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Abstract — The article describes the essence of 
functioning of the neural computer interface, as well as 
provides the prototype of the custom neural computer 
control system, which includes the helmet with the   Open 
BCI Cyton platform, ВСІ-server on the basis of the personal 
computer and, the wheeled robot itself with the on-board 
computer Raspberry Pi. Transmission of the recorded 16-
channel EEG-records onto the BCI-server is performed 
using the Bluetooth protocol, and the Wi-Fi standard is 
applied for the communication between the robot and the 
BCI-server. The main task was to create and research the 
possibility of application of the deep learning technologies to 
classification of the filtered signals (frequency band of the 
EEG Alpha-waves) under relatively low data volume 
scenario. Program architecture and system functioning 
algorithm are presented, convolutional neural network and 
the multi-layer perceptron are researched as the neural 
classifiers. EEG-signals filtering and their classification are 
performed on the BCI-server. Neuroclassifier on the basis of 
the convolutional neural network showed higher accuracy, 
however it demands bigger calculating resources for its 
realization. 

Keywords — EEG-signals, ‘brain-computer’ interface, 
deep learning, convolutional neural networks, multilayer 
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I. INTRODUCTION 
Human computer interaction systems may have 

different structures and application. During the last years 
the researchers’ attention has been attracted by the 
systems based on the ‘brain – computer’ interface (BCI). 
The main idea of such systems lies in the selection and 
processing of encephalogram signals in order to interpret 
patterns (emotions, thoughts, commands, etc.). ‘Brain-
computer’ interface or the other name - neural computer 
interface (NCI) is a unique communication channel 
between the human brain and the outer world, which in 
contrast with the traditional technologies of the message 
communication has a number of peculiarities, advantages 
and limitations [1,2]. 

Control systems on the basis of the ‘brain-computer’ 
interface may find and have already found the wide 
application in different domain from games and 
entertainment to neurorehabilitation [3,4]. The key aspect 

in work with NCI is the intellectual analysis of 
encephalograms. For such a purpose different machine 
learning algorithms are used [5]. 

Cerebral activity including the mental processing of 
the person is accompanied with spread of the electric 
biopotentials on the surface of the head.  Extraction of 
these biopotentials using the electrodes, their 
intensification and recording with the help of the 
corresponding equipment makes the essence of the 
electroencephalography method [6]. During the 
substantial time this method was applied in medical 
diagnostics, where the physician ‘decoded’ the multi-
channel EEG-records to define the correspondence of the 
encephalogram with or deviations from the norm.   

The situation drastically changed with the 
development of the information technologies. Not only 
the systems to support the decision making in medical 
diagnostics are created on the basis of the machine 
learning algorithms, but also the range of tasks connected 
with the intellectual analysis of the encephalograms.  The 
significant part of such tasks is based on the usage of the 
‘brain-computer’ interface [1,3,7]. Creation of the 
computer interface with the help of the brain signals met 
a lot of challenges both with technical nature and the ones 
raised by the usability comfort under the real-life 
conditions.  

Difficulty in EEG-signals processing is conditioned 
by their intermittent nature, weak intensity, exposure to 
influence of outer destabilizing factors such as changes of 
the electrodes location, interference of the other electric 
signals, caused by the electric activity of the heart 
(electrocardiogram) and skeletal muscles 
(electromyogram), as well as due to eye movements 
(electrooculogram). To decrease the influence of artifacts 
a number of digital signal conditioning methods is being 
applied, which are based on the formal methods of 
frequency and spatial filtering, time-frequency 
transformations, statistical and correlational analysis, etc. 
[3,8,9]. Certain companies, e.g., Texas Instruments, 
manufacture special hardware modules (Front-End) for 
registration and conditioning of EEG-signals [10,11]. 



While applying the formal methods there exists a 
problem of oppressing the influence of artifacts, 
frequency band of which is overlapped with useful 
components of EEG.  Due to this the application of the 
informal machine learning models for detection and 
removal of the anomalies from the biosignals looks rather 
promising [12]. 

The other serious barrier standing before the NCI is 
the natural variability of the electrophysiological signals 
of brain [6,13]. Mental and emotional conditions, level of 
exhaustion and concentration are the factors creating 
unpredictable changes and deviations in the EEG signals, 
received during the recording sessions. These factors 
mask the main structure of the EEG-signals, making it 
difficult to differentiate and select the weak useful 
components.  Here arises the necessity to use the informal 
models of EEG-signals processing, based on the machine 
learning algorithms.   

Notwithstanding that the machine learning domain 
itself is rather young, during the last years the novel 
direction – deep learning – has appeared in this domain 
and it has been rapidly developing. Due to this deep 
learning technology the revolutionary breakthrough was 
achieved in issues of the computer image recognition, 
natural language processing, human genome mapping 
[14,15,16]. Different architectures of neural networks 
(e.g., convolutional networks), are applied to realize the 
deep learning [17]. 

Application fields of the deep learning technology is 
constantly growing. Deep learning is expedient to be used 
for solving complicated tasks [18]. Here definitely 
belongs intellectual analysis of EEG-signals in the 
‘human-brain’ interface.  

Thus, the aim of current research is to research and 
validate the design approach suitable for building 
miniaturized BCI system designed under very low data 
volume scenario using recent advanced in the field of 
machine learning and neural networks. 

II. STRUCTURE AND FUNCTIONING OF NEURAL 
COMPUTER INTERFACE  

The typical structure of ‘brain-computer’ interface is 
composed of five structural components:  

- EEG-signal extraction unit is responsible for 
multichannel recording of bio potentials using the 
electrodes on the head surface and formation of the ‘raw’ 
digital EEG-signals;  

- unit for conditioning the ‘raw’ EEG-signals by their 
intensification and noise filtering;  

- unit for extracting the characteristic features forms 
the descriptive features (descriptors)  from the relevant 
EEG-signals, decreasing the size of data received by the 
classifier 

- classification unit built by one of the machine 
learning methods allocates EEG-signals to one of classes 
by analyzing the descriptors’ vector;  

- transmission unit forms the output data, which 

format depends on the designated use of the ‘brain-
computer’ interface. For example, these can be 
commands for operation of the technical objects, cursor 
movement or writing letters on the display. 

 To record the EEG-signals the special helmets are 
used. Currently helmets of different companies are 
present on the market, the most popular of them are 
Emotiv, OpenEEG, OpenBCI, Muse, MindWave [9]. 
Extraction systems differ by type and number of 
electrodes (recording channels), their location, quality of 
the registered EEG-signals. 

Intensity of EEG-signals is more than two orders 
lower than the same in electrocardiogram signals and 
does not exceed 100 microV. This means the extremely 
high exposure of EEG-signals to influence of different 
destabilizing factors with the inner biological nature, such 
as eye and muscles movements heart beating, as well as 
technical origin, first of all power supply network, 
artifacts conditioned by the changes of ‘skin-electrode’ 
impedance.  To suppress the networks obstacles the 
barrier filters (Power-Line Notch Filter) are being used. 
To improve the correlation of the signal to the noise 
different types of the bandpass filters are traditionally 
being used, which are designed for the frequency interval 
of the informative EEG-signal parts.  Out of different 
mental activity waves the most appropriate are the Alpha-
waves located in the band between 7 Hz and 13 Hz. 

Traditional approaches of the electrocardiograms 
intellectual analysis foresee the stage of the characteristic 
feature extraction, due to which the classifier may 
unambiguously differentiate EEG-signals to secure the 
next stage – classification.  To extract such features 
different methods of transformations are being used both 
in time and in frequency aspects, for example auto-
regression analysis, canonical correlation analysis - 
CCA), short-time Fourier transform (STFT), wave 
transformation, smoothing filter [3,9,19]. Extracted 
features receive the descriptors vector which comprises 
the input date for the classifier, which realizes one of the 
machine learning algorithms. 

III. PROGRAM ARCHITECTURE AND SYSTEM 
FUNCTIONING ALGORITHM   

To conduct a real experiment the authors built a 
system consisting of three separate physical components:  

- helmet with the Open BCI Cyton platform [20]; 
- personal computer executing the function of the 

BCI-server; 
- wheeled robot with the mounted Raspberry Pi 

board. 
The helmet with the installed Open platform BCI 

Cyton provides 16-channel extraction of the 
encephalograms using sampling rate of 125Hz with 
further data transmission via the Bluetooth protocol onto 
the personal computer. Program conditioning of the EEG-
signals is performed on the PC.  

The authors applied the deep learning paradigm for 



the intellectual analysis of EEG signals, according to 
which the descriptor receives as an input data not the 
descriptors, but the filtered EEG-signals.  To perform the 
research, we developed two types of classifiers – on the 
basis of the convolutional neural network and the 
multilayer perceptron.  

The classification results from the BCI-server via the 
Wi-Fi standard are transmitted onto the single board 
computer Raspberry Pi, which is mounted on the wheeled 
robot. The main advantages of Raspberry Pi include 
compact dimensions (85x56x17 mm), availability of the 
specialized operation system Raspbian (written on the 
basis of the Linux core), support of the wireless data 
exchange protocols Wi-Fi and Bluetooth. One should also 
separately highlight the availability of the GPIO type 
digital output which allows to form the control signals to 
operate the engines via the special driver plate. 

The authors developed their own variant of the EEG-
signals processing intellectual system, which consists of 
three main units:  

• Data collection unit (COLLECT DATA) 
• Model training unit (TRAIN MODEL) 
• Prediction unit (PREDICT). 

Each of these units is responsible for the separate 
working mode of the system, which is set by defining the 
corresponding parameter in the configuration file before 
starting the main program (MAIN). 

 In the COLLECT DATA mode using the 
OpenBCISerial and DataOrganizer modules the selection 
and recording of the registered EEG-signals take place.  
Meanwhile the object OpenBCISerial reads data from the 
helmet via the Bluetooth protocol. When the data 
selection starts the separate thread is created from the 
Open BCI Cyton board, and the data from it is recorded 
into the buffer of the BCI-server in parallel with the 
program work.  When the buffer is full the data is 
transferred to the DataOrganizer module, and the buffer is 
being cleaned. DataOrganizer module is responsible for 
storing the data batches received from the buffer in the 
.cvs files and organization of the files on the disc 
according to the defined structure.  

During the TRAIN MODEL mode, the neural 
networks are being trained with the help of the NNModel 
module. The model of the neural network is being created 
in this unit with the help of training on the data collected 
in COLLECT DATA mode. The data read from files is 
aggregated into the input matrix or tensor and is provided 
in such a form as an input for the computing graph, where 
the iterative process of the optimal weight coefficients in 
the layers of the neural network takes place. After the 
training is finished the neural network model is saved into 
two separate files – a .json file with the structure of the 
computing graph and a .h5 file with weighted 
coefficients.  

Via OpenBCISerial, Predictor and NNModel modules 
the PREDICT unit recognizes the registered EEG-signals 
with the help of the neural network trained in the TRAIN 

MODEL mode. Module OpenBCISerial sends in batches 
the new processed EEG-data for the intellectual analysis 
onto the Predictor module, where the signals are cut into 
segments of the corresponding length and are transferred 
onto the NNModel module, where the classification 
procedure itself takes place.  From the Predictor module 
the classification results are transmitted onto the board 
computer of the wheeled platform, where the 
corresponding control commands are formed on their 
basis.  

IV. EXPERIMENT METHODOLOGY AND  RESULTS 
Two types of deep neural networks – multilayer 

perceptron (hereinafter – MLP) and convolutional neural 
network (hereinafter – CNN) were developed and verified 
as classifiers of EEG signals. Program implementation of 
the algorithm was executed in the programming language 
Python3 using the specialized frameworks for building 
deep neural networks: Tensorflow v1, Keras, NumPy. 

Neural network on the basis of the multilayer 
perceptron is composed of 4 blocks on the basis of the 
dense layers. Total number of layers in MLP model – 9, 
out of them – 4 layers with the weight coefficients due to 
which the training itself is performed. Sizes of the stated 
layers are the following: Dense1 - 32, Dense2 - 64, 
Dense3 - 32, Dense4 - 5. For MPL input layer, data 
vectors from each EEG channel (256x1) are concatenated 
to create a 4096x1 vector (256*16=4096). For CNN input 
layer, EEG data is represented spatially, where each row 
represents a channel, which creates a matrix of shape 
16x256. Function ReLU is used in all the activation 
layers except for the output one, and in the output layer – 
softmax function.  

Training of the MLP network is performed with the 
following parameters:   

• loss function (loss): categorical_crossentropy; 
• training algorithm (optimizer): Adadelta; 
• number of training epochs (num_epoch): 100; 
• learning rate (learning_rate): 0.001; 
• cross-validation coefficient (correlation between the 

training and test data sets): 70/30. 
Values of such parameters as type and regularization 

coefficient, initialization algorithm of weight coefficients 
are taken by default.   

Training stage took 30 minutes on the Intel Core i7-
5500 processor (operating system Ubuntu 18.04 LTS, 8 
GB of RAM).  

CNN network is composed of three blocks on the 
basis of the convolutional layers.  The second and the 
third blocks additionally use the layers of dropout and 
max pooling type. After the convolutional layers in CNN-
architecture two dense-layers are implemented. Total 
number of layers in the network – 18, out of them – 5 
layers with weight coefficients due to which the CNN 
training itself is performed. Function ReLU is used in all 
the activation layers except for the output one, and in the 
output layer – softmax function. Stated layers have the 



following dimensions: Conv1 - 16x254x32, Conv2 - 
16x252x32, Conv3 - 16x124x32, Dense1 - 128, Dense2 - 
5. Peculiarity of data provided for the input layer of the 
CNN network is its matrix and not vector representation, 
in the format 16x256x1.  

Training of CNN network was performed under the 
same hyper-parameters as the ones used for MLP 
network, however using one additional hyper-parameter –
dropout coefficient, which value is defined on the 0,2 
level. Training took 80 minutes on the Intel Core i7-5500 
processor (operating system Ubuntu 18.04 LTS, 8 GB of 
RAM).  

 

 
Fig. 1. Confusion matrix for MLP-model (а) and CNN-model (b) 
 
After the training is finished the accuracy of EEG 

signals classification by neural network is rated on the 
test set. Apart from rating the network’s accuracy on the 
test set, additional testing is executed on the real working 
system – in the production mode. For this purpose, the 
operator in the helmet executed commands forward, stop, 
right, left in thought, and EEG-signals corresponding to 
these commands were transmitted onto the BCI-server to 
be recognized by the neural network (first by MLP, later 
by CNN). Total number of commands given by the 
operator in the production mode was 50 for each category 
(forward, stop, right, left). The number of correctly and 
incorrectly recognized commands of the operator was 

calculated. Results of the experiment are provided in fig 
1. 

Results of system work are presented in a form of a 
confusion matrix: its rows correspond to the command 
given in thought by the human operator, and the columns 
– to the command recognized by the system. In such a 
way numbers on the diagonal elements represent the 
number of the correct operations, and the numbers 
outside of the matrix diagonal correspondingly show the 
number of the incorrect operations. Following the 
research results it was defined that the EEG-signals 
classifier on the basis of the convolutional network 
showed better results comparing to the classifier on the 
multilayer perceptron (accuracy on the CNN model - 
86.07 %, in contrast to 78.5 % on MLP model). However, 
the calculating complexity of the CNN deep neural 
network is significantly higher both in the training mode 
and in the recognition mode. As far as under real 
conditions the CNN-model showed better result, it was 
used to control the wheeled platform.  

As seen from the experiment results the neural 
computer control system demonstrates rather high 
accuracy, considering the complexity class of the task.  In 
order to further increase the accuracy, the authors 
consider it expedient to apply autoencoder technology for 
detection and correction of the anomalies in filtered EEG-
signals.  Such an approach showed its efficiency in the 
biometric identification systems based on the analysis of 
the other type of bio signals – electrocardiograms.   

V. CONCLUSIONS 
Novel approach of applying deep learning paradigm 

to create the ‘brain-computer’ interface using filtered 
EEG signal (alpha band only) and relatively low volume 
dataset is presented in the article. Prototype of the custom 
neural computer control system was presented, which 
included such three components:   helmet with Open BCI 
Cyton platform, ВСІ-server on the basis of the personal 
computer, wheeled robot with the board computer 
Raspberry Pi. Representation of the 16-channel EEG-
records registered by means of Open BCI Cyton onto the 
BCI-server were performed via the Bluetooth protocol, 
and the Wi-Fi standard was applied for communication 
between the robot and the BCI-server.   

The main achievement is development and research of 
two variants for realization of neuroclassifiers – on the 
basis of the multilayer perceptron and the convolutional 
network. Both experiments showed rather high results: 
decoding accuracy of the commands from EEG-signals in 
the test set was 90.18% for the multilayer perceptron and 
93.89% for the convolutional network. Accuracy of the 
control commands execution somewhat decreased in the 
production mode (almost on 12% for the MLP model and 
on 8% for the CNN model).  Notwithstanding that the 
neuroclassifier on the convolutional network provides the 
higher accuracy, it is more complicated in the calculation 
aspect, and its training time is almost three times longer.    
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