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Abstract. Arti�cial general intelligence (AGI) should be founded on a
suitable framework, e.g. a rule-based design or Deep Learning (DL). Here
we choose the DL to be the basis for AGI. An appropriate AGI is de�ned,
followed by its appropriate DL implementation. We introduce an AGI, in
the form of cognitive architecture, which is based on Global Workspace
Theory (GWT). It consists of a supervisor, a working memory, special-
ized memory units, and processing units. Additional discussion about
the uniqueness of the visual and the auditory sensory channels is con-
ducted. Next, we introduce our DL module, which is dynamic, �exible,
and evolving or growing. It can be also considered as a Network Archi-
tecture Search (NAS) method. It is a spatial-temporal model, with a
hierarchy of both features and tasks, tasks such as objects or events.

Keywords: Deep learning · General intelligence · Evolving · Growing.

1 Introduction

DL, as one of the Arti�cial intelligence (AI) approaches, is not as fully exploited
as it could be. First, deep neural networks (DNNs) are passive models, since they
have a �xed structure, while in reality there are dynamic processes, such as the
neurons' construction/destruction in the brain. Second, Learning in DL is simply
a categorization process without involving any thinking or imagination. Next, a
successful DL model (DLM) requires its designers to know the system, i.e., apply
implicit or explicit prior knowledge in the DLM. Moreover, a carefully designed
rule-based system may outperform a DLM, due to its dataset limitation, while
a rule-based system is designed for much broader and more diverse scenarios.
Finally, DL is highly task-speci�c. Even multi-tasking in DL requires all tasks
to be pre-de�ned. However, real AGI can generalize not only to unseen data but
also to unseen tasks (as in transfer/continual/meta learning). Nevertheless, we
propose a dynamic and �exible DLM that can be extended to AGI.

Next, we present an AGI architecture and a DLM, which can function as a
module in this AGI architecture, e.g. in the perception/actuation module.

Please note that this paper presents a short version. The DLM and espe-
cially the AGI are preliminary ideas, and described roughly and generally, with-
out mathematical details or implementation/results.
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2 Proposed AGI model

A general AGI model sketch is shown in Fig. 1. This AGI is based on GWT
[48,53,60] , describing a multi-agent system, where the agents are local controllers
behaving reactively, and competing with each other over access to the working
memory.

Fig. 1. AGI proposed architecture

Our AGI, however, has no competition
among its di�erent and independent modules,
i.e. processors and memories. Instead, it has
centralized control with di�erent elements,
where each element has a speci�c function.

Examples of similar cognitive architec-
tures are in Appendix 4.

2.1 AGI function

Here the function of the proposed AGI in
Fig. 1 is described.

As in humans, our AGI uses 1D (audio) input and 3D (visual) input, however,
it also uses them as outputs. Moreover, the visual channel can be extended to 1
or more dimensions, depending on the environment our agent is deployed in.

There is separate sequential processing of 1D and multi-D data, for feature
extraction and categorization of objects (static entities) or events (dynamic en-
tities). Next, these objects/events propagate into the WM. Finally, an output
is produced either through the 1D or the multi-D channel. If the output is an
emerging idea/thought, it can be expressed via a 1D channel, similarly to hu-
mans describing verbally their inner thoughts to the outer world. Alternatively,
it can be expressed via the multi-D channel, thus can be regarded as screening
imagination, which is like projecting the current thought into a screen.

Additionally, 1D information (such as language) has a shared memory for in-
put, output, and WM, denoted as 1D memory. This is also true for the multi-D
information. The bidirectional arrows in Fig. 1 represent the acquisition (read-
ing) and the update (writing) operations with the storage module.

The output communication of 1D and multi-D information can have various
modes, such as continuously monitoring thoughts or waiting for a meaningful
output. In addition, the AGI may have a degree of independent choice of when
to interact and through which of the two channels.

This particular AGI is based upon Stimulus-Response behavioral theory [70],
which states that the mind can be communicated with, although unobservable.
This assumption is similar to the Chinese Room Argument, since there is only
direct access to the output of the agent and not to the operations within. In
other words, there is no explainability over the AGI's inner operations (it is a
black-box), and so only the output can be analyzed. It is referred to as intelligent
behavior, which is also expressed by human productivity over time, in �elds such
as science, psychology, and technology.
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(a) AI identifying. (b) AGI interpretating.

Fig. 2. Comparison between AI and AGI comprehending the environment.

This AGI does more than static/dynamic object identi�cation or scene un-
derstanding [39], as in DL. It extends to the temporal dimension, by including:
events, objects' behavior and function, associations from past experiences, etc.
It is illustrated by comparing the current AI and the proposed AGI, in Fig. 2.

Just like Einstein's relativity theory, space and time are not separated, but
treated as one whole concept. Similarly, our DLM is based on this hypothesis.

2.2 AGI characteristics

Firstly, we consider AGI's main purpose to be organizing information to be
utilized optimally in a variety of tasks. Hence, the self-supervision approach is a
suitable tool to estimate this main goal. Additionally, DNN is an e�cient model
and memory structure, which can achieve this goal, in the sense that it organizes
the data with the intention of recovering it later, see more in Appendix 5.

Secondly, we advocate that e�ciency is more important than e�ectiveness, in
AGI, since it is about the exploitation of available resources, while e�ectiveness
is about how well a goal is achieved [1], e.g. the common attitude in DL to
compare performances.

Finally, other characteristics an AGI should have are those imitating humans,
such as having human guidance and support as in infant-parent and student-
teacher interactions, having a correct teaching order (simple to complex), and
the ability to grow/evolve in compulsory stages.

2.3 Two information types in AGI

Here we discuss and propose a rationale behind the unique functioning of the
visual and auditory channels.

Firstly, we examine why humans do not possess an imagery output tool like
the multi-D output we permit in our AGI. One can argue it would hurt our
basic desire for privacy, but then just as we choose whether to talk or not, we
can similarly choose when to turn this tool on. Another argument could be due
to evolutionary survival reasons. Our current opinion is that the world we see
with our eyes is what we all agree upon. Other than that, our inner models of
the world are totally di�erent.
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Secondly, we re�ect upon the reasons for humans not having a symbolic or lin-
guistic channel to be objective as vision, i.e. why we end up with inner and unique
symbolic representation. We think it is because language is highly context-
dependent, and since each person has di�erent contexts along his life, or di�erent
experiences, then he develops a di�erent meaning/feeling/understanding of the
objective concepts we all agree upon. Hence, the concepts we use in external
communication are objective and common to all people, but their interpretation
is di�erent for each one. Therefore, the visual perception purpose is nothing but
the objective agreement for e�ective communication between humans, realized
via language. In other words, vision is not the main communicative channel for
us, though, deaf people can bypass it by using sign language and textual format.

Consequently, the purpose of having two channel types is to distinguish the
outer and inner world that the agent interacts with. Furthermore, humans (as
should be followed by AGI) base their inner representation on spatio-temporal
events, or operational language. A language comprised of objects, actions, and
attributes, and expressed by words/symbols. Therefore spatio-temporal infor-
mation can be transferred to humans not only by the static/objective world, but
even more broadly by language. Agents denoted as green circles, communicating
via 1D and individually perceiving multi-D input are illustrated in Fig. 3.

Fig. 3. Objective (right) verse Subjective inner representation (left).

3 Proposed DLM

Until now we presented a general AGI model. Now we turn to discuss which DLM
can implement such AGI, or implement each or some of its di�erent modules.

Any DLM requires some prior knowledge, also known as inductive bias. Then
due to di�culties with matching the most proper prior knowledge to each speci�c
problem we encounter - many studies try di�erent hyper-parameters or archi-
tectures, to get better performance, e.g. they use Network Architecture Search.
See more about it in Appendix 6.

Therefore, the DLM we propose is adaptive for continuous learning and can
serve also as a NAS method.

3.1 Proposed DLM function

Our proposed DLM is based on the inductive bias principle. It states that small
data requires simpler model while bigger data requires a more complex one. Com-
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plexity in DLMs is expressed in the NN size. Hence, assuming gradual learning
like in infants, we propose evolving DLM, starting from small NN, extending
successively to a bigger one, following abstraction, while encountering new data.

In the following, we describe our DLM evolution with comparison to an
infant, while perceiving a spatial-temporal type of data.

We presume, that an infant does not have any supervised learning at the
beginning of his life, but rather an unsupervised one. Only later that he fuses
multi-modal information about objects and their meaning.

The �rst thing he does is segment the time period into simple events. But he
starts with a single event detection (e.g. his total waking period) through some
initial DNN with several layers. See Fig. 4(a).

After a while, when enough counts detected the single event, a split of this
event is performed into two (or more) classes of events, e.g. day and night,
see Fig. 4(b). Counts are the number of times the output class was triggered.
Now, the agent can di�erentiate two events, sharing the same features. Later it
can extend the number of events, and recognize as many events as necessary.
Consequently, it is an adaptive NN structure, adaptive by necessity.

At some point of evolution, when connections (weights in DNN) and event
identi�cation (output layer's counts) are strengthened and established, the model
can change its attention or free its resources, since the given level had become
more automatic, similar to the idea in [32]. It can now build a new layer/level
on top of the previous ones, if a simultaneous re-occurrence of several events
is detected. For example, the re-occurrence of seeing the mom appearing and
preparing herself to give milk suggests to the infant that it is a composite event
on its own, see Fig. 4(c), where yellow=visual sensors, and green=neurons.

(a) (b) (c)

Fig. 4. Neuron separation and composition in the proposed approach (Ev.=Event).

Opposite structure-changing operations could be (i) deleting extremely rare
nodes/edges in the DNN, a bit similar to dropout regularization in DL; and (ii)
decomposing an event, if it appears to be more complex than it was supposed to
be. In other words, if previously it was treated as a speci�c-level event, now it is
�ne-grained, thus decomposed into simpler events (re�nement). It is decomposed
into either existing events or new ones. If new ones, then they have to be attached
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to lower-level events/features, e.g. see Fig. 5, where the "ball in the air" event is
decomposed into its three basics: throwing, moving in the air, and being caught.

(a) (b) (c) (d)

Fig. 5. Neuron decomposition in the proposed approach (Ev.=Event).

Decomposition is a highly uncertain operation, since it is unknown whether
an event is compositional, and if it does - how many events it consists of, and
which of these events are new and which are not. There are numerous ways to
deal with it, e.g. see studies in 3.5, but it is out of the scope of this paper.

For this dynamic algorithm to work, the number of visits has to be stored
for each weight (edge in DNN) and each neuron (node). If scalability is an issue
for large DNNs, the visits memorization can be reduced from being stored for
each neuron to being stored in each cluster of neurons in a large enough DNN.

Furthermore, the visits can be counted during waking periods (when the
DNN is �xed), and the structure update can be done during sleeping periods,
when there is no stimulus from the sensors, while the trajectory frequency within
the DNN is stored in the neurons themselves, as mentioned above. The rate of
structure changing can also be modeled with a learning rate as in RL, where at
�rst it is mostly exploration (i.e. fast NN growth), and then lesser exploration and
more exploitation. Finally, a �nite number of nodes and connections is presumed,
i.e. limited resources (so that it would not grow in�nitely), thus resulting in
adjusting the learning rate accordingly.

Finally, additional aspects for the DLM are presented in Appendix 7.

3.2 Advantages of the proposed DLM

This approach is self-supervised and not unsupervised, since it is not about
clustering into a pre-de�ned number of categories. Here, similar to NAS, the
number of categories and connections are all dynamic, and change according to
the decision of some supervising algorithm.

Another reason for this dynamic algorithm is that real intelligence does not
end up with categories like cat/dog (it evolves into more complex models). More-
over, most AI research works backward. It always starts from high-complexity
data and tries to learn it from scratch, instead of simple to complex learning as
it should be in an evolving AGI.

Additionally, this dynamic algorithm is less computationally expensive since
it has fewer connections compared to FC NN, similar to sparse NN.
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Finally, NAS is used to �nd some optimal hierarchical structure of features
represented via neurons for a given dataset. Thus, it is probably wrong to guess
the number of best-describing features at each layer. Dynamic NN deals with
this issue, by keeping only the relevant and true features/events.

3.3 Task hierarchy in the proposed DLM

The extending of classes converts this DLM into a hierarchical multi-class DNN.
Such DNNs exist in the literature. In [12] we have feature layers and then task
layers. Sometimes these layers can be mixed up. Labels' structure can be found
separately from the model [14, 47], or as a part of the model [27, 39, 46]. All
the tasks can be learned over one classi�er, i.e. globally or in the last layer of
the NN [14, 68] , or alternatively, intermediate tasks can be inserted inside the
NN, i.e. locally [12,46,57,71] . The structure can be learned from the data [39],
e.g. by unsupervised clustering of the labels via some similarity measure [47],
or it can be imported from external knowledge base [20], or used to change this
structure [14,27].

Similar to these papers, additional features can be inserted between task
layers in our proposed DLM, for example.

Additionally, unlike features that are distributive representatives of data,
holding only some piece of the actual information, tasks are end-point indepen-
dent data representatives, thus ruining in a way, NN's distributive nature.

However, this is not their main drawback. The fact that they are informa-
tional points - enforces a huge memory, since we need lots of them to represent
a huge amount of terms/concepts. As opposed to a small group of inter-related
features, which can characterize an enormous amount of input data. Thus, at
some point, replacing/converting tasks with/into features should be considered.

Fig. 6. Branching due to multiple hierarchies.

Generally, there may be di�erent hierarchies besides compositional ones, e.g.:
family tree, parts of speech, table of contents, topics, and sub-topics. One solution
could be, is for the evolution to develop into di�erent hierarchies, just like tree
expansion: in di�erent locations of a given NN and in di�erent structures. An
illustration of multiple hierarchies formed in a given NN is in Fig. 6.

3.4 Temporal dimension of the DLM

Until now the presented DNNs in the proposed DLM were represented via static
structure, i.e. a single simultaneous set of inputs produced a single simultaneous
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set of outputs. In other words, there were no recurrent connections to include a
temporal sequence of inputs.

Usually, spatial-temporal models combine CNN with RNN in di�erent ways.
Either separately: CNN�RNN or interchangeably: CNN�RNN�CNN�RNN...
Another way is to separate CNN and RNN to separate inputs, e.g. textual for
RNN and visual for CNN, with a fusion module at the end. In conclusion, event
tasks, such as classi�cation/clustering, can be done using the methods above.

Nonetheless, regular FC DNNs are used for spatial object tasks. But if our
goal is to extract features along the temporal dimension also, a simple addition
of recurrent connections could be made. Alternatively, an extension of the DNN
could be done to include a temporal dimension, without changing the spatial
dimension, i.e. orthogonal to it. See Fig. 7 for static and dynamic object tasks.

(a) (Front view) Objects tasks (b) (Side view) Events tasks

Fig. 7. Spatio-temporal DNN model.

In Fig. 7 it is shown a FC NN. However, if required, it could be specialized
in di�erent ways, e.g. by shared connections/parameters or convolutions. And it
can be done for either the spatial or temporal dimensions, or both.

3.5 Related Work

Several topics are involved with our DLM: continual/lifelong learning; unsu-
pervised learning, speci�cally deep and non-deep clustering; event detection;
multi-label and multi-task learning; Network Architecture Search, and more.

From the aspect of our task, video recognition tasks such as event detec-
tion [2, 38, 54, 69, 72] is a large topic in computer vision, and the most relevant
to our DLM, whose task is the continual re�nement of events. However, these
tasks mostly involve batch learning, not continual learning, and utilize �xed
architectures.

One practical application of our task, is for navigating robots to recognize
events, e.g. in [50]. However, they use time series of sensor and motor signals to
recognize important events, i.e. they do not use fully visual spatial data.
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From the aspect of our architecture, similar models are belong to the family of
growing networks [6,33], e.g. Incremental Grid Growing (IGG) [9], Growing Cell
Structure (GCS), Growing Self-Organizing-Map (GSOM) [3], Growing Neural-
Gas (GNG) [22], and their variations [4, 62, 64�66]. They all are unsupervised
methods, learning the data distribution. However, they are based on shallow NNs
with designed features [19,62], while we are focused on DNNs that automatically
extract features, to allow learning of more complex and diverse events.

Also, some of the methods above [6], utilize an age counter, similar to the
number of visitations in our model, which in general can be extended to other
counters, holding additional information for better clustering.

Nevertheless, there are variations of SOM that produce non-�at data struc-
ture, e.g. the growing hierarchical SOM (GHSOM) [6, 45, 52], which induces
hierarchical bias over the data to be learned. However, it implements only a top-
down generating hierarchy, which is equivalent to our decomposition operation
and can act as a legitimate implementation of this operation. We also implement
bottom-up operations such as splitting and merging. We actually construct the
hierarchy bottom-up, and the top-down is just an additional option.

Hierarchical clustering is usually illustrated via dendrogram, and it exists
also in other models, such as in Linkage based clustering, Tree-Structured SOM,
and Hierarchical Feature Map [6,52].

Nevertheless, [62] combines the two aspects, by using GSOM for anomaly de-
tection in changing surveillance scenes, i.e. same task in similar online settings as
we have. However since they use the shallow NNs described above, the features
are engineered, in this case behavioral features of the scenes. Moreover, its grow-
ing feature is used only for adapting to changing events, i.e. to �nd anomalies
in a changing environment. It is not made for gradual learning of events. Also,
unlike the anomaly detection task, our task is to learn normal recurrent events.

All the methods above use di�erent heuristics [4] to improve clustering in
di�erent tasks. Additionally, the search for the closest neuron to a given input
(like in k-nearest neighbor clustering) is the most expensive task, a step that
is absent in our approach. Finally, these methods, including ours, are of the
clustering type, and all have in common the problem of how to choose the suit-
able measure/distance. Hence, a more adaptive approach is needed, e.g. a deep
clustering topic that exists in DL.

Similarly, our DL approach, suggests the hierarchy will not include only the
neurons representing events, but also feature neurons in-between, to enable more
�exible learning and clustering of events.

Besides, there are growing networks for supervised learning [18, 44, 51] and
semi-supervised learning [51, 64, 67], especially for continual learning to avoid
catastrophic forgetting [49]. Networks that involve both growing and pruning,
such as Progressive Neural Networks (PNN) [49], Dynamically Expandable Net-
workS (DEN) [49,74], and DeepDPM [56].



10 S. Komarovsky

3.6 Contribution

Finally, the novelty/contribution of this paper is the notion that spatial-temporal
dimension is inseparable, hence it should be learned as it is right from the start,
contrary to the object detection tasks and alike. In addition, the learning must
be gradual, continual, and unsupervised all the time, and as our DLM demon-
strated, it must also practice gradual growth accordingly. Both of these principles
are essential for an AGI agent. Consequently, some ideas were formed from the
principles above, and should be re�ned further.
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4 Appendix - Cognitive Architecture

The diagram in Fig. 1 is also referred to as cognitive architecture, which repre-
sents an AI agent structure and functioning. For example, in the tra�c control
�eld, two studies [29, 48] implementing AI are based on distributed cognitive
architectures [41].

The �rst study [48] is based on GWT, containing agents imitating four brain
function types: (i) sensory type, holding positions and velocities of vehicles; (ii)
behavioral type, determining the light of the tra�c signal in some intersection;
(iii) consciousness type, representing the WM and interacts with other brain
functions; and (iv) motor type, executing the chosen signal phase for each inter-
section.

In the second study [29], an AI is implemented on a single intersection us-
ing a Multipurpose Enhanced Cognitive Architecture (MECA) [28], which was
adapted for the tra�c signal control problem. The design consists of a Cognitive
manager, i.e. a special kind of agent, like a car or an intersection agent, man-
aging a set of physical objects available on the Internet. These objects provide
information about themselves and receive commands. MECA is composed of
two independent systems communicating with each other: (i) a fast reactive sys-
tem holding the input sensors and output actuators, which is suited for normal
situations, and (ii) a goal-oriented motivational system suited for unexpected
situations. Overall, the automatic reactive and conscious elements of MECA
produce intelligent behavior.

These papers are rule-based designs using small-scale tra�c networks, i.e.
small data. However, for more adaptive and �exible designs, the DL is preferable
to the rule-based design. Moreover, any cognitive architecture is limited and
constrained by its structure. Therefore, we should have a wider view of it, thus
considering the boundaries between the components to be not so well de�ned
and perhaps changing.

5 Appendix - Order importance for AGI

5.1 Data organization

There is an issue to de�ne the AGI problem. Unlike regular classi�cation prob-
lems well de�ned in DNNs, it is di�cult to know what is the overall AGI purpose.
We believe for now, that it is to better predict or/and organize data. However,
prediction by itself is only the test for how organized data is. So perhaps pre-
diction is not the AGI's main goal, but rather only its tool (inner or secondary
objective) to estimate how well the organization is (which strives to low entropy).
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See for example in Fig. 8, a sketch diagram, illustrating how supervised learn-
ing changes the parameters (weights and biases) during training in NN, where
the given data is tuples of (input,output). The NN is structured hierarchically,
i.e. it is features of features, etc.

Hence, starting from random dis-ordered weights (represented as rectangles
inside the DNN), see Fig. 8(b), we gradually use inputs and outputs as magnets,
for di�usion or rearranging the weights in a hierarchical way, where at the end
of training (see Fig. 8(f)), the most input-related features will be closest to the
input and most output-related features will be closest to the output. This idea is
inspired by the visual feature maps in CNN, and by Information theory in [59].

[59] demonstrates di�usion of information in the encoder-decoder interpreta-
tion of a DNN. It shows that while propagating the DNN, the input is forgotten
and the output becomes more dominant. It uses Bottleneck method where the
learning compresses the input data and simultaneously captures relevant info
(reduce noise).

Note that when training on random labels, then the task is actually merely
memorization [76], since there is no consistency in the output data. Hence it also
has no generalization.

(a)
Input→NN→output

(b) Start (c) (d) (e) (f) Finish.

Fig. 8. Parameter evolution in supervised learning in NN (from right to left).

All the above demonstrates, in our opinion, that AGI is not an open-ended or
an objective-less system, but it actually has an inner objective, such as organizing
data in a utilizable way, or learning to react to the environment, and more.

Beyond the demonstration of organization illustrated above, DNN is also an
e�cient model and memory structure, which not only organizes the data, but
it does so with the intention of recovering it later, e.g. it enables recalling by
associations, clues, imperfect or missing data. E.g. association in NNs character-
ized via the multiple features an object has, which are distributed all over the
network. The DNN also compresses data, by storing a huge amount of patterns
in a limited and much smaller set of weights and biases compared to the amount
of all the samples it perceives.

For comparison, when we represent data in a tree-shape structure, then for
di�erent problems we must apply breadth-�rst-search (BFS), depth-�rst search
(DFS), heuristic types of search, and so on. However, these methods are only
rarely e�cient, since we do not know which of these methods best �ts for a given
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data. I.e., these methods work blindly on unorganized data. While the brain does
the opposite - it solves problems quickly, after organizing data.

Another example, is when a person thinks of several solutions for a problem,
then he/she does not do it via blind search, but via associative direct processing
(no permutations involved at all). We have a survival type of processing; it
cannot depend on a time-consuming search in some space of solutions.

Another example, is regular binary memory systems in computing devices,
which are highly ine�cient in the recovery phase. For example, it has to utilize
a binary search for an exact match.

Hence, the encoding or the storing phase in a memory system is highly
important. It a�ects how well and how fast the recorded data can be uti-
lized. Moreover, data that was organized accordingly to previous but also pre-
supposed/hypothesized future tasks, strengthen its e�cient usability.

For example, [8] performed self-supervised training, which allows predicting
any masked data from observed data. This demonstrates the idea of data being
organized such that it can be tackled in multiple forms and scenarios.

5.2 Order in teaching

Order is important not only in the data itself, but also in the sequence we provide
it to the AGI agent. Similarly in humans, it has to be from simple to complex
for example.

In DL the learning can be either incremental [12, 31] or simultaneous [57].
However, there is the catastrophic forgetting phenomenon in incremental learn-
ing [21], where the model abruptly forgets part of the knowledge related to a
previously learned task as a new task is introduced. [31] for example, uses a
successive regularization strategy to avoid this phenomenon.

5.3 Order through growth

Growth is an important AGI property, distinguishing it from non-growing AI
methods such as some of the rule-based methods or the �xed structures in DL.
It is a very important task of the AGI designer to plan the AGI agent such that
it can evolve and develop further independently and autonomously.

Considering humans, Piaget's psychological theory [24] suggests that there
are developmental stages in a child's development. Moreover, every stage is nec-
essary as the basic/foundation level from which the next level can be reached.
These stages accomplishment depends both on the environment (external) and
on heredity (internal).

Similarly, we anticipate the AGI agent to reach some stages of growth.
However, common DL methods are working backward: they start from highly

complex data, such as language and/or highly complex visionary scenery, and
try to process it, with the intention that this data (input and output) would be
approximated by some mapping function, but neither understand nor follow the
simple-to-complex rule as it should be.
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5.4 E�ciency verse E�ectiveness

We should not construct AGI based on cumbersome or complicated models, since
it may hurt the model's further development, as it occasionally occurs in rule-
based modeling. And we have to build an AGI without expecting it to be stable
or perfect right away, immediately at �rst execution. This is a wrong attitude
towards actual intelligence.

On the contrary, we have to give it the time to develop, just as an infant
baby or a child does, and not demand from it to give always correct answers.
In other words, just as a human does, we should allow the AGI agent to make
mistakes, based on partial understanding, and learn from it not as a new input,
but as another step in a more general and mature step of development, i.e., as a
more general point of view over the data it encountered during its lifetime (like
life-lessons after hardship and obstacles).

We can see a resemblance to this idea in the comparison between serial think-
ing verse parallel one [16,17]. In serial thinking we prefer a conclusive judgment
and fast results with an emphasis on certainty. In parallel, however, it is about be-
ing �uent and non-judgmental in favor of �uency and multiple solutions/options
together with their probabilities. I.e. allowing and embracing uncertainty instead
of �ghting it. The same is here, model-based methods and control are mostly
designed for fast and good results, to prove e�ectiveness. But human intelligence
shows, that it takes years for an infant to gather linguistic capabilities and �ne
motor sensing. It takes many months, in which the baby mumbles or pronounce
poorly and has a gross motor skills (e.g. in movement and drawing). This obser-
vation supports the idea that the more the AGI is general, in dealing with diverse
knowledge, the more e�ort it requires to adapt and learn this knowledge. And
the opposite is true also - the more the AGI is speci�c, like current control/ML
methods, the more it �ts to be e�ective in narrow sets of data and it is faster in
results.

Similarly, [35] mentions the Occam's razor approach, that a more complex
model with more parameters, will be able to explain a wider range of data, how-
ever, a simpler model will necessarily assign a higher probability to the narrow
range in which the data of interest lies. The same e�ect is in robust control verse
nominal one [37].

All the above can be summed up to the di�erence between e�ciency and ef-
fectiveness [1], where e�ciency concentrates on the best exploitation of available
resources, while e�ectiveness is about the performance measure of how well the
goal is achieved. Consequently, the AGI agent must be e�cient more than e�ec-
tive, since we are less interested in some speci�c desired outcomes, but rather a
good thinking machine that can be validated only in the long run.

5.5 AGI design suggestions

Our simple belief is that humans are the only ones having consciousness and
experiencing the world via both feelings and mind. We do not think AGI can
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be built as a living agent just like humans, and even if do - we do not think
it is an issue. Our view of an AGI is simply as a processing unit. We do not
mind if it does not understand as stated in the Chinese room argument or if it
does not have consciousness or feelings. All we care about is that it can solve
problems and be creative. Its purpose, in our eyes, is to act as an engineer or a
researcher. Hence, it does not matter if it processes data, while humans perceive
it as knowledge. What matters is that we know the way humans know. When
the AGI agent is instructed to do something, it processes our request, and �nally
its output return to humans.

In our opinion, solving separately intelligent aspects cannot be eventually
assembled into a full AGI agent. I.e. we cannot assemble it from pieces, e.g. from
modules originating in narrow AI. Instead, we should account for all aspects
right from the beginning, because it is a holistic system. This approach has been
advocated by many neuro-science studies, showing that they could not locate
separable operating regions for di�erent tasks, in the brain.

Additionally, it is di�cult for us to know how human intelligence actually
works and particularly how it evolves, because we acknowledge it only in its �nal
state, in adulthood. We have no access to the early stages of its development,
certainly not directly, e.g. how a baby or a child sees the world internally. We
can only analyze it implicitly, via external measures, such as experiments.

6 Appendix - Prior knowledge and NAS

6.1 Prior knowledge in DNNs

Prior knowledge can appear in many forms. One form is structure's general type,
such as CNN and RNN. As shown from the studies in the �eld of tra�c signal
control [5,43,63,73,75], these NNs present better prediction results in accuracy
and stability compared to other ML methods, such as support-vector-machines
(SVMs) and random forest. Nonetheless, it is due to being tailored to their
particular problem, having fewer variables and containing more prior knowl-
edge, compared to fully-connected (FC) layers of regular/vanilla NN. Hence, the
transformation from FC to CNN or RNN can be viewed as localization, where
the network structure is designed speci�cally for the data it handles. Another ex-
ample of prior knowledge is when the input is in a graphical form, which requires
an appropriate graph NN model to handle it.

Other forms are the hyper-parameters and the regularization method, e.g.
dropout or constraints. Another form is the decision about sharing or grouping
[58] or separating features/variables. For example, when tra�c data is set apart
from weather data [36], or when road features are separated from station features
[34] and then fused later (how later is also a prior knowledge to be decided upon).
Tasks can also be separated into groups [34]. Finally, [35] suggests sparsifying
the NN, e.g. removing connections in CNN, or grouping/sharing parameters,
results in fewer parameters, more prior knowledge and e�ciency, and redundancy
elimination.
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However, these structures can be too restricted or best perform for narrow
data variations. Hence, many studies try di�erent hyper-parameters or architec-
tures, to get better performance, e.g. they use Network Architecture Search. NAS
consists of many approaches, e.g. AutoML [7], Neuroevolution, hypernetwork,
Meta-learning (learning over learning) [40] and more, which are all searching for
an architecture or adapting a given architecture, to better �t the data.

6.2 Network Architecture Search (NAS)

Motivation One motivation for NAS, can be found in [26], which demonstrates
that NN is best for performance if its structure is appropriate to the data it is
trained upon. Not too many neurons nor too few.

This optimal number of neurons and layers represents the most appropriate
features to describe the trained data. Any other structure may result in some
kind of spreading over some features that are not really representative of the
data.

Hence, since the usual DNN only guesses the number of features at each
layer, then it is required to check several structures. Dynamic NN deals with
this issue, by keeping only the relevant and true features.

A similar approach is in [10], where instead of the usual di�erentiable DNNs
they use concepts neurons, in what is called essence neural networks (ENNs),
which allow symbolic reasoning and more. For example, it can learn rules to be
extended and applied to other tasks or inputs, hence representing abstraction.
It is as if di�erentiable (via GD) neurons are continuous features, while ENNs
are the discretized version of it, to make the features represent meaningful and
whole features.

This discretization idea may also explain why sometimes pre-trained unsu-
pervised learning DNNs (e.g. SAEs or DBNs) work better than some weight
initialization, before training on some supervised learning task(s). It is due to
clustering, which perhaps may be into some concepts. Surprisingly, this is the
exact method ENN uses to learn its (sub-)concepts.

A similar idea appears in dropout or sparse NNs (or attention), such as
Google's PaLM, due to having the most desirable amount of neurons in a NN,
i.e. that represent full features and not a mashup of them.

Research Firstly, in NAS, the search space for models is de�ned/restricted. For
example, grid and random search are often used in hyper-parameter tuning.

NAS has various approaches, such as reinforcement learning (RL), Evolu-
tionary Algorithms (EA), and Hypernetworks.

When EA is used for NAS it is referred to as Neuroevolution [25]. It is usually
used in various search tasks, such as in the generation of DNNs, hyperparameters,
NN building blocks, activation functions, and even the algorithms for learning
(rules). For example, in NEAT [15], it is used to replace back-propagation with
Genetic Algorithm (GA) or combine them both, in searching for weights.
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A more e�cient/faster approach uses weight sharing between proposed net-
works, instead of putting them in the search and training them from scratch, as
in EA. It is done by sampling sub-networks from a large parent network where
they force all sub-networks to share weights. Only the best �nal model is trained
from scratch. Alternatively, only speci�c parts in NN can be modi�ed, while
leaving the rest unchanged.

Lamarckian Evolution also uses this idea for EA search.
Unlike EA and RL, the search in Di�erentiable Architecture Search (DARTS)

[42], is de�ned as a di�erentiable and continuous problem. DARTS uses multiple
categories, where the �nal architecture is discretized after the search is over.

In the hypernetwork approach [23], the weights are learned not by training
the original NN but rather determined via other NN. That is, for every tested
input, di�erent weights are generated to predict the output. For example, in [30]
there is a hypernetwork for both CNN and RNN as two ends of a spectrum,
which allow it to be a relaxed weight-sharing approach and allows controlling
the trade-o� between the number of model parameters and model expressiveness.

In our opinion, Hypernetworks can be extended by constructing also a second
network to learn the weights of the �rst one that learns weights for the main
one. And so forth, strengthening the evolution in di�erent time resolutions/scales
(from slow to fast).

Another example is the SMASH method [11], where a hypernetwork is trained
to predict network weights in one shot instead of training all candidate networks
from scratch. First, a hypernetwork is trained to predict the weights of some
given arbitrary network, then it randomly generates many architectures. Then,
rather than training those models, a hypernetwork is used to obtain the weights.
Finally, best performing architecture is selected and trained from scratch.

Another example is Spall's Simultaneous Perturbation Stochastic Approxi-
mation (SPSA) algorithm [61] implementing two control loops. The lower loop is
for real-time feedback control and an upper loop that updates the DNN weights
in long-term periods. This demonstrates the idea of some parameters are chang-
ing frequently (e.g. weights) and some are changing very slowly (e.g. hyper-
parameters).

Other optimization problems involve: model architectures; training schedule,
e.g the optimizers themselves; and the data, e.g its order, size, diversity, and so
on.

7 Appendix - Additional aspects for the DLM

7.1 Assumptions

The proposed DLM is based on the following assumptions:

* The task is to identify events.
* Gradualism assumption: the AGI generally, and the proposed DLM speci�-
cally, should be growing along with its experience with the world. It should
grow internally, and following that - the complexity it encounters should also
grow accordingly.
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* Growing based on experiences: is embedded in the perception experiences of
the DNN, i.e. in the visitations over neurons and weights, e.g. by counting
these visitations/occurrences.

* Small data perform best in a small model, while big data perform best in a
large model. See [13].

* The DLM perceives input and updates its weights accordingly to the DL
methodology, i.e. feed-forward perception and back-propagating weight adap-
tation.

* In addition to the previous assumption - an external supervising algorithm,
that controls the changes in the DNN architecture, is assumed.

7.2 Issues

Some of the issues that should be addressed are presented.
One issue can be in the recoverability, i.e. the ability to restore once deleted

elements. One possible solution assumes that the infant �rst should grow up, and
only later re�ne its categorization, i.e. �rst phase is only enlarging the network.
Then, in a big enough network, a node/connection removal can begin, because
then the agent accumulated enough con�dence/experience.

Another issue in dynamic structure NN could be splitting or deleting fea-
tures that are supposed to be frequent or rare, yet they should be left as they
are. Similar issue is discussed in plastic neural gas method [55]. One possible
solution is via relative frequency, i.e. to have some min-max range of relative
frequency among neurons (e.g. for all of them or for each level), which will not
be split/deleted. Only those extremely frequent/rare outside of this range would
be split/deleted.

Finally, the proposed DLM has one obvious limitation. It has a single func-
tion, which is event discrimination, in di�erent resolutions. Hence, its role in
AGI is limited to perceptual or actuator modules, to di�erentiate procedural or
conceptual events.

Moreover, the DLM tackles instant events, i.e. it does not generalize into
classes of events. It only learns instances of basic and complex events, which
becomes a combinatorial issue, due to the enormous possible combinations to
de�ne a composite event.

7.3 Optional additions to the DLM

The proposed DLM could also bene�t from other optional additions:

* Besides being an event, the task/output could be also an object or an action.
* The inner neurons could also be updated.
* Allow reallocation of activated-together neurons to be in proximity to each
other, to ease computation.

* The model should be constrained in all its adaptive parameters, such as
the number of total layers and number of neurons per layer, to eliminate
redundancy and encourage competition/trade-o�s.
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* The neurons can be adaptive in their function, thus having di�erent func-
tions, such as convolutional, recurrent, recursive, or attentional.
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