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Abstract
No single case of Bunyakovsky’s conjecture for degree greater than one has been proved, although

numerical evidence in higher degree is consistent with the conjecture. In this paper we overcome such
misfortune.
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1 Introduction

Since the number of all primes is infinite we have the question of whether the number of primes,
which for example are contained in the form n2 + 1 (the 4th Landau problem, the 5th Hardy-Littlewood
conjecture), is also infinite. As the 4th Landau problem (it goes back to Euler, who observed in a letter
to Goldbach in 1752 that n2 + 1 is often prime for n up to 1500) demonstrates, particular problems of
this type have long been of interest; however, the first formulation of a precise conjecture had to wait
until Viktor Bunyakovsky in 1857 [1]:

Suppose f(x) is a non-constant polynomial with integer coefficients and positive leading coefficient.
Moreover, suppose that f(x) is irreducible in Z[x] (Z is for integers) and that there is no prime q which
divides f(n) for every positive integer value of n (the numbers f(n) should be relatively prime). Then
f(n) is prime for infinitely many positive integer values of n.

Bunyakovsky’s conjecture was later generalized to a finite family of polynomials by Schinzel, who with
Sierpinski [2] gave several applications to elementary number theory.

In the case of a single linear polynomial, Bunyakovsky’s conjecture amounts to Dirichlet’s 1837 theo-
rem on primes in progressions. But Dirichlet’s theorem has remained the only proven case of it.

Probably the main problem with the conjecture is the lack of good reformulations of its conditions in
case of degree higher than 1. This leads to the idea of consideration not one polynomial, but aggregation
of polynomials in the following way:

Conjecture. If the leading coefficient of a polynomial f(x) with integer coefficients is positive, then there
exists integer c such that f(N) + c contains infinitely many primes.

It is helpful to keep in mind next picture: every integer point (x, y) on coordinate plane represents
tuple {x, f(x) + y}. Notice that for any fixed n f(n) + c (c is any integer) contains all prime numbers,
as it covers range of arithmetic progression x + 1. Moreover, Hilbert’s irreducibility theorem guarantees
that the polynomial f(x) + c is irreducible for almost every c. In addition, it is worthy to highlight that
the Conjecture is obvious for a linear polynomial and it can be used to give a simple proof of Dirichlet’s
theorem on arithmetic progressions.

In this paper we show existence of a quadratic polynomial, range of which contains infinitely many
prime numbers. On the whole, we prove the first case of Bunyakovsky’s conjecture for degree greater
than 1.
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2 Main result

To obtain the pronouncement we are going to use Fermat’s Theorem on sums of two squares.

2.1 Fermat’s Theorem on sums of two squares

Fermat’s Theorem on sums of two squares states that if p = 4k + 1 is a prime number, it can be
expressed as the sum of two squares. Euler succeeded in proving Fermat’s theorem on sums of two
squares in 1749 with such propositions:

(i) if a number which is a sum of two squares is divisible by a prime which is a sum of two squares,
then the quotient is a sum of two squares;

(ii) if a number which can be written as a sum of two squares is divisible by a number which is not a
sum of two squares, then the quotient has a factor which is not a sum of two squares.

In addition, formula (Sum of Squares Function, see [3]) for number of representations of a natural

t = 2a0q2a1
1 . . . q2ar

r pb11 . . . pbss ,

where the qi are primes of the form 4k + 3 and the pj are primes of the form 4k + 1, as the sum of two
squares, ignoring order and signs, is

r2(t) =


0 if any ai is a half-integer
1
2B if all ai are integer and B is even
1
2 (B − (−1)a0) if all ai are integer and B is odd

B = (b1 + 1)(b2 + 1) . . . (bs + 1)

Accordingly, representation as sum of two squares is unique for any prime 4k+1 and any prime 4k+3
is not sum of two squares.

Remark 1. B. M. Bredihin proved the infinitude of primes of the form x2 + y2 + 1.

2.2 Theorem

Theorem. Range of x2 + 1 or x2 + (x− 1)2 contains infinitely many primes.

Proof. Assume to the contrary: there exists natural N that for any natural number n > N none of
the numbers n2 + 1, n2 + (n− 1)2 are primes.

If p = 4k+1 is a prime number, then there must be natural m such that m2+1 is divisible by p (we can
see this by Euler’s criterion or via Lagrange’s approach with quadratic forms). Thus, for p = 4k + 1 > N
we have that

p = t2 + l2,

m2 + 1 = (v2 + w2)(t2 + l2),

where t, l > 1, t− l > 1 and v2 + w2 > 1 by the assumption.
We wish to show that these limitations on t, l are enough to state that any representation as sum of

two squares of m2 + 1 must have the same restrictions. That will obviously lead to the contradiction. We
use Diophantus/Brahmagupta–Fibonacci Identity for that, which says that the product of two sums of
two squares is itself a sum of two squares. Namely,

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2 = (ac + bd)2 + (ad− bc)2,

where, without loss of generality, a ≥ b ≥ 0, c ≥ d ≥ 0.
Observe:

(1) If c, d > 1, then ad + bc, ac + bd > 1.
(2) If c, d > 1 and b = 0, then ac− bd = ac, ad− bc = ad > 1.
(3) If b 6= 0, c, d > 1 and (c− d) > 1, then ac− bd = b(c− d) + (a− b)c > 1.
(4) If b 6= 0, then |ad− bc| = |b(d− c) + (a− b)d| can possibly be one.

Notice that c, d is relatively prime. Given relatively prime integers c, d, there are integers a, b such that
ad− bc = 1, as there are integers s, t that 1 = sc + td (the Euclidean algorithm). Thus, a := t, b := −s.
And a > 1 by the assumption.
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Consequently, for any sufficiently large prime p = c2 + d2 there exist pair of naturals a, b with a > 1
such that ad− bc = 1.

SL2(Z) = {2− by − 2 integer matrices with determinant 1}

(
1 0
1 1

)n
=

(
1 0
n 1

)
⇒ n2 + 1

(
1 0
1 1

)n−1(
1 1
0 1

)
=

(
1 1

n− 1 n

)
⇒ (n− 1)2 + n2

Matrices

(
1 0
1 1

)
and

(
1 1
0 1

)
have infinite order

Connection with SL2(Z) finishes the proof.5

Remark 2. Euler’s 6k+ 1 theorem states that every prime of the form 6k+ 1 can be written in the form
x2 + 3y2 with x and y positive integers (every prime number other than 2 and 3 is of the form 6k ± 1).
A prime dividing n2 + n + 1 can only be 3 or of the form 6k + 1. So, Theorem can be generalize for this
instance.

Remark 3. All primes appear as factor on the three polynomials: x2 + 1, 2x2 + 1, 2x2 − 1. All primes of
2x2 − 1 are of the form 8k + 1 or 8k + 7.

2.3 Generalization

2.3.1 Waring’s problem

Waring’s problem asks whether each natural number k has an associated positive integer s such that
every natural number is the sum of at most s natural numbers raised to the power k. For every k let
g(k) denote the minimum number s of kth powers of naturals needed to represent all positive integers.
It has been determined that g(k) <∞. For example, every natural is sum of at most 4 squares, 9 cubes,
or 19 fourth powers.

Remark 4. From [4] it is known that for each odd natural n there exist non-negative integers x, y, z
such that n = x2 + y2 + 2z2. Moreover, it is not possible to represent any natural number in the manner
ax2 + by2 with 1 ≤ a ≤ b.

Remark 5. Notice that all numbers of the form 2(4m), 6(4m) or 14(4m) cannot be represented as a sum
of four non-zero squares. Moreover, 2(4m), 6(4m) and 14(4m) have only one representation as a sum of
four squares. Is 2(4m) + 2 a sum of two primes in the form 4k + 1?

2.3.2 Goldbach–Linnik type and Waring–Goldbach type problems

Goldbach’s conjecture is one of the oldest and best-known unsolved problems in number theory and all
of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers,
as Goldbach was following the now-abandoned convention of considering 1 to be a prime number.

It is known that the set of even integers that are not the sum of two primes has density zero. Olivier
Ramare showed that every even number is sum of at most six primes and Terence Tao indicated that
every odd integer is a sum of at most five primes. Moreover, it was exhibited by Yuri Linnik that every
sufficiently large integer can be represented as the sum of two primes and K powers of two, where K is
an absolute number (K = 13 is acceptable).

Furthermore, all sufficiently large odd integers can be represented in the form n = p1+p22+p33+p44+p55,
where pi, i = 1, . . . , 5 are primes. Additionally, every sufficiently large integer congruent to 14 modulo
240 may be written as the sum of 14 fourth powers of prime numbers. And every sufficiently large odd
integer may be written as the sum of 21 fifth powers of prime numbers. Besides, every sufficient large
odd integer is a sum of one prime, two squares of primes and 31 powers of two.
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Remark 6. It is worth bringing up here Yitang Zhang and Polymath Project collaborative result: there
are infinitely many prime gaps (a prime gap is the difference between two successive prime numbers) that
do not exceed some constant (246 can be taken).

2.3.3 Cubes and Fourth Powers

Which primes are sums of two cubes? The prime 2 and primes of the form 3x2 − 3x + 1 for some
integer x. However, there are infinitely many primes of the form x3 + 2y3. Moreover, Ω(n0.9) of the
numbers from 1 to n have representations as sums of three cubes of non-negative integers. And it is
conjectured that every sufficiently large natural number can be represented as a sum of four cubes of
natural numbers. So, is the Conjecture true for f(x) = x3?

It is important problem to determine whether there are infinitely many prime numbers, which are
represented in the form p = a4 + b4. However, we know that Ω(n0.8) of the numbers from 1 to n have
representations as sums of four fourth powers.

Remark 7. Notice that some probabilistic models suggest that the sums of four fourth powers, and more
generally sums of k perfect kth powers for k ≥ 3, should have positive natural density. In particular the
gaps between these numbers are conjectured to have bounded average size.

3 Useful observations

3.1 Complete and subcomplete sequences

Given a sequence S of positive integers, let P (S) be the set of numbers which can be represented as
the sum of a finite subsequence of S. Then S is complete if N \ P (S) is finite, and subcomplete if there
are positive integers m and n such that {mk + n, k ∈ N} ⊂ P (S).

Roth & Szekeres [5] and Graham [6] showed that if a polynomial f with real coefficients maps integers
to integers, a necessary and sufficient condition for the range of f to be complete is that the leading
coefficient is positive and for any prime p there exist an integer n such that p does not divide f(n).

Any integer-valued polynomial f(x) = a0 + a1x + · · · + adx
d can be written in the basis of binomial

coefficient polynomials f(x) = â0 + â1
(
x
1

)
+ · · ·+ âd

(
x
d

)
, where each âi is an integer. As claimed in [5][6]

the range of a polynomial f is complete if and only if âd > 0 and gcd(â0, â1, . . . , âd) = 1.
Additionally, if a (rational) polynomial maps positive integers to positive integers, its image is subcom-

plete [5][6][7]. Szemeredi and Vu [8] showed that there is a constant c such that the following holds: any
increasing sequence A = a1 < a2 < a3 < . . . satisfying A(n) ≥ cn1/2 (with A(n) = |{ai ∈ A : ai ≤ n}|)
for all n is subcomplete. A subcomplete sequence S is complete if and only if for all m P (S) has an
element in all residue classes mod m [5].

3.2 The p-adic analysis

Every polynomial with integer coefficients is 1-lipschitz mapping over the ring of p-adic integers Zp.
It turns out that any 1-lipschitz measure-preserving transformation on Zp is an isometry which induces
permutations on all residue rings Z/pkZ, k = 1, 2, . . . , and vice versa. That’s why measure-preserving
polynomials with integer coefficients on Zp are called permutation polynomials. See for details [9][10].
Even more, a polynomial f with integer coefficients induces a measure-preserving transformation on the
ring of p-adic integer Zp if and only if the mapping x → f(x) mod p2 is a bijective transformation on
residue ring Z/p2Z [9].

A permutation polynomial f is called ergodic polynomial on Zp if the mapping x → f(x) mod pk

is transitive modulo pk for all k = 1, 2, . . . , where transitivity modulo pk means that this permutation
x → f(x) mod pk on residue ring Z/pkZ has only one cycle of length pk. It is known that f is ergodic
if and only if it is transitive modulo p3, see [9].

Obviously, if a polynomial f is a permutation polynomial on Zp, then polynomial f + c is also a
permutation polynomial on Zp for any integer c. However, a linear polynomial from the Dirichlet’s
theorem is not always measure-preserving, see [9]. And gcd(â0, â1, . . . , âd) = 1 is not always true for
permutation polynomials, see [9].

Additionally, it seems that general case, an ordinary polynomials, can be considered as deviation
from permutation polynomials by meaning that not whole Zp, but some ball of non-zero radius in it is
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in the range. Paper [11] studies the topological structure of polynomial mappings over the ring of p-adic
integers.

3.3 Friedlander–Iwaniec theorem

It states that there are infinitely many prime numbers of the form a2 + b4, see [12]. Moreover, [13]
proves that there exist infinitely many integers n such that n2 + 1 is either prime or the product of two
primes. The last implies that one prime factor p of m2 + 1 is strictly smaller than m, and therefore also
divisor of (the usually much smaller) m̂2 + 1, where m̂ = m mod p.
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