., Tukey HSD for 
ANOVA, Games-Howell for Welch’s ANOVA) to determine 
where the differences lie. Data is presented as mean ± standard 
deviation. In all cases, and for all tests, we report results at the 
95% confidence level.  

VI. RESULTS AND DISCUSSION 
We analyze the collected data and present the results in this 

section. To better discuss our findings, we divide the system 
calls into three groups depending on their functionality: sleep 
(which is concerned with system calls that cause delays), time 
(which is concerned with system calls that report time), and 
timers (concerned with system calls that arm and disarm per-
process timers). Table 4 summarizes our findings; refer to the 
table for more information on the statistical significance of the 
tests, the difference between the virtualization levels' means, and 
their confidence intervals. 

A. Sleep Inducing System Calls 
We included clock_nanosleep() and nanosleep() 

in the group of system calls that cause delays. Both system calls 
implement high-resolution sleep (i.e., suspending the calling 
thread's execution) until the specified time expires, a signal 
triggers a handler in the calling thread, or the process is 
terminated [38] [39]. If the requested time is not an exact 
multiple of the clock's granularity, the interval will be rounded 
up to the next multiple. We aimed at a 100-millisecond delay per 
system call in our experiments. The metrics associated with this 
group of system calls have the same name as the system calls 
from which they were produced.  

Unlike clock_nanosleep(), which counts time against 
a user-specified clock, nanosleep() uses the 
CLOCK_REALTIME clock in POSIX.1 conforming 
implementations. In Linux, CLOCK_MONOTONIC is used for 
nanosleep() since it is unaffected by discontinuous jumps 
in the system time, an aspect which is required for 
nanosleep() when using CLOCK_REALTIME. As a result, 
Linux's version is functionally equivalent to the POSIX-
compliant implementation. Another distinction between the two 
is that clock_nanosleep() can sleep until an absolute time 
has been met, rather than relying on sleep intervals alone. This 
provides the user with additional control and stops a process 
from sleeping for an extended period if the time has been 
adjusted by an administrator or updated via NTP.  

The execution time of clock_nanosleep() rose from 
the baseline (101.57ms ± 5.61ms) to the namespace (102.19ms 
± 6.26ms), to the container level (102.29ms ± 6ms). Similarly, 
the execution time of nanosleep() increased from the 
baseline (101.12ms ±  2.36ms) to the namespace (101.34ms ± 
2.38ms), to the container level (101.59ms ± 3.07ms), in that 
order. The differences between the virtualization levels in both 
system calls were not statistically significant. 

Because the sleep mechanism is mostly dependent on the 
scheduler, it was expected that there would be little difference in 
sleeping calls across virtualization levels. A sleeping task 
surrenders the processor to the scheduler, exposing the sleeping 
job to additional scheduling latency, which may result in the 
sleeping task not executing immediately after the sleeping 
interval ends. Additionally, because the kernel may be executing 
other sleeping tasks while the process sleeps, additional sources 
of latency may be introduced. As other processes execute, the 
tasks may also compete for the instruction cache, potentially 
introducing stalls due to cache misses when the process resumes. 
While we haven't quantified it, and it's possible to do so using 
performance counters, we attempted to limit this effect as much 
as possible by running the sleeping tests exclusively. It is critical 
to note that Linux is not a real-time operating system and hence 
cannot guarantee precise sleep intervals. However, you can rely 
on sleeping for an interval close to the specified one [40] 
because all processes, including containerized ones, are 
scheduled by the same kernel. As a result, Madden [41] 
advocated that when monopolizing the processor is not an issue, 
the use of nanosleep() be discouraged in favor of busy wait. 
Notably, when the Completely Fair Scheduler (CFS) was made 
the default scheduler, the granularity of sleeping system calls 
improved [42].



TABLE IV.  SUMMARY OF FINDINGS 

Metric 

Descriptives ANOVA Post Hoc Tests 

Level Mean 
(ns) 

Std. Dev 
(ns) df1 df2 F Sig. (I) Level (J) Level 

Mean 
Diff. 
 (I-J) 

Sig. 
95% CI 

LB UB 

clock_ 
nanosleep 

baseline 1.02E+08 5.61E+06 
2 597 0.85 0.426 N/A namespace 1.02E+08 6.26E+06 

container 1.02E+08 6.00E+06 
nanosleepa baseline 1.01E+08 2.36E+06 

2 393 1.48b 0.229 N/A namespace 1.01E+08 2.38E+06 
container 1.02E+08 3.07E+06 

clock_ 
getresa 

baseline 129.92 2.594 
2 392 391.54b <0.001 namespace baseline 3.440c <0.001 2.85 4.03 

namespace 133.36 2.383 container 0.405 0.150 -0.11 0.92 
container 132.96 1.934 container baseline 3.035 c <0.001 2.50 3.57 

clock_ 
gettime_ 
boottime 

baseline 146.85 1.913 
2 597 26.00 <0.001 namespace baseline 1.215 c <0.001 0.77 1.66 

namespace 148.06 2.004 container 0.070 0.927 -0.37 0.51 
container 147.99 1.751 container baseline 1.145 c <0.001 0.70 1.59 

clock_ 
gettime_ 
monotonica 

baseline 146.09 1.363 
2 389 389.29b <0.001 

namespace baseline 1.205 c <0.001 0.80 1.61 
namespace 147.29 1.999 container 0.380 0.091 -0.05 0.81 
container 146.91 1.598 container baseline .825 c <0.001 0.48 1.17 

gettimeofdaya baseline 121.37 1.296 
2 358 357.90b <0.001 namespace baseline 2.610 c <0.001 2.09 3.13 

namespace 123.98 2.833 container 0.535 0.091 -0.06 1.13 
container 123.44 2.221 container baseline 2.075 c <0.001 1.65 2.50 

timer_ 
createa 

baseline 282.56 5.219 
2 396 395.95b <0.001 namespace baseline 3.265 c <0.001 1.94 4.59 

namespace 285.83 5.980 container -1.285 0.086 -2.71 0.14 
container 287.11 6.097 container baseline 4.550 c <0.001 3.21 5.89 

timer_ 
settimea 

baseline 192.23 4.223 
2 396 396.08b <0.001 namespace baseline 1.805 c <0.001 0.85 2.76 

namespace 194.03 3.666 container -0.780 0.132 -1.73 0.17 
container 194.81 4.223 container baseline 2.585 c <0.001 1.63 3.54 

timer_ 
deletea 

baseline 227.05 3.822 
2 395 395.17b <0.001 namespace baseline 2.620 c <0.001 1.67 3.57 

namespace 229.67 4.226 container -0.925 0.098 -1.98 0.13 
container 230.59 4.711 container baseline 3.545 c <0.001 2.54 4.55 

timer_ 
getoverruna 

baseline 172.18 7.403 
2 391 391.33b <0.001 namespace baseline 2.795 c <0.001 1.25 4.34 

namespace 174.97 5.636 container -3.190 c <0.001 -4.71 -1.67 
container 178.16 7.200 container baseline 5.985 c <0.001 4.27 7.70 

timerfd_ 
createa 

baseline 576.83 8.572 
2 393 392.70b <0.001 namespace baseline 12.255 c <0.001 10.06 14.45 

namespace 589.08 10.017 container -0.390 0.930 -2.91 2.13 
container 589.47 11.378 container baseline 12.645 c <0.001 10.27 15.02 

timerfd_ 
settime 

baseline 241.17 3.456 
2 597 203.84 <0.001 namespace baseline 8.280 c <0.001 7.21 9.35 

namespace 249.45 5.407 container -0.335 0.809 -1.60 0.93 
container 249.79 5.378 container baseline 8.615 c <0.001 7.55 9.68 

vdso_clock_ 
gettime_ 
boottimea 

baseline 56.81 1.091 
2 396 396.44b <0.001 

namespace baseline 3.075 c <0.001 2.83 3.32 
namespace 59.89 0.947 container -.450 c <0.001 -0.69 -0.21 
container 60.34 1.058 container baseline 3.525 c <0.001 3.27 3.78 

vdso_clock_ 
gettime_ 
monotonica 

baseline 56.39 0.769 
2 386 386.28b <0.001 

namespace baseline 3.565 c <0.001 3.37 3.76 
namespace 59.96 0.920 container -.405 c 0.001 -0.66 -0.15 
container 60.36 1.212 container baseline 3.970 c <0.001 3.73 4.21 

vdso_clock_ 
gettimeofdaya 

baseline 55.36 0.886 
2 389 388.98b <0.001 namespace baseline 2.215 c <0.001 1.98 2.45 

namespace 57.58 1.114 container -.560 c <0.001 -0.84 -0.28 
container 58.14 1.267 container baseline 2.775 c <0.001 2.52 3.03 

a. Welch’s ANOVA used because metric exhibited heteroscedasticity. 
b. Asymptotically F distributed.

c. The mean difference is significant at the 0.05 level.

B. Time Reporting System Calls 
In the category of time reporting system calls, we included 

clock_getres(), clock_gettime(), 
gettimeofday(), and their vDSO counterparts. This is 
because these system calls report time or its precision. The 
system calls clock_gettime() and gettimeofday() 
obtain time information, whereas clock_getres() 
determines a clock's resolution. Unlike clock_gettime(), 
which allows you to choose the clock whose time you want to 

report, gettimeofday() reports on CLOCK_REALTIME 
only [43]. The following metrics are associated with this group: 
clock_getres, clock_gettime_monotonic, 
clock_gettime_boottime, gettimeofday, 
vdso_clock_gettime_monotonic, 
vdso_clock_gettime_boottime, and 
vdso_clock_gettimeofday. The execution time of all 
the metrics in this group was statistically significantly different 
amongst virtualization levels. 



The execution time of clock_getres() rose from the 
baseline (129.92ns ± 2.594ns) to the namespace (133.36ns ± 
2.383ns) level. From the namespace to the container level 
(132.96ns ± 1.934ns), there was a minor reduction. The 
execution time of the gettimeofday() rose from the 
baseline (121.37ns ± 1.296ns) to the namespace (123.98ns ± 
2.833ns) level. From the namespace to the container (123.44ns 
± 2.221ns) level, there was a slight decline. The execution time 
of clock_gettime() when CLOCK_BOOTTIME was 
specified increased from the baseline (146.85ns ± 1.913ns) to 
the namespace (148.06ns ± 2.004ns) level. There was a slight 
drop from the namespace to the container (147.99ns ± 1.751ns) 
level. When CLOCK_MONOTONIC was specified, the execution 
time rose from the baseline (146.09ns ± 1.363ns) to  the 
namespace (147.29ns ± 1.999ns) level. From the namespace to 
the container (146.91ns ± 1.598ns) level, there was a minor 
decline. In the aforementioned system calls, the rise from the 
baseline to the namespace level, as well as the increase from the 
baseline to the container level, were statistically significant, 
while the difference between the namespace and container levels 
was not.  

When evaluating the vDSO equivalents, the execution time 
of the accelerated clock_gettime() when 
CLOCK_BOOTTIME was specified rose in the following order: 
baseline (56.81ns ± 1.091ns), namespace (59.89ns ± 0.947ns), 
and container level (60.34ns ± 1.058ns). When using 
CLOCK_MONOTONIC, the time rose in the following order: 
baseline (56.39ns ± 0.769ns), namespace (59.96ns ± 0.920ns), 
and container level (60.36ns ± 1.212ns). The accelerated 
gettimeofday() execution’s time grew incrementally from 
the baseline (55.36ns ± 0.886ns) to the namespace (57.58ns ± 
1.114ns), and the container level (58.14ns ± 1.267ns). All vDSO 
calls showed statistically significant increases from the baseline 
to the namespace level, as well as from the namespace to the 
container level. 

The system calls analyzed made use of 
CLOCK_REALTIME, CLOCK_MONOTONIC, and 
CLOCK_BOOTTIME. Of those three, only 
CLOCK_MONOTONIC and CLOCK_BOOTTIME (and their 
variants) are virtualized through the time namespace. Every non-
vDSO call has a statistically significant difference from the 
baseline to any OS-virtualization level, but not between 
execution in a time namespace and a fully namespaced 
container. Because CLOCK_REALTIME is shared with the host 
OS, we did not expect a major difference between the baseline 
and the other virtualization levels when using 
gettimeofday(). The increase, however, was not 
unreasonably expensive, with our worst-case scenario adding 
~2.15% overhead, in line with the 3%-5% percent overhead that 
comes with the use of containers [44] [45] [46]. Surprisingly, 
adding further virtualization characteristics (i.e., more 
namespaces) on top of the time namespace did not result in a 
substantial change in system call execution time. This 
demonstrates that the time namespace can be added to current 
container standards because is within acceptable overhead 
margins. When it comes to vDSO accelerated calls, the 
difference from the baseline is significant at every level of OS-
virtualization (i.e., from a time namespace only to a full 

container) and across virtualization levels. The mean difference 
is greater when accessing the CLOCK_MONOTONIC and 
CLOCK_BOOTTIME clocks, with differences ranging from 
2.83-3.78ns and 3.37-4.21ns, respectively, than when accessing 
CLOCK_REALTIME, with a mean difference ranging from 
1.98-3.03ns. This could be related to the extra calculations that 
the kernel must undertake in order to maintain the time offsets 
for the virtualized clocks. We don’t conduct additional tests to 
verify that vDSO calls are faster than system calls because (1) it 
is out of the scope of this study and (2) this is generally well-
accepted since it has been shown that system calls have a higher 
access latency than the vDSO calls. Because of the access 
latency, these minor differences noted with the vDSO calls may 
have been amortized in the system call results, resulting in non-
statistically significant differences between the namespace and 
the container levels. 

C. Timer System Calls 
We included timer_create(), timer_settime(), 

timer_getoverrun(), timer_delete(), 
timerfd_create(), and timerfd_settime() under 
the category of per-process timers system calls. These system 
calls create, arm, disarm, delete, and report on a timer’s overrun 
count. The fd variants allow setting up timers through file 
descriptors, which is a more event-loop friendly approach (i.e., 
allow the use of select(), poll(), and the epoll API) than 
the one provided by conventional timers. The associated metrics 
for this system call group carry the same name as the system 
calls from which they were derived from. All system calls in this 
group had a statistically significant difference in execution time 
between virtualization levels. 

The execution time of timer_create() increased from 
the baseline (282.56ns ± 5.219ns) to the namespace (285.83ns ± 
5.980ns), and the container level (287.11ns ± 6.097ns), in that 
order. With respect to timer_settime(), the execution time 
grew from the baseline (192.23ns ± 4.223ns) to the namespace 
(194.03ns ± 3.666ns), and the container level (194.81ns ± 
4.223ns), in that order. For timer_delete(), the execution 
time increased from the baseline (227.05ns ± 3.822ns) to the 
namespace (229.67ns ± 4.226ns), and the container level 
(230.59ns ± 4.711ns), in that order. The fd variants exhibited a 
similar pattern. The execution time of the 
timerfd_create() increased from the baseline (576.83ns 
± 8.572ns) to the namespace (589.08ns ± 10.017ns), and the 
container level (589.47ns ± 11.378ns), in that order. The 
execution time of the timerfd_settime() rose from the 
baseline (241.17ns ± 3.456ns) to the namespace (249.45ns ± 
5.407ns), and the container level (249.79ns ± 5.378ns), in that 
order. The increase from the baseline to the namespace level, as 
well as the increase from the baseline to the container level, were 
statistically significant in the aforementioned system calls, while 
the difference between the namespace and container levels was 
not. 

The execution time of the timer_getoverrun() 
system call climbed from the baseline (172.18ns ± 7.403ns) to 
the namespace (174.97ns ± 5.636ns), and the container level 
(178.16ns ± 7.200ns). The rise from the baseline to the 



namespace level, as well as the increase from the namespace to 
the container level, were statistically significant. 

The results reveal that there appears to be no discernible 
change in execution times for creating, arming, disarming, and 
deleting timers on CLOCK_MONOTONIC, in both conventional 
and file descriptor system call variants. The file descriptor 
variants, on the other hand, exhibit higher mean 
execution times, which is most likely owing to the underlying 
opened files interacting with the timer itself. The only exception 
was timer_getoverrun(), which had statistically 
significant differences in execution times across 
all virtualization levels. There is no overrun system call 
available for the file descriptor variants as this is obtained via 
read() on the file descriptor. The time to create a timer 
increased by 2.19%, the time to arm/disarm a timer climbed by 
3.57%, and the time to delete a timer increased by 1.56% under 
our worst-case scenario. The overhead in all circumstances is 
less than 4%, which is comparable to the overhead associated 
with containerized loads. 

VII. RELATED WORKS 
Other attempts at virtual time have been documented in the 

literature. In our search, we excluded works that made exclusive 
use of virtual machines and favored those that used some form 
of OS-level virtualization (e.g., namespaces, containers, jails, 
zones). From those works, we cover their use of virtual time and 
any discussion of the performance overhead that the authors 
made available. 

Zheng and Nicol [44] developed a virtual time system that 
simulated functional and temporal behavior of network 
communication by trapping the execution of system calls to 
return an illusion of virtual time as required by the simulation 
using OpenVZ’s Virtual Environments. This is one of the 
earliest attempts at using OS-level virtualization to decouple the 
virtualization of execution and time to prevent the execution 
from reflecting the host’s serialization of tasks. Their approach 
requires changes to the OpenVZ kernel so that tasks are correctly 
scheduled and modifications to system calls such as 
gettimeofday(). In their experiments they noticed an 
overhead of 4.9% over the non-virtualized baseline. Jin et al. 
[47] expanded the work and employed this custom kernel to 
support a parallel network simulator, S3F. They added the 
ability to advance in virtual time only when there is activity in 
an application or network. Although unmentioned, we assume 
that they inherit the same overhead from Zheng and Nicol’s [44] 
work based on their adoption of the custom kernel. 

In TimeKeeper, Lamps et al. [48] introduced a set of Linux 
kernel modifications to embed Linux Containers (LXC) into 
virtual time for network simulation. The main concept is to give 
each container a dilated view of time to make it seem as if time 
advances more slowly than real time to make network resources 
appear faster. To achieve this, they added to the Linux 
task_struct to include a time dilation factor (TDF) and 
other variables related to timekeeping, exposed an API to 
control time operations (e.g., dilation, freeze/unfreeze, time 
leaping, etc), modified system calls (e.g., gettimeofday(), 
sleep(), poll()), and used hrtimers to schedule the 
execution of containers. The choice of hrtimers ended up 

affecting the accuracy of virtual time, but in 90% of the cases 
they were able to keep virtual time within 4us of the expected 
virtual time. This is because their approach lacks flexibility in 
scheduling by subjecting a process to a fixed execution time 
slice. When evaluating their approach for overhead, they did not 
evaluate each modification for overhead but rather how many 
containers they could deploy while maintaining the validity of 
virtual time. They found that this was related to the time dilation 
factor used for the containers: 6/(𝑇𝐷𝐹	 + 	1).  

TimeKeeper has been the inspiration for the saga of work 
presented by Yan and Jin. In [49] they expanded the fields added 
to task_struct and added a pair of system calls to unshare 
time and set the dilation factor. They applied those 
advancements to the work of Handigol et al. [50], to provide the 
emulator, Mininet-Hifi, with the ability of virtual time. They 
enhanced it by adding a freezer system capable of stopping and 
resuming a container’s virtual time. This was a source of trouble 
for Mininet-Hifi since containers use the same system clock of 
the physical machine and this leads to a wrong perception of 
time because a container’s clock keeps advancing even if it is 
not running. In [51] and [52] Yan and Jin reshaped their work 
into a Linux namespace, the clock namespace. The final 
implementation, VT-Mininet, resembles modern day practices 
because there is use of control groups (via Mininet-Hifi), 
container primitives, and traffic shaping. In their tests, the 
average overhead for a gettimeofday() system call was 
13ns. Because some time related system calls are accelerated via 
vDSO, the containers are able to bypass the features 
implemented by Yan and Jin. As a workaround, they disabled 
the use of vDSO for those system calls. Other forks of Mininet 
include Containernet [53] where Docker containers are used 
instead of the manual combination of container-building 
primitives.  

Navarro et al. [54] implemented virtual time by using a 
counter of time-related system calls invoked by a process. This 
ensures a monotonic logical time that can be used to guarantee 
reproducibility of execution stages in containerized processes. 
In their implementation, they intercept vDSO calls and replace 
them with system calls. We are only concerned with the 
overhead of their virtual time solution, but this is not explored. 
However, the higher access latency of system calls when 
compared to vDSO calls is widely documented.  

Another use of OS-level virtualization is the use of Jails in 
BSD-based systems. Grau et al. [55] used a hybrid approach 
combining VMs, Jails, and BSD’s Virtual Routing to provide 
time virtualization (based on time dilation) for virtual nodes (i.e., 
network processes). Their evaluation of the system did not 
include runtime overhead tests, rather, they focused on the 
memory consumption of each virtual node and discovered that 
their approach was lighter by consuming less memory than those 
implemented under Xen for Linux-based systems. 
Unfortunately, we can’t directly compare their approach since 
no runtime overhead was given. Hibler et al. [56] modified 
Emulab to make use of FreeBSD Jails. Emulab uses the concept 
of virtual time to guarantee the ordering of events in an 
experiment [57]. The goal of the enhancements was to enable 
the emulation of systems larger than the underlying testbed 
through light virtualization. There was no mention of the 
overhead of virtualization as the authors considered that fidelity 



was not as important for small scale simulations. Today, Emulab 
is able to use Docker containers as well as virtual machines [58]. 
In Solaris Zones, starting with Solaris 11, virtual time has been 
implemented by allowing each non-global zone to set its own 
time via the clock_settime() system call [59].  

In comparison to the studies described above, our work 
delivers the most comprehensive study on the impact of virtual 
time on runtime overhead. Several time-related system calls 
were omitted. We did not discuss the system calls time(), 
ftime(), sleep(), and clock_settime(). We didn't 
include time() and ftime() because they were superseded 
by clock_gettime(). We only included 
gettimeofday() as a point of comparison with the research 
mentioned in this section as it has also been supplanted by 
clock_gettime(). The sleep() system call is not 
covered because it is implemented via nanosleep() [60]. We 
exclude clock_settime() because the time of a time 
namespace can only be set once, hence all applications that get 
forked after the initial setup inherit this configuration. It is worth 
noting that the official Linux namespace outperforms the 
alternatives and, unlike many other studies, can operate with 
accelerated vDSO calls. 

VIII. CONCLUSIONS & FUTURE WORK 
Virtualizing time is not a novel concept. It has been explored 

in the literature for hypervisor-based and OS-level virtualization 
systems. Recently, with the widespread adoption of containers, 
a new Linux primitive was added, the time namespace. This 
allows processes to “unshare” their perception of time from the 
host system. By decoupling their timelines, processes are able to 
keep their own perception of time, regardless of the host on 
which they execute. There is little information available about 
the performance overhead of time virtualization. In previous 
attempts, researchers focused primarily on the ability to dilate 
and virtualize time as a means of multiplexing resources, rather 
than as an intrinsic feature of a process. To meet the 
requirements of today’s dynamic operating models, and as the 
microservices trend becomes stronger, the concept of time must 
be tied to a service rather than a server. 

In this work we presented a workflow to leverage the newly 
introduced time namespace for creating containers that possess 
their own view of time. We subsequently tested 11 time-related 
system calls and their vDSO counterparts for runtime overhead 
when time virtualization was used. We evaluated the overhead 
associated with employing time virtualization in two scenarios: 
(1) when used independently from other container-enabling 
primitives, and (2) when all normal characteristics of a 
production-grade container are applied. We demonstrated that 
the runtime performance of a process running in a time-
namespace differs little from that of a process running in a fully 
namespaced container. In our experiments, the performance 
impact was of less than 4% in the worst-case scenarios, with 
most system calls exhibiting an increase of ~2% in runtime. 
Because virtualizing time may have an impact on applications 
that rely heavily on timing mechanisms, it is critical to analyze 
the impact of virtual time in containers, particularly as they are 
becoming the typical approach of delivering applications in the 
cloud. According to our findings, applications running in virtual 

time will incur low overhead, comparable to that of currently 
employed OS-level virtualization techniques. 

In the future, we intend to add a storage overlay solution to 
our handmade containers so that we can carry out direct 
comparisons against Docker containers.  
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