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Abstract  
It is exemplified in this article a proceeding based on the busy period concept of infinite 

servers queues systems to deal with equipment’s failures. Evidently, the occurrence of failures in 

the equipment is a situation that demands managerial procedures in order to repair the failures as 

quick as possible and also to minimize the losses in the equipment operation. The model presented 

here - by means of infinite servers queuing systems - allows to generate system performance 

measures. It also contributes to solve organizational structures’ problems, by minimizing the risks 

of the inoperative structures of organizations, which have considerable logistics pernicious 

consequences for companies and often for regions where they are implanted. 

Keywords: Queue, Systems, Busy period, Business logistics, Equipment, Failures, Management, 
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1 Introduction 

Faced with the scarcity of resources, economic agents have to decide the way resources are 

efficiently allocated, through very rigorous management rules. The various elements in business 

logistics shall meet correct magnitudes, measurements and efficiencies. As structures management 

includes the need of strong capabilities and competences, the problem of solving logistics machine 

failures is very challenging and reveals to be crucial.  

In general, logistics is related to a set of activities involving the organization and the 

implementation of a complex operation. Although, in a general business sense, logistics is the 

management of the flow of things between the point of origin and the point of consumption in 

order to meet requirements of customers or corporations, in the sense of the present article, the 

management of a fleet is taken into account considering the importance of repairing the failures 

and to find out the duration of the periods of repairing, in order to make a good fleets’ activities 

planning.  

A model for this problem, constructed in terms of infinite servers queue systems may be 

worked in order to get interesting measures for this problem.  

This paper will progress based on the queuing systems literature review, considering 

particularly M/G/ queue theory, with an emphasis in its busy period. Then the research 

framework is designed to be applied to a concrete situation: the equipment’s failures effect in a 

production unit performance. An example of failures occurring in a fleet is considered. Finally 

some conclusions are presented, synthetizing the problem solution and expressing the importance 

of such results. 

 

2 Literature Review 

In this article, a M/G/  queuing system (see Takács, 1962) is considered to construct a 

model to study equipment’s failures. Indeed, this queuing system fits very well to do such study.  

This article begins doing an overview on queuing theory (see Kendall, 1953a; Cox and 

Smith, 1961), as much as considers the importance of single nodes and networks of nodes concepts, 
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which will be presented in a general form. It is also important to highlight the relevance of the 

busy period concept that will also be seen with particular detail. Later, a choice will be made using 

queues’ systems with a single node, considering the features of the problem studied in this article 

(see Ferreira, 2016 and Ferreira and Filipe, 2017). 

 

2.1 Queuing Theory Stochastic Processes 

As stated in Ferreira (2016), a population, in statistical terms, is a set of objects that share 

common characteristics. Often, in practical situations, it is important to study statistically the 

expansion, or the reduction, of a population in order, at the right time, to control it. If N (t) is the 

population size at instant t, the states of the population process are the various values that can be 

assumed by N (t) and the probability that N (t) =n, n=0, 1, 2 … is denoted pn (t). 

A birth is considered to occur when a new member joins the population. There is a death 

when a member leaves the population.  

A population process is a Markov process (see, for example, Cox and Miller, 1965 and 

Haviv, 2013) if the changing from a state to another, eventually the same, transition probabilities 

depend only on the initial state and not on the mutations experienced by the process till the arrival 

at the present state.   

The probability distribution that rules the number of births and deaths in a certain time 

interval, in a Markov process, depends only on the interval length and not on the initial state. 

A queue system is a birth and death process with a population composed by customers 

receiving a service or waiting for it. There is a birth when a customer arrives at the Service Centre. 

There is a death when a customer abandons the Service Centre. The state of the system is the 

customers’ number in the Service Centre. The population process is the most important quantity 

of interest in the study of queues. In particular, it is important the search for its stationary 

distribution. In this situation pn (t) do not depend on time and is denoted pn. Usually pn is obtained 

computing  tp
n

t 
lim . The pn (t), depending on time, characterize the queue system transient 

behaviour. The probabilities pn characterize the queue system stationary state, also called 

equilibrium state.   

Other important quantities, that are the queuing system performance measures, are the 

waiting time, also called queue time - the time that a customer spends in the system waiting for 

the service - and the sojourn time - the total time that a customer spends in the system: queue time 

plus service time. 

Often it is difficult to obtain treatable formulae for the population process, the waiting time 

and the sojourn time (see Pollaczek, 1930) and even to make an analytic study. So numerical and 

simulation methods are intensively used. 

 

2.2 Queues with a Single Node 

For well understanding the concept of queues with a single node it is necessary to consider 

the problem in general and to get the relevant fundaments in the theory.  

As referred in Alfa (2010), a single node queue is a system in which a customer arrives for 

having a service only at one node. The service may involve feedback into the same queue. When 

the customer finally has the service finished, it leaves the system. A single node system has only 

one service location and the service is provided by the same set of servers in that location.   



This kind of queues is particularly important once it allows the study of a set of problems 

and has a very general application, being applied to a sort of physical and even social problems. 

Later in this study this queues’ system will be applied to logistics problems of equipment’s failures.  

To make clear the way this kind of queues work see Ferreira (2016, 2017), who presents in 

a very organized way the system, through the following development for the methodology. 

So, let’s consider a Service Centre at which arrive units, the customers, requiring service to 

other units, the servers, with or without difference among customers and servers. 

The most challenging situations concerning these systems study, Statistical Queuing Theory 

subject matter, occur when it is assumed that: 

 Customers arrivals follow a stochastic process, 

 Each server spent time to supply to each customer the required service is a random variable.  

Other relevant factors are: 

 The number of servers that may be finite or infinite, constant or variable, 

 If the number of servers is finite, some customers must wait to be served. The waiting 

capacity, that may be finite or infinite, is the maximum number of customers that may stay 

in the Service Centre waiting to be served. The system capacity is the maximum number 

of customers, being served or waiting for service, which are allowed to stay in the Service 

Centre simultaneously. When a customer arrives at a Service Centre with the capacity 

complete it is considered lost to the system. So the queue systems with finite capacity are 

systems with losses.                                                                                                                                                                                                                                                                                                                                           

 If the number of servers is infinite a customer that arrives finds immediately an available 

server. So there is no queue in the formal sense of the term. Queue systems with infinite 

servers are systems with neither waiting nor losses. 

 The queue discipline is the method as the customers are selected by the servers or vice-

versa. Some examples of queue disciplines are (see Kendall, 1953a): 

- “First come-first served” (FCFS); 

- “Last in-first out” (LIFO); 

- “First in-first out” (FIFO); 

-  “Processor sharing” (PS); 

- “Service in Random Order” (SIRO);  

- “Priority” (PRI); 

- “General Discipline” (GD). 

The arrivals process is usually characterized through the probability distribution of the time 

length between two successive arrivals of customers at the Service Centre: the inter-arrivals time 

length probability distribution. It may be deterministic or stochastic. There are models where batch 

arrivals are considered: the number of customers, arriving at each instant of the sequence of the 

arrivals instants, is a random variable R that can assume integer values greater than 1 - see, for 

instance, Shanbhag (1966). The arrivals process may depend or not on the number of customers 

present at the Service Centre. Sometimes refusal situations are considered: the customer arrives 

and refuses to enter in the Service Centre because there are too many customers waiting to be 

served.  And also renounce situations: the customer is already in the Service Centre and leaves it 

because it thinks that has waited a too long time.  



The service process is specified indicating the length of the time that a customer spends 

being attended by a server probability distribution: the service time. Deterministic or stochastic 

service times are allowable.  

A Service Centre which has associated a service process, a waiting capacity and a queue 

discipline is a node. A node with the respective arrivals process is a queue. 

The Kendall notation (see Kendall, 1953b), for describing queues is v/w/x/y/z where 

- v denotes the arrival process (D, deterministic; M, exponential; 𝐸𝑘, Erlang (k); G, 

any others), 

- w denotes the service process (D, deterministic; M, exponential; 𝐸𝑘 , Erlang (k); G, 

any others), 

- x denotes the number of servers, 

- y denotes the system capacity, 

- z denotes the queue discipline. 

If y is not mentioned it is supposed to be infinite. If z is not mentioned it is supposed to be 

FCFS. 

 

2.3 Queues in Network 

A device composed of N, N>1, nodes is called a network of queues (Walrand, 1988). It 

constitutes a generalization of the concept of queues with a single node.          

Considering the work of Ferreira (2013, 2016), it is easy to understand this class of queuing 

systems. As explained in his work, a network of queues is a collection of nodes, arbitrarily 

connected by arcs, through which the customers travel instantaneously; and there is: 

- an arrival process associated to each node; 

- a commutation process which commands the various costumers’ paths. 

The arrivals processes may be composed of exogenous arrivals, from the outside of the 

collection, and of endogenous arrivals, from the collection nodes.  

A network is open if any customer may enter or leave it. A network is closed if it has a fixed 

number of customers that travel from node to node and there are neither arrivals from the outside 

of the collection nor departures. A network open for some customers and closed for others is said 

to be mixed. 

The commutation process rules, for each costumer that abandons a node, which node it can 

visit then or if it leaves the network. In a network with J nodes, the  matrix 
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is the commutation process matrix, being jlp  the probability of a customer, after ending its 

service at node j , go to node l , Jlj ,...,2,1,  . The probability 



J

l
jlj

pq
1

1 is the probability that a 

customer leaves the network from node j , Jj ,...,2,1 . 

A network of queues with infinite servers in each node, with Poisson process exogenous 

arrivals, may be looked like an M/G/ queue. The service time is the sojourn time of a customer 

in the network. Denote S the sojourn time of a costumer in the network and 
j

S  its service time at 



node j , Jj ,...2,1 . Be  tG and  tG
j

the S and
j

S distribution functions, respectively,  sG and  sG j  

the respective Laplace Transforms.  
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 results             
 PIsPIssG T 11 , where A is a 

column with J 1`s, for the Laplace Transform service time (Ferreira and Andrade, 2010a). This is 

an algorithm to compute the sojourn time probability distribution function of a customer in a 

network which nodes are M/G/ queues, using traffic equations and Laplace transform. 

There are many practical applications, the most of them uncommon but some very well 

known, using mainly infinite servers’ nodes.  

The referred practical applications use the M/G/ queue ability for the study of large 

populations’ processes, which may be used in areas as Logistics, Financial problems, Energy 

problems, Disease problems, Unemployment situations, Compartment models (Biology, Birth-

sickness-death Processes, Hierarchical Systems) and Repairs Shop, see, for instance, Ferreira and 

Filipe (2017).  

Statistical Queuing Theory may be applied yet in a larger context for example to intelligent 

transportation systems, call centres (see Ferreira and Andrade, 2010b), PABXs, 

telecommunications networks, advanced telecommunications systems and traffic flow. The 

networks of queues are used, for example, to reduce the waiting times in hospitals. 

2.4 Traffic Intensity 

The traffic intensity,  , is the most important parameter in queues study. See, for instance, 

Cox and Smith (1961). It is given by    where is the customers’ arrival rate and   the mean 

service time.  

Little’s formula - see Cox and Smith (1961) - is the most popular result in queuing theory. 

It is a very general formula usable for any queue system that has the possibility of reaching the 

stationary state. It relates the mean number of customers in the system, N, with the mean sojourn 

time of a customer, W, through the arrival rate, λ: 



                                                      N= λ W. 

Pollaczeck-Khinchine formula - see also Cox and Smith (1961) - is used, for the M/G/1 

queue, to evaluate the mean waiting time of a customer in the system: 

                                                             𝑊𝑠 = 𝛼
𝜌

1−𝜌

1+𝛾𝑠
2

2
 ,   

where s  is the service time coefficient of variation. The mean sojourn time of a customer in the 

system is then  qWW . 

2.5 Busy Period 

 The busy period of a queue system begins when a customer arrives there, finding it empty, 

and ends when a customer leaves the system letting it empty. Along the busy period there is always 

at least one customer in the system. In any queue system there is a sequence of idle periods and 

busy periods. In systems with Poisson arrivals the idle period time length is always exponential. 

The statistical study of the busy period time length is always a very difficult task. In general, the 

busy period time length is related with the transient behaviour (see, for instance, Ferreira and 

Andrade, 2009a, b). An idle period followed by a busy period is a busy cycle.  

For a M/G/ queue, if the service time distribution function belongs to the collection (see 

Ferreira and Andrade, 2009a,b, Ferreira, 2017 and Ferreira and Filipe, 2017) 
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the busy period length distribution function is 
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                     If 𝛽(𝑡) = 𝛽 (constant) 
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a mixture of a degenerate distribution at the origin and an exponential distribution. 

                 The busy period of the MG queue may be useful to model socio-economic 

problems as, for example, disease problems, see Ferreira (2014), or unemployment, see Ferreira 

(2017a).  

2.6 Queues and Logistics 

The results got from MG queuing system theory can be applied to Logistics and 

particularly networks of queues with infinite servers in each node have interesting applications in 

that area based on the failures of transport vehicles, what allows computing important measures of 

performance. A set of interesting studies in this area can be found in, for instance, Ferreira (2002, 

2003, 2013), Ferreira, Andrade and Filipe (2009), Ferreira and Filipe (2010a,b, 2017), Filipe and 

Ferreira (2015) and Ferreira, Filipe and Coelho (2014). In these works customers are the failures 

occurred in an equipment. For the development of the models, the service time is considered the 

time that the machine used is idle when is waiting for reparation or is being repaired. Some other 

studies can be also found in Ferreira et al (2012), making reference to operations in aircraft, 

shipping or trucking fleets areas. In the research of these authors there are studies considering 

either a single node or networks of M/G/ queues where the customers are the devices failures 

that are supposed to occur according to a Poisson process. The service time is the time elapsed 

from the instant the failure is detected till the one at which it is completely repaired. 

3 Research Framework 

For studying the problem approached in this article, the generic queue model considered is the 

MG  queue (based on Ferreira, 2003). In this queue system customers arrive according to a 

Poisson process at rate 𝜆. Each customer finds an available server as soon as it arrives to the 

system. The length of service provided is a positive random variable with distribution function G 

(t) and mean value 𝛼. The traffic intensity is   . The service of a customer is independent 

from the other customers’ services and from the arrivals process.  

The MG  queue busy period is the key concept in this work. Formulae that allow the 

calculation of some of the busy period length parameters for the MG  queuing system are 

presented in the next section.  

 



4 MG Queue System Busy Period Parameters 

Among other very interesting features, the MG  queuing system has neither losses nor 

waiting. Indeed it is not a typical queuing system in the common sense. 

For these kind of systems, to study the population process is not as important as for other 

systems with either losses or waiting. It is much more relevant the study of some other processes 

as, for instance, the busy period.  

The results related to the MG queuing system busy period time length allow to find 

performance evaluation measures for the equipment.  

An illustration will be presented in this study, considering a very simple and short numerical 

example. For another quite interesting application see Carrillo (1991). 

Calling B the MG queuing system busy period time length random variable (see Ferreira 

and Andrade, 2009a,b), the  B mean value, whatever is G(.), is given in Takács (1962) as 

 
1e

B





              (4.1). 

Calling now VAR [B] the variance of B, it can be seen that it depends largely on the 

probabilistic structure of B. Anyway in Sathe (1985) it is stated that: 

 

       
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where  𝛾𝑠  is the G (.) variation coefficient. 

Calling R(t) the mean number of busy periods that begin in [0, t] (being t = 0 the beginning 

of a busy period), after Ferreira (1995), is possible to show that  

 

                                                      𝑒−𝜌(1 + 𝜆𝑡) ≤ 𝑅(𝑡) ≤ 1 + 𝜆𝑡           (4.3). 

And, see also Ferreira (1995), if the service time distribution function is 𝐺1(𝑡) =
𝑒−𝜌

(1−𝑒−𝜌)𝑒−𝜆𝑡+𝑒−𝜌 , 𝑡 ≥ 0 (note that it results from (2.5.1) making 𝛽 = 0): 

, 

 

𝑉𝐴𝑅[𝐵] =
𝑒2𝜌−1

𝜆2 ,

𝑅(𝑡) = 1 + 𝜆𝑒−𝜌𝑡  
      (4.4). 

 

And if it is 𝐺2(𝑡) = 1 −
1

1−𝑒−𝜌+𝑒
−𝜌+

𝜆

1−𝑒−𝜌𝑡
, 𝑡 ≥ 0  (note that it results from (2.5.1) making 𝛽 =

𝜆

𝑒𝜌−1
): 
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(  𝑒𝜌 − 1)2

𝜆2
,

𝑅(𝑡) = 𝑒−𝜌 + (1 − 𝑒−𝜌)2 + 𝜆𝑒−𝜌𝑡 + 𝑒−𝜌(1 − 𝑒−𝜌)𝑒
−

𝜆
1−𝑒−𝜌𝑡

     (4.5). 

Denote BN the mean number of the customers served during a busy period in the MG 

queuing systems. Considering the exposed in Ferreira (2001), if G (.) is  

 

−Exponential

𝑁𝐵
𝑀 = 𝑒𝜌

−Any other service distribution

𝑁𝐵 ≅
𝑒

(𝜌(𝛾𝑠
2+1))

(𝜌(𝛾𝑠
2+1)+1)+𝜌(𝛾𝑠

2+1)−1

2𝜌(𝛾𝑠
2+1)

 

              (4.6). 

 

For the purposes of this work, the busy period is a period in which there is at least one failure 

waiting for reparation or being repaired; and an idle period is a period in which there are no failures. 

         The mathematical expressions presented in this section are very simple and easily applicable. 

They allow computing the mean and upper and lower bounds to the variance (and in consequence 

also for the standard deviation) of the busy period. And also simple upper and lower bounds to the 

mean number of busy periods that begin in a determined length of time. And finally, expressions 

to the mean number of failures that occur in a busy period were also presented. These formulae 

application only require the knowledge of , ,  and s that are very easy to compute. The only 

real problem is to statistically test the hypothesis that the failures occur according to a Poisson 

process1. 

Note yet that, calling I(t) the idle period time length of the MG queuing system random 

variable distribution function, 𝐼(𝑡) = 1 − 𝑒−𝜆𝑡, as it happens with any queue with arrival Poisson 

process. For this application it gives the probability that the time length with no failures is lesser 

or equal than t. 

 

5 A Business Example  

Suppose a fleet where the failures occur at a rate of 20 per year. So  𝜆 = 20/year. Suppose 

also that the mean time to repair a failure is 4 days ( = 4 day = (4/365) year). In consequence

0.22  . 

Consider the possibility of decreasing  to 0.11. Either making  =10/year, for instance 

buying more items and decreasing, in consequence, each one use intensity. Or making  = 2 day. 

For instance increasing the teams affected to the failures repairs. 

On the contrary, if nothing is changed, things can get worse and maybe  jump to 0.44. The 

values 

0.05, 0.66, 0.88 and 12 are also considered.  

                                                           
1 An usual assumption for this kind of phenomena. 
2 A neutral value for which the service rate equals the arrivals rate. 



If it is supposed that the repair services times are exponential3  s =1, and after (4.1), (4.2), 

(4.3) and (4.6), with t=1 year, being 𝑆𝐷[𝐵] = √𝑉𝐴𝑅[𝐵], 
 

Table 1 Exponential service times 

 

  E [B] 
SD [B] 

(Lower 

Bound) 

SD [B] 

(Upper 

Bound) 

     R (1) 

(Lower 

Bound) 

    R (1) 

(Upper 

Bound) 
   

M

BN  

0.05 0.94 day 0.94day 0.95day 20 21 1.05 

0.11 2.12 day 2.16 day 2.2 day 18 21 1.12 

0.22 4.49 day 4.65 day 4.82 day 16 21 1.25 

0.44 10.09 day 10.72 day 11.46 day 13 21 1.60 

0.66 17.06 day 18.54day 20.43day 11 21 1.93 

0.88 25.75 day 28.5 day 32 day 9 21 2.40 

1.00 31.36 day 35 day 40 day 8 21 2.70 

 

and it is possible to conclude, for these values, that when   increases, less busy periods in one 

year occur, with more failures in each one, of course in mean values. The busy period mean and 

dispersion length also increase with  . 

             If it is supposed now that the repair service times are constant (D = deterministic), 0s

, and after (4.1), (4.2) 4, (4.3) and (4.6), with t  = 1 year: 

 

Table 2 Deterministic service times 

 

  E [B] 
 

SD [B] 

 

         R (1) 

(Lower Bound) 

        R (1) 

(Upper Bound) 
D

BN  

0.05 0.94 day       0.12 day 20 21 1.54 

0.11 2.12 day 0.41 day 18 21 1.59 

0.22 4.49 day       1.22 day 16 21 1.68 

0.44 10.09 day 3.85 day 13 21 1.90 

0.66 17.06 day        7.94 day 11 21 2.18 

0.88 25.75 day      14. day 9 21 2.51 

1.00 31.36 day      18. day 8 21 3.09 

 

E [B] and the R (1) bounds are the same that in the former case, evidently. The behaviour of 

the parameters with the increase of  is like the one of the exponential situation. But now the busy 

period length dispersion is much lesser and the mean value of failures in each busy period is 

greater. 

                                                           
3 A very frequent supposition assumed for this kind of services. 
4 In this case the lower bound is equal to the upper bound and so the real value of VAR [B] is got. 



As for the service times with distribution functions 𝐺1(𝑡) and 𝐺2(𝑡), it is not possible to 

present results for 𝑁𝐵 because there is not an efficient formula to calculate 𝛾𝑠. But 𝑆𝐷[𝐵] and 𝑅(1) 

are exactly calculated after (4.4) and (4.5) for 𝐺1(𝑡) and 𝐺2(𝑡), respectively. 

 

                         Table 3 Service times with 𝑮𝟏(𝒕) distribution function 

 

  E [B] 
   

   SD [B] 

 

 

    R (1) 

 

0.05 0.94 day 5.9 day 20 

0.11 2.12 day 9.1 day 19 

0.22 4.49 day 13.57 day 17 

0.44 10,09 day 21.68 day 14 

0.66 17.06 day 30.22 day 11 

0.88 25.75 day 40  day 9 

1.00 31.36 day 46.13 day 8 

 

 

 

 

                          Table 4 Service times with 𝑮𝟐(𝒕) distribution function 

 

  E [B] 
 

SD [B] 

 

  

     R (1) 

 

0.05 0.94 day 0.94 day 20 

0.11 2.12 day 2.12 day 19 

0.22 4.49 day 4.49 day 17 

0.44 10,09 day 10.09 day 13 

0.66 17.06 day 17.06 day 10 

0.88 25.75 day  25.75 day 9 

1.00 31.36 day  31.36 day 8 

 

Note that for 𝐺1(𝑡) service time distribution function the busy period is exponentially 

distributed with an atom at the origin. For 𝐺2(𝑡) service time distribution function the busy period 

is purely exponential5. Anyway, in both cases, for these traffic intensity values, it is possible to 

conclude that the busy period mean and dispersion length also increase with  . 

 

6 Concluding Remarks  

A proceeding based on the busy period concept of infinite servers’ queues to deal with 

equipment’s failures was presented and discussed on this article. 

                                                           
5 This  the reason to be E [B]=SD [B] in this case. 



Considering this model, it can be understood that when operating a fleet6, managers are 

interested in big idle periods and little busy periods. And if these busy periods occur they prefer 

that they are as rare as possible, with the shortest number of failures possible. 

From the model results, some system performance measures are got, as exemplified in the 

tables presented above, representing an excellent contribution for managers dealing with 

organizations’ planning.  

If  , ,  and s are known, the manager of the fleet can evaluate the quality of the operation, 

namely in terms of: 

 the mean length of a period with failures, 

 the length dispersion of a period with failures, 

 the mean number of periods with failures that will occur in a certain length of time, 

 the mean number of failures that occur in a period with failures.   

As the expressions depend only on a few parameters, very simple to obtain and interpret, 

they evidence trajectories to improve the operation, although they may be hard to implement 

depending on the company capabilities.  

In the context of recent financial and economic crisis, numerical reliable indicators are very 

important because they allow defining good managing policies and practices. Besides their 

simplicity, the ones proposed in this article own this reliability property. 
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