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Abstract—Remote homology detection is a critical task in 
structural biology, essential for understanding evolutionary 
relationships between proteins. This study explores the 
application of Parameter Efficient Fine-Tuning (PEFT) 
techniques, specifically Low-Rank Adaptation (LoRA), to 
enhance pre-trained protein language models for remote 
homology detection. We experimented with several state-of-
the-art models, encompassing a range of architectures and 
parameter sizes, to investigate the trade-offs between model 
complexity and performance. The dataset was divided into 
training (85%, 127,500 pairs) and test (15%, 22,500 pairs) sets 
using stratified sampling. Models were fine-tuned over 5 
epochs using the Adam optimizer with a learning rate of 2e-4 
and a weight decay of 0.01. Our iterative evaluation process 
ensured optimal performance tuning for each model. Results 
indicate that ProGen2 achieved the highest accuracy and F1 
scores, demonstrating superior capability in detecting remote 
homologs. This study highlights the potential of PEFT 
techniques like LoRA in efficiently adapting large protein 
language models, even with limited computational resources, 
thereby advancing the field of protein sequence analysis and 
evolutionary biology. 
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Adaptation, PEFT, Protein Language Models 

I. INTRODUCTION 
The detection of remotely related proteins, i.e. the 

identification of distantly related proteins, which share poor 
sequence similarity but similar structures and biological 
roles, is referred to as protein remote homology detection. In 
the course of long-term evolution in nature, the structures 
and biological functions of proteins are more stable than 
their sequences [1]. For example, such proteins may not 
share much sequence identity, even though their structure 
and functions are similar [2]. When searching for 
homologous proteins by sequence, one can expect to find 
significant sequence identity more rapidly than low 
sequence identity homologs. In addition, when the pairwise 
sequence identity is high (>40%), proteins of related as well 
as non-related structures can be differentiated by sequence 
alignment even in long sequences [3]. Yet, remote homology 
detection becomes challenging when the sequence identity 
falls into the so-called "twilight zone" of 20–35 percent [4]. 
Proteomics [5], the biological sciences, and other fields are 
significantly impacted by the discovery of distant homolog 
proteins and it's a basic method for predicting the structure 
and function of proteins.  

Research has shown that there is reliable evidence that 
protein structures can be predicted solely from amino acid 
sequences provided by the correlation found between the 
amino acid sequence and the biologically active 

conformation [6]. It is still far from solved, though there are 
issues. The quantity of protein sequences is increasing 
exponentially along with the advancement of sequencing 
technologies. The UniProtKB/TrEMBL database contains 
more than 64 million protein sequences as of June 2016 [7], 
and millions more sequences are added there every month. 
In this paper we assess the predictive ability of several 
models, we use several prediction criteria. The number of 
proteins with known structures, however, is increasing far 
more slowly. As of 2024, the Protein Data Bank (PDB) 
holds approximately 222,926 protein structures [New [8]. 
As a result, the enormous discrepancy between protein 
structures and sequences is evident and growing faster. 
Investigating practical, inexpensive ways to close this gap is 
an urgent task. The computational approach is a low-cost 
alternative to the traditional biological techniques for 
protein remote homology detection because they are both 
ineffective and costly. 

The following is how this document is structured. 
Database for protein structural classification based on their 
evolutionary relationship and structures in Section 2. We 
review some computational techniques for remote 
homology detection in section 3. Section 4 detailed the 
remote homology detection overview. The problem 
formulation for remote homolog is captured in section 5. 
The various models used in the research were discussed in 
detail in section 6. A detailed discussion of the entire 
research including the model setup and model output were 
captured in section 7. Section 8 detailed the summary of the 
entire research.  

II. DATABASE FOR PROTEIN STRUCTURE 
CLASSIFICATION 

Some databases, like SCOP [9], SCOP extended 
(SCOPe) [10], etc., group proteins based on their 
evolutionary relationships and structures. A novel protein's 
structural and functional characteristics can be deduced 
from its classification into a known group by looking at the 
homologous proteins in that group. One of the frequently 
used databases for protein remote homology detection is the 
SCOP [10], which is created manually through visual 
inspection and structure comparison. SCOP data sets were 
cited in 571 articles (published between 2012 and 2013) 
[11]. In terms of evolutionary classification, it has emerged 
as the industry standard database. As seen in Figure 1, 
proteins in SCOP are arranged hierarchically to represent 
their structures and evolutionary relationships. 

1. Structural Classification of Protein Database [11]. 

By 2024, roughly 58,904 PDB entries have been manually 
categorized in the SCOP database into a strictly hierarchical 



structure. The proteins within a superfamily are homologous 
in general. The majority of remote homology detection 
computational methods rely on the SCOP database for 
training and evaluation [2]. 

SCOPe [12] is a fully compatible extension of the SCOP 
database that uses automatic annotation techniques and the 
same hierarchical system as the SCOP database. In addition, 
other databases like CATH [13] and Pfam [14] can be 
utilized to create predictive models for protein remote 
homology detection. Proteins are categorized into 
hierarchical domains in the CATH database [13] based on 
their PDB structures. Both automated and manual methods 
are used in the classification of these protein structures. 
CATH is divided into four main levels: homology, topology, 
architecture, and class. The Pfam database [14] comprises a 
vast array of protein families and domains, each represented 
by a hidden Markov model (HMM) and multiple sequence 
alignment. Table 1 displays an overview of the most popular 
protein classification databases. 

I. THE PROTEIN CLASSIFICATION DATABASE SUMMARY 

III. COMPUTATIONAL MODELS 
The investigation of computational techniques 

concerned with searching for remote homology of proteins 
has been under active research for a number of years, and a 
number of very effective strategies have been proposed. We 
loosely group these into three categories-alignment 
methods, discriminative methods, and ranking methods-
based on their research methodology and machine learning 
techniques in order to understand the evolution of these 
methods. 

A. Alignment Methods 
For discovering the best-matching local or global 

alignments of two proteins with the given gap penalties, 
alignment methods can be called as the earliest and widely-
used protein remote homology detection methods. These 
alignment techniques, which include sequence alignment, 
profile alignment, and HMM alignment, can be further 
divided into three groups according to the various alignment 
tactics. 

1) Sequence Alignment Methods: The fundamental 
methods for determining a protein pa5r's homology 
are sequence alignment techniques. The dynamic 
programming algorithms, such as global alignment 
(Needleman–Wunsch) [15] and LA (Smith–
Waterman) [16], are used in these methods to 
calculate the sequence alignments between two 
sequences. Global alignments, which aim to align 
every residue in each sequence, work best when the 
lengths of the sequences in the data set are relatively 
uniform. When comparing dissimilar sequences that 
are thought to share similar sequence motifs or 
regions within their broader sequence context, local 
alignments are more helpful. 

2) Profile Alignment Methods: There have been some 
proposed profile alignment techniques to increase the 
sensitivity of the previously mentioned sequence 
alignment techniques. The Multiple Sequence 
Alignments (MSAs) produced by an unsupervised 
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search against a non-redundant database [17] are the 
basis for calculating a profile. With respect to the 
query protein, every protein sequence in an MSA 
exhibits statistically significant sequence identity. 
One possible representation of a profile is a Position-
Specific Scoring Matrix (PSSM) or Position-Specific 
Weight Matrix (PSWM) [18]. Compared to the amino 
acid sequence, the profile is a more potent 
representation since it includes the evolutionary 
information that has been extracted from MSAs [19]. 

3) Markov Model Alignment Methods: Protein remote 
homology detection uses Hidden Markov Models 
(HMMs) [20], which offer a probabilistic 
measurement of remote homologous sequences based 
on the HMMs' pairwise comparison. A multiple 
sequence alignment is converted by HMM into a 
position-specific scoring system [21], which yields a 
family of potential alignments in addition to the top-
scoring sequence. As a result, HMM alignment 
models can be used to assess the biological 
significance because they are more sensitive than 
profile alignment techniques [18]. 

B. Discriminative Methods 
The discriminative method as opposed to the alignment 

method approaches the task of protein remote homolog 
detection as a superfamily –level classification using both 
the negative and positive samples, these techniques train 
classification models in a supervised manner that is then 
utilized to predict the unseen samples. In contrast to 
alignment methods, this means that the quantity of false-
positive samples can be effectively decreased. Some 
discriminative methods, like SVM-Pairwise [22], SVM-LA 
[3], etc., build their feature vectors based on alignment 
techniques in order to share the benefits of those techniques. 

C. Ranking Methods 
In recent times, the task of protein remote homolog 

detection as a database searching problem or ranking 
method. This has led to the increase in the ranking. Like 
alignment methods, ranking methods compare the query to a 
database of proteins with known structures and functions. 
The evolutionary histories of the protein played a major 
factor on how the protein are arranged.  

Moreover, o ther s ign i f ican t fea tures , such as 
physicochemical properties and sequence features used in 
discriminative methods, can also be incorporated into the 
feature space by ranking methods. As a result, ranking 
methods improve predictive performance by combining the 
benefits of discriminative and alignment methods. The 
ability to precisely calculate the similarity between two 
proteins determines how well these ranking algorithms 
perform. 

D. Parameter Efficient Fine=Tuning (PEFT) 
The development of large language models has required, 

many a time, innovative approaches to model adaptation. 
With these neural network architectures exponentially 
increasing in size and complexity, conventional full fine-
tuning, which involves adjusting all parameters of a pre-
trained model, has become very computationally intensive 
and hence untenable. In this regard, PEFT has turned out to 
be a very important solution that provides similar 
performance to full fine-tuning while bringing down the 
resource requirements drastically. PEFT methodology has 

helped models transfer knowledge from vast datasets to 
more specific tasks. 

IV. REVIEW OF RESEARCH IN REMOTE HOMOLOGY 
DeepSF employs a convolutional neural network (CNN) 

to integrate both sequence and structural information for 
remote homology detection. This method enhances 
predictive accuracy by capturing complex patterns in protein 
data, achieving high performance metrics (F1 score: 0.856, 
accuracy: 0.841) due to its robust feature extraction 
capabilities from both sequence and structure [23]. Now, 
with deep learning, DeepSF can perform better than 
conventional sequence-based methodologies as a reliable 
tool for the functional annotation of proteins. 

ProtCNN uses a CNN-based algorithm that processes 
protein sequences directly without any other methods of 
remote homolog detection. It recognizes hierarchical 
features from raw sequences, resulting in a moderate 
performance (F1 score: 0.791), accuracy being 0.762. 
Moreover, ProtCNN proves that deep learning can be used 
in extracting the relevant feature directly from protein 
sequences, without handcrafting or evolutionary information 
needed [3]. 

DeepFam built an RNN architecture for analyzing 
protein sequences to identify remote homology. This 
system's potency reflects in its results: an F1 score of 0.831 
and an accuracy of 0.815 and ability to capture protein 
dependencies. But that suggests the use of RNN techniques 
in bioinformatics as a truly alternative means to traditional 
sequence alignment methods [24]. 

SVM-PSSM hybridizes Support Vector Machine (SVM) 
and Position Specific Scoring Matrices (PSSM) to constitute 
proteins according to their sequences. The application of 
PSSM profiles is suitable for feature representation and thus 
delivers a strong performance both in terms of F1 score of 
F1 0.774 and accuracy of 0.749. This method illustrates how 
well machine learning and evolutionary information can 
work together to eventually improve protein classification 
[25]. 

DeepGOPlus uses sequence data along with Gene 
Ontology (GO) terms through a CNN for remote homology 
detection. This functional annotation, when added to 
sequence information, improves the method greatly by 
prediction accuracy (F1 score: 0.812, accuracy: 0.798), 
rendering the values of using multiple data types in a deep 
learning framework [26]. 

The hybrid CPU–GPU approach provides a scalable 
multiple pairwise protein sequence alignment that 
effectively accelerates the task behind computation by 
combining CPU control with GPU parallel processing. This 
method achieved an F1 score of 0.88 and an accuracy of 
0.91, demonstrating its effectiveness in large-scale 
bioinformatics applications [27]. 

II. PERFORMANCE COMPARISON METHODOLOGIES AND 
DETECTION STRATEGIES 

Methods Protein
Detection 
Strategies

F1  
Score Acc References

DeepSF
Sequence 
a n d 
structure

Deep 
learning 
 (CNN)

0.856 0.841 [23]



V. PROBLEM FORMULATION 
Many recent computational studies have adopted a 

convenient definition of remote homology that is based on 
the hierarchical protein classification system used to 
annotate proteins in the Structural Classification of Proteins 
SCOP2 and SCOPe [12] are databases. In this system, two 
proteins are considered to belong to the same superfamily if 
it is thought that they have similar structural and functional 
characteristics, which lead to a common ancestor. Equally, 
proteins are said to be members of same family if their 
degree of similarity is high. Sequences that share more than 
30% identity are therefore typically categorized as members 
of the same family. Because the classification is based on 
identified clusters of similar proteins rather than describing 
all of the individual pairwise commonalities, it should be 
noted that there seem to be exceptions to these criteria. 

A. Dataset Preparation and Processing 
Our dataset preparation and processing methodology 

draws inspiration from two key studies. The study on 
Protein Language Model (PLM) performance for remote 
homology detection using the ESM1-b model [18] and the 
approach proposed by [28]. We utilized the Structural 
Classification of Proteins (SCOP) database [2] as our 
primary data source, aligning with the procedure outlined by 
[18] but adapted to our specific needs and observations. The 
design of our experimental setup prioritizes reproducibility 
and ease of use. Therefore, we choose to build our datasets 
with as little preprocessing or filtering as possible using 
every sequence in SCOP. In addition to following [18], we 
incorporated insights from [28], who advocated using the 
SCOP2 database due to its more reliable superfamily 
annotations compared to SCOPe. To generate protein pairs 
for remote homology detection, we perform a pairwise 
combination sequence  
were generated for each protein that was filtered in the 
database. This combinatorial approach resulted in 
482,843,350 total pairs, of which 733,299 were identified as 
remote homolog pairs based on our definition. For 
computational feasibility, we randomly sampled 150,000 
pairs from this set, which included 69,648 remote homolog 
pairs. We used stratified sampling to ensure that the 
proportion of remote homolog pairs in our sample was 
representative of the full dataset. 

B. Definition of Remote Homology 
According to [18] and [27] Firstly, we establish that two 

proteins,  and , are remote homologs if they are 
members of distinct families within the same superfamily. 

 

 
(1) 

Where  and  define the superfamily and family 
label annotation of the  protein respectively. This 
definition aligns with the established concept of remote 
homology in structural biology, where proteins share a 
common evolutionary ancestor but have diverged 
significantly in sequence. 

C. Feature Extraction and Prompt Generation 
For each protein pair, we extracted the family and 

superfamily sequences. We then generated prompts for our 
models using two templates: 

1) P r o m p t T e m p l a t e 1 :
 

2) Prompt Template 2: 

 

The second template was used as our principal template in 
our experiments, for it provided relatively well-specified 
instructions for a homology detection task. This decision 
was based on first experiments showing that the more 
specific prompt resulted in better performance. 

MODEL ARCHITECTURE AND FINE-TUNING 
PEFT has been used for fine-tuning, and in particular, Low-
Rank Adaptation (LoRA) [29], to adapt pre-trained protein 
language models for the task of remote homology detection. 
It enables requiring fewer trainable parameters toward 
efficient fine-tuning of large language models. This aspect is 
particularly attractive in the scenario where the available 
computational resources are limited. 

Thus, we experimented with several current state-of-the-art 
protein language models, which appear in Table 3. The 
different models and their corresponding number of layers, 
and parameters per model are included. 

III. SELECTED STATE-OF-THE ART MODELS 

  

ProtCN
N Sequence

Convolution
al Neural 
Network

0.791 0.762 [3]

DeepFa
m Sequence

Deep 
learning 
(RNN)

0.831 0.815 [24]

S V M -
PSSM

Sequence  
(PSSM)

Support 
Vector 

Machine
0.774 0.749 [25]

DeepG
OPlus

Sequence 
a n d G O 
terms

Deep 
learning 
(CNN)

0.812 0.798 [26]

C P U –
GPU Sequence

Long Short-
Term 

Memory 
networks

0.780 0.765 [27]

Methods Protein
Detection 
Strategies

F1  
Score Acc References

Models Layers
Number of 
Parameters

ESM2-t36-3B-UR50D [5] 36 3 Billion

ESM2-t12-35M-UR50D [5] 12 35 Million

ESM2-t6-8M-UR50D [5] 6 8 Million

ProGen2 [6] 12 151 Million

ProLLaMA [7] 32 7 Billion



 Each of these chosen model options varies in terms 
of the architectures used and their parameter size, making it 
possible to test the different trade-offs between model 
complexity and performance for the domain of remote 
homology detection. For each model, LoRA is applied with 
different ranks and learning rates. The following procedures 
were carefully followed during training: 
1) Data Partitioning: The data will be divided into training 
85% (127,500 pairs) and testing-15% (22,500 pairs) data 
sets to keeping the distance homolog pair distribution intact. 
2) Fine-tuning: It was done using Adam optimizer with 
learning rate 2e-4 and weight decay of 0.01; continuing for 
the period of 5 epochs. 
3) Evaluation: the performance of the models was evaluated 
at each epoch on the test dataset. 

A.  Model Performance 
We present findings from our study in which we 

assessed the performance of state-of-the-art protein 
language models for the task of remote homolog detection. 
Here are our experimental results: 

IV. SELECTED STATE-OF-THE ART MODELS 

VI. DISCUSSION 
Remote homology is one of the major areas of structural 

biology, especially in regards to how one can understand 
relatedness and evolution amongst proteins. According to 
the given definition, proteins are said to be remote 
homologs if they belong to the same superfamily. We are 
applying PEFT techniques, specifically Low-Rank 
Adaptation (LoRA), to transform pre-trained protein 
language models in the detection of remote homology. The 
reason for this is that it makes the fine-tuning of the large 
language models very efficient and reduces the trainable 
parameters to the barest minimum. This efficiency turns out 
to be important in scenarios with limited computational 
resources, enabling very effective model adaptations with a 
minimal hardware. We experimented with various in-built 
advanced protein language models, representing a mixed 
bag of their architectures and parameter sizes. The models 
have been presented in Table 3, including several 
configurations to study the trade-offs between model 
complexity and performance in the area of remote 
homology detection. The use of LoRA makes it possible for 
us to effectively adapt them while keeping the demands on 
computation fairly light. To further enhance the performance 
for remote homology detection, we experimented with 
different ranks and learning rates in LoRA. Our approach 
began by stratified sampling to split our dataset into training 
and test sets such that they represent the full dataset in terms 
of the distribution of remote homolog pairs. That is to say, 
both of them represented the heterogeneity captured in the 

full dataset. Then, we fine-tuned the models for 5 epochs 
using the Adam optimizer, set to a learning rate of 2e-4 and 
weight decay of 0.01. This setting was a compromise 
between quick convergence and possible overfitting. Models 
were evaluated after every epoch during training on the test 
set in order to evaluate their performance. This step is 
actually important for closely monitoring how they are 
performing and where to make adjustments. This would 
allow us to ensure that all models can be adapted to the best 
possible settings by methodically varying ranks and learning 
rates. Fine-tuning is then achieved in order for maximum 
accuracy across all models in the detection of remote 
homologs. The results of this optimization are described in 
Table 4, which speaks volumes about its effectiveness by 
showing that some models outperformed other methods in 
performing this task. 

VII.CONCLUSION 

We have studied the application of PEFT or its 
approaches, particularly Low-Rank Adaptation (LoRA), as 
techniques that increase the performance of pre-trained 
protein language models in detecting remote homology. 
Remote homology detection refers to the identification of 
evolutionary relationships between proteins that belong to 
different families in the same superfamily. This is the 
decisive step toward understanding the function and 
evolution of proteins. In our experiments, we used most 
state-of-the-art protein language models that incorporate a 
great diversity of architectures and parameter sizes by 
having them listed in Table 2. These models were selected to 
evaluate the trade-off between model-level complexity and 
model-level performance. We have effectively fine-tuned 
these models using LoRA, which reduces the vile number of 
trainable parameters given limited resources. Fine tuning 
was possible because homolog pairs were kept throughout 
the experiment using stratified sampling for training and test 
set splitting. The model was fine-tuned over 5 epochs at a 
learning rate of 2e-4 amidst an Adam optimizer and weight 
decay of 0.01. This iterative process gave systematic 
alterations followed by evaluation of the impact of different 
ranks and learning rates on the performance of each model 
to have maximum accuracy in the detection of remote 
homologs. Results show that ProGen2 had the highest 
scores of accuracies and F1, confirming its ability to detect 
remote homologs. This study shows that PEFT techniques 
can effectively fine-tune large protein language models for 
low computational resources: such improvement can bring 
incredible benefits in protein sequence analysis and 
evolutionary biology. 
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