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Abstract

This article describes Salsa, an automatic tool to improve the accuracy of the floating-
point computations done in numerical codes. Based on static analysis methods by abstract
interpretation, our tool takes as input an original program, applies to it a set of transfor-
mations and then generates an optimized program which is more accurate than the initial
one. The original and the transformed programs are written in the same imperative lan-
guage. This article is a concise description of former work on the techniques implemented
in Salsa, extended with a presentation of the main software architecture, the inputs and
outputs of the tool as well as experimental results obtained by applying our tool on a set
of sample programs coming from embedded systems and numerical analysis.

1 Introduction

Floating-point numbers, whose specification is given by the IEEE754 Standard [1, 28], are more
and more used in many industrial domains, including critical embedded software and, obviously,
numerical simulations. However, floating-point arithmetic is prone to accuracy problems due
to the round-off errors. The approximation becomes dangerous when accumulated errors cause
damages whose gravity varies depending on the critical level of the application.

In this context, ensuring the correctness of the computations in embedded systems or numer-
ical simulations is an important but extremely difficult task. Some useful tools and techniques
have been developed for validating [4, 15, 16, 19, 30] and improving [24, 29] the accuracy of
arithmetic expressions in order to avoid numerical failures (in this article, the accuracy refers
to the difference between the exact and the floating-point result). One limitation of these tools,
for example, Sardana [24] or Herbie [29], is that they are applicable on a single arithmetic
expression. In other words, they cannot merge computations between the different lines of the
code. For example, they can do nothing on a code written in 3-address style. To cope with this
limitation, we propose an automatic tool, Salsa, which takes programs made of assignments,
conditionals, loops, functions, etc. and generates another program numerically more accurate
using a source-to-source transformation. This is possible thanks to the set of intraprocedural
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and interprocedural transformation rules defined in previous work [13, 9]. Salsa relies on static
analysis by abstract interpretation [5] to compute variable ranges and round-off error bounds.

In this article, we present a comprehensive summary of how Salsa works. An extended
description is given in [8]. We give an overview of the formal intraprocedural [13] and interpro-
cedural [9] rules used in our transformation as well as on how the transformation of expressions
is done [24]. Then we present the software architecture of the tool and, finally, we give a set of
benchmarks measuring the efficiency of Salsa from several points of view: numerical accuracy,
code size, execution time, program transformation time.

The reminder of the article is organized as follows. Section 2 describes related work. Sec-
tion 3 presents the IEEE754 Standard and how to compute the error bounds. Section 4 details
the transformation of arithmetic expressions, the intraprocedural and the interprocedural trans-
formation of programs. Section 5 introduces the main architecture of our tool, its inputs and
outputs. Section 6 describes the implementation of our tool and its application to a number of
example programs. This section also gives various experimental results obtained by applying
our tool to our set of examples. We conclude in Section 7.

2 Related Work

During the last fifteen years, several static analyses of the numerical accuracy of floating-point
computations have been introduced. While these methods compute an over-approximation of
the worst error arising during the executions of a program, they operate on final codes, during
the verification phase and not at implementation time. Static analyses based on abstract
interpretation [5, 6] have been proposed and implemented in the Fluctuat tool [20, 21] which
has been used in several industrial contexts. A main advantage of this method is that it
enables one to bound safely all the errors arising during a computation, for large ranges of
inputs. It also provides hints on the sources of errors, that is on the operations which introduce
the most important precision loss. This latter information is of great interest to improve the
accuracy of the implementation. More recently, Darulova and Kuncak have proposed a tool,
Rosa, which uses a static analysis coupled to a SMT solver to compute the propagation of
errors [15]. Solovyev et al. have proposed another tool, FP-Taylor based on symbolic Taylor
expansions [30]. None of the techniques mentioned above generate more accurate programs.

Other approaches rely on dynamic analysis. For instance, the Precimonious tool tries
to decrease the precision of variables and checks whether the accuracy requirements are still
full filled [3]. Lam et al. instrument binary codes in order to modify their precision without
modifying the source codes [26]. They also propose a dynamic search method to identify the
pieces of code where the precision should be modified. Again, these techniques do not transform
the codes in order to improve the accuracy.

Finally, another related research axis concerns the compile-time optimization of programs
to improve the accuracy of the floating-point computation in function of given ranges for the
inputs, without modifying the formats of the numbers [17]. The Sardana tool takes arithmetic
expressions and optimize them using a source-to-source transformation. Herbie optimizes the
arithmetic expressions of Scala codes. While Sardana uses a static analysis to select the best
expression, Herbie uses dynamic analysis (a set or random runs). A comparison of these tools
is given in [14]. These techniques are limited to arithmetic expressions.
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3 Floating-Point Arithmetic

In this section, we present briefly the IEEE754 Standard [1]. Next, we describe how the round-
off errors are computed.

3.1 The IEEE754 Standard

Floating-point numbers are used to represent real numbers [18, 1]. Because of their finite
representation, round-off errors arise during the computations and this may cause damages in
critical contexts. The IEEE754 Standard formalizes a binary floating-point number as a triplet
made of a sign, a mantissa and an exponent. We consider that a number z is written:

t=s5-(dody...dp 1) b =5-m-p"P | (1)

where, s is the sign € {—1,1}, b is the basis, b = 2, m is the mantissa, m = dy.d; ...dp_1 with
digits 0 < d; < b, 0 <i < p—1, pis the precision and e is the exponent e € [e;nin, €maz]. The
IEEE754 Standard specifies some particular values for p, €5, and €44

The IEEET754 Standard defines four rounding modes for elementary operations over floating-
point numbers. These modes are towards —oo, towards +o0o, towards zero and to the nearest
respectively denoted by 1400, Tooo, To and T.. Let R be the set of real numbers and F be the
set of floating-point numbers (we assume that only one format is used at the time, e.g. single
or double precision). The semantics of the elementary operations specified by the IEEE754
Standard is given by Equation (2).

r®ry="Tr (zxy) , with 1 R—F | (2)

where a floating-point operation, denoted by ®,., is computed using the rounding mode r €
{T4oos T—oos To, T~} and x € {+,—, x,+} is an exact operation. Obviously, the results of
the computations are not exact because of the round-off errors. This is why, we use also the
function J,: R — R that returns the round-off error. We have

b (@) =2— 1 () . 3)

3.2 Error Bound Computation

In order to compute the errors during the evaluation of arithmetic expressions [27], we use
values which are pairs (z,u) € F x R = E where z is the floating-point number used by the
machine and p is the exact error attached to F, i.e., the exact difference between the real
and floating-point numbers as defined in Equation (3). For example, the real number % is
represented by the value v = (1 (3),4~ (3)) = (0.333333, (3 — 0.333333)). The semantics of
the elementary operations on E is defined in [27].

Our tool uses an abstract semantics [5] based on E. The abstract values are represented by a
pair of intervals. The first interval contains the range of the floating-point values of the program
and the second one contains the range of the errors obtained by subtracting the floating-point
values from the exact ones. In the abstract value (x*, u*) € E¥, z* is the interval corresponding
to the range of the values and p? is the interval of errors on zf. This value abstracts a set of
concrete values {(x, ) : 2 € z¥ and pu € p*} by intervals in a component-wise way. We now
introduce the semantics of arithmetic expressions on Ef. We approximate an interval z* with
real bounds by an interval based on floating-point bounds, denoted by 1¢ (2#). Here bounds
are rounded to the nearest, see Equation (4).

[z, 7)) = I~ @), 1~ @) - (4)
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We denote by |* the function that abstracts the concrete function |.. Every error associated
to x € [z, 7] is included in * ([z,Z]). For a rounding mode to the nearest, we have

V¥ (lz7]) = [~y,y] with y= %ulp(maX(@l, z]) - (5)

Formally, the wunit in the last place, denoted by ulp(x), consists of the weight of the least
significant digit of the floating-point number x. Equations (6) and (7) give the semantics of the
addition and multiplication over Ef, for other operations see [27]. If we sum two numbers, we
must add the errors on the operands to the error produced by the round-off of the result. When

multiplying two numbers, the semantics is given by the development of (x% + u’i) X (mﬁ2 + Mﬁz)

(@, 1) + (2h, 15) = (1% (@] +d), i + b+ 1P (] +ad)) | (6)

(@, 1) x (a5, 1b) = (1% (2] > @), 2h > pf + 2 > b + i x s+ 1 (2] x 2h)) . (7)

4 Transformation for Numerical Accuracy

In this section, we briefly present how to transform programs in order to improve their numerical
accuracy. We start by presenting the transformation of arithmetic expressions introduced in [24].
Then we give the principles of the transformation of both intraprocedural and interprocedural
programs.

4.1 Transformation of Expressions

We briefly introduce former work [24, 31] to semantically transform arithmetic expressions using
Abstract Program Expression Graph (APEG). This data structure remains in polynomial size
while dealing with an exponential number of equivalent expressions. To prevent any combinato-
rial problem, APEGs hold in abstraction boxes many equivalent expressions up to associativity
and commutativity. A box containing n operands can represent up to 1 x 3 x 5... X (2n — 3)
possible formulas. In order to build large APEGs, two algorithms are used (propagation and
expansion algorithms). The first one searches recursively in the APEG where a symmetric
binary operator is repeated and introduces abstraction boxes. Then, the second algorithm
finds a homogeneous part and inserts a polynomial number of boxes. In order to add new
shapes of expressions in an APEG, one propagates recursively subtractions and divisions into
the concerned operands, propagate products, and factorizes common factors. Finally, an ac-
curate formula is searched among all the equivalent formulas of the APEG using the abstract
semantics of Section 3.2.

Example 4.1. An example of APEG is given in Figure 1. When an equivalence class (denoted
by a dotted ellipse) contains many sub-APEGSs p1,...,p, then one of the p;, 1 < i < n, must

be selected in order to build an expression. A box m represents any parsing of the

erpression p1 x ... x p,. For instance, the APEG p of Figure 1 represents all the following
expressions:

((@+a)+b) xc, ((a+b)+a)xc, (b+a)+a)xe ((2%xa)+b) xc,
.A(p)Z{ c><((a+a)+b),c><((a+b)—|—a),cx((b—|—a)+a),c><((2><a)+b), }
(a+a)xec+bxe (2xa)xe+bxe bxe+(a+a)Xe bxec+(2%xa)Xxe

In this example, the last step of the transformation consists of evaluating all the expressions in
A(p) with the abstract semantics of Section 3.2 to select the most accurate one. ]
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4.2 Intraprocedural Transformation

In this section, we focus on the transformation of commands which is done using a set of
rewriting rules formally defined in [13]. Our language is made of assignments, conditionals,
loops, etc. The transformation relies on several hypotheses. First of all, programs are assumed
to be in static single assignment form (SSA form) [7]. The principle of this intermediary
representation is that every variable may be assigned only once in the source code and must
be assigned before its use. Our tool, Salsa puts programs in SSA form after passing them.
The second hypothesis is that we optimize a target variable chosen by the user and denoted v
hereafter. Our transformation is defined by rules using states (c, 4, C, 8) where

e ¢ is a command,

0 is a formal environment 6 : V — Expr which maps variables of V to expressions.
Intuitively, this environment records the expressions assigned to variables in order to
inline them later on in larger expressions,

e C € Ctx is a single hole context [23] that records the program enclosing the current
command to be transformed,

e 3 C Vis a list of assigned variables that should not be removed from the code. Initially,
B = {v}, i.e., the target variable v must not be removed.

The environment § is used to discard assignments from programs and to re-insert the expressions
when the variables are read, in order to build larger expressions.

Let us consider first assignments. If (¢) the variable v of some assignment v = e does not
exist in the domain of ¢, if (i7) v € § and if (i44) v # v then we memorize e in § and we remove
the assignment from the program. Otherwise, if one of the conditions (), (i) or (i) is not
satisfied then we rewrite this assignment by inlining the variables saved in ¢ in the concerned
expression. Note that, when transforming programs by inlining expressions in other expressions,
we get larger formulas. In our implementation, when dealing with too large expressions, we
create intermediary variables and we assign to them the sub-expressions obtained by slicing the
global expression at a given level of the syntactic tree. The last step consists of re-inserting
these intermediary variables into the main program.

Example 4.2. For example, let us consider the program below in which three variables x, y
and z are assigned. We assume that z is the variable that we aim at optimizing and a = 0.1,

Figure 1: APEG for the expression e = ((a 4+ a) +b) x c.
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b=0.01, ¢ =0.001 and d = 0.0001 are constants.
(x=a+b;y=c+d;z=x+y, J, [|, [2])
—u(nopsy=c+d;z=x+y,0 =dx—a+b], z=a+b], [2]) ®)
—(nop ;nop;z=x+7y,0" =d8y—c+d], z=a+by=c+d;[], [2])
—u{nop;nop;z=((d+c)+b)+a, &, z=a+by=c+d;], [2])

In Equation (8), the environment & and the context C are initially empty and the list § contains
the target variable z. We remowve the variable x and memorize it in §. So, the line corresponding
to the variable discarded is replaced by nop and the new environment is § = [x — a +b]. We
then repeat the same process on the variable y. For the last step, we may not remove z because
it is the target variable. Instead, we substitute, in z, x and y by their values in 6 and we
transform the expression using the technique described in Section 3.2.

|

Our tool also transforms conditionals. If a certain condition is always true or false, then we
keep only the right branch, otherwise, we transform both branches of the conditional. When it
is necessary, we re-inject variables that have been discarded from the main program.

For a sequence cy; ¢, the first command ¢; is transformed into ¢} in the current environment
4, C, v and 8 and a new context C’ is built which inserts ¢] inside C. Then ¢s is transformed
into ¢ using the context C'[c}; []], the formal environments ¢’ and the list 5’ resulting from the
transformation of ¢;. Finally, we return the state (¢} ; c5,8”,C,3").

Other transformations have been defined for while loops. A first rule makes it possible to
transform the body of the loop assuming that the variables of the condition have not been
stored in 4. In this case, the body is optimized in the context C|whileg e do []] where C' is the
context of the loop. A second rule builds the list V = Var(e)UVar(®) where Var(®) is the list
of variables read and written in the ® nodes of the loop. The set V is used to achieve two tasks:
firstly, it is used to build a new command ¢’ corresponding to the sequence of assignments that
must be re-inserted. Secondly, the variables of V' are removed from the domain of § and added
to 8. The resulting command is obtained by transforming ¢’; whileg ¢ do ¢ with §’ and U V.

4.3 Interprocedural Transformation

In this section, we show how we transform functions using a set of rewriting rules formally
defined in [8, 9]. For the sake of simplicity, in our formal definitions, we only consider functions
with one single argument only. However, in our implementation we support functions with
many arguments. The generalization is straightforward. In addition, we assume that any
program p has a function named main which is the first function called when executing p, and
the returned variable v consists of the target variable at optimizing v = {v} with v € V. Recall
that V denotes the set of identifiers.

Basically, our interprocedural transformation follows the same objective as the intrapro-
cedural one. We aim at creating large arithmetic expressions which can be recombined into
more accurate ones as explained in Section 4.1. The larger the expressions are, the more op-
portunities we have to rewrite them. In the case of functions, we may either inline the body
of a function into the caller or evaluate lazily the arguments, specially when they correspond
to large expressions. We also use a specialization rule with respect to the arguments of the
function since this also improves the accuracy in many contexts. In the rest of this section, we
give a brief description of each of these three transformation rules.

The first rule consists of inlining the body of the function into the calling function. This
makes it possible to create larger expressions in the caller. Then the new program can be more
optimized by applying the intraprocedural transformation rules previously seen in Section 4.2.
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Figure 2: Software architecture of Salsa.

The second transformation rule is used when we deal with a small number of calls to a large
function in the original program. The idea is to specialize the function with respect to the
argument by passing the abstract value of the argument to the function when the variability
of the interval is small (for example whenever it contains less than w floating-point numbers).
By variability, we mean that the distance between the lower bound and the upper bound of an
interval is small. If the variability of the interval i = [i,1] is smaller than a parameter w then,
we apply the second rule, we substitute the variable u of the function £ by the abstract value
of the parameter. In practice, we choose w = 2* x ulp(max([i|,|i|) where ulp(z) is defined in
Section 3.2. Note that we conserve the original function in our code when the condition on the
variability is not satisfied.

The last rule consists of substituting the formal expression of the parameters of a given
function call to the formal parameters inside the body of the called function. It can be seen
as a lazy evaluation of the parameters in the caller. By applying this rule, we obtain the
new function whose parameters are the variables of the expressions of the arguments. Then
we rewrite the new function by using the intraprocedural transformation rules to optimize the
numerical accuracy of the computations. In addition, in the calling site z = f(e), we substitute
Var(e) to e in the arguments. For example, if Var(e) = x the call becomes z = f(x).

5 The Salsa Tool

In this section, we present our tool, Salsa. We detail its architecture, its inputs (files, param-
eters), its outputs and we describe the process followed by Salsa to improve the accuracy of
programs given as inputs. After the presentation of Salsa, we give an example of application
of our programs transformation.

5.1 Architecture

In this section, we describe the main architecture of our tool as shown in Figure 2. Salsa is
based on the transformation described in Section 4. Written in 0Caml, our tool is made of
several modules. Salsa transforms the programs using the Salsa-Intra, Salsa-Function and
Sardana modules.

e Parser: It takes programs in a C-like language with annotations (an example of program
written in Salsa syntax is given in Figure 2), puts the program in SSA form and returns
the syntactic tree,

e Static-Analyzer: It is based on abstract interpretation to compute the numerical accu-
racy of programs. The static analyzer infers safe ranges and computes error bounds for
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each variable at each control point of the program for all the possible entries specified by
intervals. To produce a more precise over-approximation of the maximum error, a work
in progress consists of integrating the affine arithmetic [22] in our analyzer,

e Sardana: It improves the accuracy of arithmetic expressions [25]. Sardana takes as entry
an arithmetic expression with free variables plus ranges for the free variables and returns
a new expression more accurate than the original one and we assume that the variables
belongs to the given ranges using the APEG described in Section 4.1,

e Salsa-Intra: It implements the intraprocedural transformation rules described in former
work [13]. This module, takes a source program, calls the static analyzer to compute
safe ranges for the variables at the current control point and then calls Sardana on the
expression of the current control point with the ranges computed by the static analyzer,

e Salsa-Function: It implements the interprocedural transformation rules presented in
Section 4.3 and detailed in [9]. This module transforms the functions as described in
Section 4.3 (eg. by inlining, specialization, etc) and calls Salsa-Intra on the body of the
transformed functions.

For each program transformed, Salsa-Intra re-starts the transformation while no more
improvement of the accuracy is obtained. Finally, Salsa returns as output a file containing the
transformed program with better accuracy and the accuracy improvement.

5.2 Inputs/Outputs

In this section, we specify the various inputs and outputs of Salsa. The tool takes as input a
file that specifies ranges for the free variables of the program. These free variables are either
introduced by the user to specialize the program for a class of executions or come from the
sensors that transform physical measurements into digital data values in the case of embedded
systems (typically these variables are declared volatile in C codes). These global variables are
initialized thanks to the primitive assert at the beginning of each program (see Figure 3). In
assert id = [a, b, ¢, d], the interval used is of form [a, b, ¢, d] where

e The first pair of values a, b consists of the range of floating-point value,

e The second pair ¢, d consists of the error range associated to the floating-point interval

[a, b].

Assertions are defined at the begining of the code. The end of the assertions section is
marked by the keyword %Salsaj,. Currently, Salsa optimizes one variable only, called the
target variable. It consists of the variable returned by the main function of the program. Salsa
depends on several parameters which tune its behavior. The main parameters are:

e sliceSize: This number corresponds to the height of the syntactic tree where we slice
the arithmetic expressions. Basically Salsa builds very large expressions in order to
have more opportunities to rewrite them into more accurate one. sliceSize is applied
when we deal with very large expressions after inlining and substituting to avoid too
large expressions in the optimized program. After slicing the expressions, we associate
them to intermediary variables named TMP. For example if sliceSize= 2, the assignment
x = ((a+b)+c)+(d+e) is rewritten into TMP1 = (a+b)+c¢; TMP2 = d+e; x = TMP1+4TMP2,
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e w: This number gives the width of the intervals corresponding to the values of the ar-
guments of a function. In our interprocedural transformation module, the intervals must
contain at most w = 2* floating-point numbers. Our rule selector uses w to determine if
it performs function specialization or laziness. If the abstract values of the parameters
have width less than w then we use specialization rule otherwise we use laziness rule,

e widen: It consists of the number of iterations that we can do before applying the widening
in the static analysis.

5.3 Example of Transformation

A PID Controller [2, 13] is a widely used algorithm in embedded and critical systems, like

aeronautic and avionic systems. It keeps a physical parameter (m) at a specific value known

as the setpoint (¢). An original PID program is given in Figure 3. The function integral

computes the integral of the error by the rectangle rule. The error being the difference between

the setpoint and the measure, the controller computes a correction based on the integral ¢ and
derivative d of the error and also from a proportional error term p. We have

. 1

p=k,xe, i=i+(kixexdt) , d:kdx(e—eold)xa (9)

The weighted sum of these terms determines the reactivity, the robustness and the speed

of the PID algorithm. If we take for example the PID program given in Figure 3, we have: the

inputs are the measurement m and the setpoint ¢, the output the response r, the target variable

is r that corresponds to the returned variable in the main function, the sliceSize parameter

is equal to 5 and the widen parameter is equal to 10.

// Begin of assertions or global environment
assert m = [8.0,8.0, 0.0,0.0]
assert ¢ = [5.0,5.0, 0.0,0.0]
// End of assertions
%Salsa’
// begin of Program
double main (){
// Begin of initialization
eold = 0.0 ; t = 0.0 ; i = 0.0 ; kp = 9.4514 ;
kd = 2.8454 ; dt = 0.2 ; invdt = 5.0 ; m = 0.0 ;
// End of initialization
while (t < 100.0) {

e =c¢c-m;
p = kp * e ;
i = integral(i,m,c,dt) ;
d = kd * invdt * (e - eold) ;
r=p+i+d;
eold = e ;
m=m+ r *x 0.01 ;
t =t + dt ;
}
return r ; // Target variable
}

double integral(double ii, double mm,double cc,double ddt){
ki = 0.69006 ;
res = ii + (ki * ddt * (cc-mm)) ;
return res ;

}

Figure 3: Salsa files.
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Code Original Abs. Transformed Abs. Original Rel. Transformed Rel. Transformation
Error Error Error Error Time (s)
Odometry 5.55168e-14 2.13253e-14 7.7719e-16 3.7346e-16 0.047
PID Controller 4.66802e-14 2.13462e-16 1.6226e-15 7.4200e-17 0.121
Lead-Lag System 1.61083e-13 1.42663e-14 7.1038e-17 1.1145e-17 0.009
Runge-Kutta 4 1.26621e-15 2.77237e-16 7.1105e-16 1.6766e-16 0.022
Newton-Raphson 3.21484e-14 1.07444e-15 1.0937e-15 8.9536e-17 0.022
Simpson’s Method 1.91875e-10 9.44669e-15 1.1605e-13 6.2320e-18 0.620
Rocket Trajectory 2.85693e-07 6.04012e-10 3.7310e-11 7.8882e-13 0.086

Table 1: Improvement of the numerical accuracy of programs and their transformation time
measurements.

Code [ Exec. time, (s) Exec. time; (s) [ % [ Code size, Code size; %%%%%%%%%
Odometry 0.049 0.038 22.44 808 2.1 K 0.38
PID Controller 0.055 0.025 54.54 472 573 0.82
Lead-Lag System 0.049 0.046 6.12 618 752 0.82
Runge-Kutta 4 0.047 0.046 2.12 697 1.4 K 0.49
Newton-Raphson 0.059 0.047 20.33 465 1.1 K 0.42
Simpson’s Method 0.082 0.051 37.80 648 4.2 K 0.15
Rocket Trajectory 0.055 0.047 14.54 1.6K 29K 0.55

Table 2: Ezecution time and code size measurements of programs.

assert m = [8.0,8.0, O.
assert ¢ = [5.0,5.0, O.
%Salsa’
double main() {
t =0.0 7 m= 0.0 3; eold = 0.0 ; i = 0.0 ;
while (t < 100.0) {
p = ((6.0 - m) *x 9.4514) ;
i integral(i,m,5.0,0.2) ;

0,0.0]
0,0.0]

d = (((6.0 - m) - eold) * 14.226999999999997) ;
eold = (5.0 - m) ;
r = ((p+ i) + d) ;
m = (m + (0.01 * r)) ;
t = (t + 0.2) ;
o
return r ;

}

double integral(double ii,double mm,double cc,double ddt) {
res = (ii + ((0.69006 * (cc - mm)) * ddt)) ;
return res ;

}

Figure 4: Transformed PID program.

After transformation, Salsa returns the program shown in Figure 4. Salsa asserts that
the relative error of computation on r in the PID program is improved from 1.6226e~1° to
7.4200e~17 (see Table 1).

6 Experimentation
In this section, we aim at evaluating the performances of Salsa from various points of views.

Obviously, we aim at evaluating how much the numerical accuracy is improved but also the
impact on the code size, execution time and program transformation time. To do this, we have
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taken a set of examples introduced in other articles and coming from different domains. We
give hereafter, a brief description for each of them.

e Odometry: It consists of computing the position (z,y) of a two wheeled robot by odome-
try [13],

e PID: It keeps a physical parameter at a specific value known as the setpoint [13] as seen
in Section 5.3,

e Lead-Lag System: It consists of a dynamical system including a mass and a spring which
tries to move the mass from an initial position to a desired position [13],

e Runge-Kutta 4: It integrates an order 1 ordinary differential equation [13],

e Newton-Raphson’s method: This numerical method is used to compute the successive
approximations of the zeros of a real-valued function [10],

e Simpson’s method: It is an improvement of the trapeze rule for numerical integration [12],

e Rocket: It computes the positions of a rocket and a satellite in space. It consists of
simulating their trajectories around the earth using the cartesian and polar systems, in
order to project the gravitational forces in the system composed of the earth, the rocket
and the satellite [11]. This code is larger than the former ones.

In Table 1, we give for each program:

e The upper bound of the original absolute error on the target variable obtained by static
analysis as defined in Section 3.2,

e The upper bound of the absolute error on the target variable obtained after optimization,

e The original relative error obtained by dividing the absolute error by the upper bound of
the interval of the value of the target variable,

e The relative error after transformation,
e The transformation time required to transform the programs.

The improvements of the relative errors on each code are also displayed in Figure 5. For
example, if we take the PID controller previously presented in Section 5.3, its initial absolute
error of computation is 4.66802¢~!* while its absolute error of computation after transformation
is equal to 2.13462¢716. We remark that the numerical accuracy of the PID Controller is
improved by 99.54%. In other words, the absolute error of computation is reduced by 99.54%.
If we are interested in measuring the time needed by Salsa to transform the PID Controller,
we have that it takes 0.121 seconds. On a more complex example like the Rocket program, it
takes 0.086 seconds to improve its accuracy for a total of more than 100 lines of code.

Beside accuracy measurements, we are also interested in examining the effects of Salsa on
other criteria, related to performances of the transformed codes. In Table 2, we give for each
program:

e The mean execution time in seconds obtained for 1000 runs of the original programs,
Exec. time,,

e The mean execution time after optimization obtained for 1000 runs for each program,
Exec. timey,
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e The percentage of improvement of the execution time,

e The code size of the original program, Code size,, in Bytes,

e The code size of the transformed program, Code size;, in Bytes,

e The ratio between the code sizes of the original and transformed codes.

For execution time measurements, all the programs have been written in the C language
and compiled with GCC 4.9.2, and executed on Intel Core i7 in IEEET754 single precision in
order to emphasize the effect of the finite precision. Programs are compiled with the default
optimization level -02. We have tried other levels of optimization without observing significant
changes in our results. The results show that by transforming programs, we improve not
only their accuracy but we reduce their execution time too. More precisely, if we take the
PID Controller program, we shown in Table 2 that the execution time needed by the original
program is 0.055 seconds while its execution time after being transformed is 0.025 seconds. It
means that the execution time of the PID Controller is reduced by 54.54%. This is mainly
due to the fact that Salsa performs partial evaluation during the transformation and that
computations with fewer operations often generate less errors and are often privileged in the
choice of expressions in APEGs. By transforming programs, we may create new variables when
we deal with large expressions that we associate to TMP variables. This explains the code size
before, code size,, and after transformation, code size; (in mean, the size of the optimized

code is twice the size of the original). Despite increasing the size of program, the execution
time of each program is widely reduced.

7 Conclusion

In this article, we have introduced Salsa, an automatic tool to improve the numerical accuracy
of computations of intraprocedural and interprocedural programs by automatic transformation.
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Figure 5: Improvements of the relative errors of the programs of Section 6.
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We have detailed its architecture, and the different inputs and the outputs that it supports.
We have tested Salsa across experimental results obtained on several examples coming from
embedded systems and numerical algorithms. The results obtained show the efficiency of our
tool on the numerical accuracy of computations which are improved by mean of 25.03%. Note
that, this mean is a geometric mean. We have also shown that Salsa improves the execution
time (by program specialization) but augments the code size (a factor 2 in mean). The time
taken by Salsa to transform programs is also very short.

An interesting perspective consists of extending our work to optimize parallel programs. In
this direction, we aim at solving new numerical accuracy problems like the order in an operation
in a distributed system. We are interested also in studying the compromise between execution
time, computation performances, numerical accuracy and the convergence acceleration of nu-
merical methods. A key research direction is to study the impact of accuracy optimization on
the convergence time of distributed numerical algorithms like the ones used usually for high
performance computing. In addition, still about distributed systems, an important issue con-
cerns the reproducibility of the results: Different runs of the same application yield different
results on different machines due to the variations in the order of evaluation of the mathematical
expression. We would like to study how our technique could improve reproducibility.

A significant interest would be to extend the current work with a case study concerning the
optimization of several variables at the same time. In other words, we aim at improving the
numerical accuracy of the program on several control points. That makes it possible to guess
which variables are favorite to be optimized simultaneously without decreasing the accuracy of
the other variables.
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