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Abstract

Automating the process of detecting pavement cracks became a challenge mission. In
the last few decades, many methods were proposed to solve this problem. The reason is
that maintaining a stable condition of roads is essential for the safety of people and public
properties. It was reported that maintaining one mile of roads in New York City in the
USA might cost from four to ten thousand dollars. In this paper, we explore our initial
idea of developing a lightweight Convolutional Neural Network (CNN or ConvNet) model
that can be used to detect pavement cracks. The proposed CNN was trained using the
AigleRN data set, which contains 400 images of road cracks of 480x320 resolution. The
proposed lightweight CNN architecture performed a better fitting to the image data set due
to the reduction in the number of parameters. The proposed CNN was capable of detecting
cracks with a various number of sample images. We simulated the CNN architecture over
different sizes of training/testing (i.e., 90/10, 80/20, and 70/30) data sets for 11 runs. The
obtained results show that 90/10 data division for training and testing is outperformed
other categories with an average accuracy of 97.27%.

1 Introduction

Roads are the heart of modern cities due to their importance either for public or private trans-
portation. Keeping these roads in excellent condition is needed for safe driving. Roads should
provide acceptable characteristics (i.e., shape, surface, and friction) to keep vehicles while travel-
ing in safe conditions at the desired speed. Automatic pavement crack detection is a challenging
task in road maintenance since the cracks have different intensity inhomogeneity and complex
background structure [10]. The World Bank reports that roads and transportation infrastruc-
tures are the most valuable assets in any country, and it is essential to keep them in good
working condition [30]. As a result, countries try to maintain their roads regularly and keep
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them in good condition, which reduces the maintenance cost in the long run. In general, roads
should have a predetermined schedule to maintain to keep them safe for the public [26].

Pavement inspections are a process for both highways and local airport roads implemented
by various authorities such as transportation agencies. Pavement engineers are responsible for
inspecting all types of cracks, evenness, and distress by routinely collecting road condition data.
A frequent pavement distress survey usually executed according to a pre-defined plan to mon-
itor the pavement state and regulate the appropriate maintenance and rehabilitation actions.
Various types of distress can be inspected, such as longitudinal cracking, crosswise cracking,
chunk cracking and patching [17]. The pavement inspection process has to be implemented
in various weather and traffic conditions; thus, it is time-consuming and involves human er-
rors. Moreover, efficient pavement monitoring strategies can enhance the pavement life-cycle
maintenance costs [5].

Road data collection is the first phase of the pavement crack detection process. Cracking
is the most popular type of pavement distress [4]. A myriad of things could cause distress in
the pavement, such as inadequate structural support for the given loading, poor construction,
weather conditions like sundry, and deteriorate it [18]. Drought, soil erosion, and extended
periods of rain can cause the ground beneath the pavement to shift. Poor road conditions
will reduce the safety level for drivers and will increase the vehicle maintenance cost. Several
municipalities prefer to construct new roads or rehabilitate dilapidated roads rather than have
regular maintenance. In general, developing new pavement crack detection systems attracts
many academic researchers and pavement engineers to find such systems that reduce time and
cost, more efficiency, and safer [29].

Several methods have been proposed to detect payment cracks based on image processing
concepts such as adaptive thresholding and morphological processing. Sy et al. [22] employed
bilevel thresholding, morphological operation, and projection to detect pavement cracks. The
authors tested their proposed approach on three kinds of images: laboratory images, static
images, and AMAC reg images. Li et al. [12] proposed a pavement crack thresholding method
based on neighboring differential histogram statistics. Oliveira and Correia [15] proposed a
local thresholding method for pavement crack images that are non- overlapping blocks. Li et
al.. [11] proposed new unsupervised multi-scale fusion crack detection (MFCD) algorithm to
detect pavement cracks. The proposed approach consists of three phases: extract the candidate
cracks phase, determine the crack correspondences across different scales phase, and evaluating
phase based on a multivariate statistical hypothesis test.

Image processing technique called Histograms of oriented gradients is used [6] for crack
recognition. The images are collected using a camera placed orthogonally to the road pavement
axis. In [27], the authors developed a supervised classification method. Such that each crack
image goes across gray-scale transformation, median filtering, k-means segmentation, and fi-
nally, classification using the neighbor method. Three layers of self-studying back propagation
neural network for pavement crack recognition were presented in [24]. A pavement segmenta-
tion method is developed based on the Genetic Algorithm and entropy theory to determine the
threshold value accurately.

Lately, CNN provided promising results. It was used for crack detection as a supervised
method based on deep learning for crack detection [30]. The features are automatically learned
from manually annotated image patches acquired by a low-cost sensor, i.e., smartphone. CNN
showed superior crack detection performance. Most recent work includes grid-based pavement
crack detection using deep learning [23], to perform pixel-wise classification of surface cracks on
road and pavement images [3], deep crack end-to-end trainable deep CNN for automatic crack
detection is proposed [31] by learning high-level features of pavement crack representation.
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Automating the inspection processes using robotics has also been investigated [7, 13]. The
development of an autonomous robot capable of automating the pavement inspection is the
primary goal of many research works. The autonomous mobile robot can be programmed to
behave as an intelligent agent (IA). IA can observe the surrounding environment and react with
a suitable decision. ARS can produce high productivity in inspecting the road and complete
the mission in a much better, faster, and safer way. This process will reduce costs and human
mistakes.

In this paper, the standard CNN architecture is presented in Section 2. The pavement crack
data set used in this paper is presented in Section 3. We provide our initial idea of developing
a Convolution Neural Networks (CNN) to classify the structure of the cracks from raw images
collected from [19] and the system simulation and experimental results are provided in Section
4. Finally, the conclusion and future works are presented in Section 5.

2 Deep Neural Networks

Over the past few years, the CNN paradigm has shown excellent performance in tackling nu-
merous problems in computer vision, speech recognition, natural language processing, machine
translation in real-time, and drug design [16]. CNN is based on an artificial neural network
(ANN) but with deep structure. The word “deep” in “deep learning” denotes the increased
number of layers in the network.

The use of deep learning is superior compared to other Machine Learning algorithms the
most crucial reason the model capabilities to capture features from the data. Deep-learning
networks can perform automatic feature extraction without human intervention, unlike most
traditional machine-learning algorithms [14]. Each layer of nodes trains on a distinct set of
features based on the previous layer’s output. The deeper we go into the network, the more
intricate features can be recognized. This feature hierarchy makes deep learning networks
capable of handling large, high-dimensional data sets with billions of parameters that pass
through nonlinear functions.

With the growing size of training data, traditional machine learning techniques like support
vector machine (SVM) and logistic regression do not perform well [2]. They tend to plateau
after a certain point. In contrast, deep neural network performance increases with the increased
data fed to the model. Data, computation time, and algorithms drive a typical in-depth learning
process.

2.1 Convolutional Neural Network

CNN is a particular type of ANN that can learn several patterns inside images by extracting fea-
tures. CNN shows an excellent performance in several domains such as traffic sign recognition,
image classifications, medical image segmentation [21]. Moreover, CNN enhances several ma-
chine learning methods such as transfer learning based on CNNs for object detection problems
[20]. The first architecture of CNN (i.e., LetNet-5) appears in 1989, where the Back-Propagation
algorithm [8] optimizes the connection weights. Later on, several architectures for CNN have
been proposed, such as ResNet, LeNet, AlexNet, VGG, and GoogLeNet [25]. In general, CNN
is a Feedforward Neural Networks that consists of two parts: feature extractor and classifier.
The feature extractor part has convolutional and max-pooling layers, while the classifier part
has a fully connected layer. The convolutional layer is the primary building block of CNN.
Convolution is an operation that merges two sets of information, which has weights and biases
to various aspects/objects in the image and be able to differentiate one from the other. The
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main aim of the convolutional layer is to learn feature representations of the input images. The
convolution is applied using a convolution filter (i.e., kernel) to produce a feature map. Each
neuron located in the same feature map is employed to extract several local characteristics from
different locations in the former layer. Low-level features are extracted from the first convo-
lutional layer, such as edges, color, gradient orientation, and many others. To extract more
new features, the first convolutional layer mapped with a learned kernel, where the results are
moved to a nonlinear activation function. Applying different kernels will generate several new
features.

A ConvNet can extract the spatial and temporal dependencies from the input image using
a set of relevant filters [28]. The leading architecture of ConvNet manipulates a better fitting
to the input data set (i.e., crack image) by reducing the number of parameters employed in
ConvNet and the re-usability of weights. ConvNet can be trained to learn and examine the
sophistication of the input image in an excellent way. A pictorial demonstration of CNN
architecture is shown in Figure 1. The input image is a pavement image that either has a crack
or not. The feature extractor has three convolutional and pooling layers. While the classifier
has one fully connected layer, the output can be a Softmax layer indicating whether there is a
crack or not.

Feature Extractor Classifier

0: No Crack

1: Crack

Conv Pooling

Conv  Pooling Layer3 Layer3 Output

L. 2 Llayer2
Conv Pooling aver B Fully tayer

Layer 1 Layer 1 connected

Layer

Figure 1: The CNN architecture.

3 Pavement Crack Data set

We used the AigleRN [1] data set that contains 400 images of road cracks where the image size
is 480x320 with full-color [19]. The dimensions of the input images used to train the CNN is
230x230 pixels. The total number of examples is 400, where 90% was used for training, and
the rest 10% for testing, as shown in Table 1.
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Table 1: Training and Testing Data set

Image size Positive examples Negative examples
Images 320x320 200 200

Figure 2: Examples of images in AigleRN data set. Sample size is 230x230 pixel. This patch
shows negative samples, that do not contain crack pixels.

4 CNN Architecture

Convolution neural networks are the state of the art technology in computer vision and other
artificial intelligence fields. Their strengths lie within its ability to extract features automat-
ically [9]. It is implemented by applying a sequence of filters (i.e., convolutions) to the input
images. The proposed CNN architecture has defined three convolution layers, each with 16
filters followed by max pool layers. The classical CNN contains three layers: convolutional
layers, max-pooling layers, and fully-connection (FC) layers. In this work, CNN architecture
has 3 convolutional layers with 3 max-pooling layers and 2 FC layers. Figure 4 demonstrates
the CNN architecture for the pavement crack problem. The size of input pavement crack image
is 230 x 230 x 3.

4.1 Model Evaluation
Several methods were employed to evaluate the pavement crack detection systems such as

Correctly Classified Instances (CCI) and Incorrectly Classified Instances (ICI). In this paper,
we used CCI and ICI to examine the overall performance of the CNN model. The equations
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Figure 3: Examples of images in AigleRN data set. Sample size is 230x230 pixel. This patch
shows positive samples, that contain crack pixels.
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Figure 4: ConvNet architecture for pavement crack detection.

which described the CCI and ICI are presented in Equation 1 and Equation 2.

TP+TN
CCI_TP+TN+FP+FN (1)
FP+FN
ICI = 2
¢ TP+TN+FP+FN (2)

Where TP refers to the true-positive prediction for positive instances, TN refers to the true-
negative prediction for negative instances, F'P refers to false-positive prediction for positive
instances, and F'N refers to to the false-negative prediction for negative instances. Table 2
demonstrates the Confusion Matrix (CM) to examine the pavement crack detection system.
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Table 2: The confusion matrix (CM).

Predicted Class

Class = Yes (Crack exists) | Class = No (Crack not exists)
Actual Class | Class = Yes | True Positive (TP) False Negative (FN)
Class = No | False Positive (FP) True Negative (TN)

4.2 CNN Simulation

In this paper, we divided the data set using the holdout method (i.e., Training/Testing) into
three groups: 90/10, 80/20, and 70/30. To examine the overall performance of the proposed
CNN, we executed each category 11 times independently for 60 epochs for each run until we
reached convergence and obtained the best accuracy. Table 3 demonstrates the obtained results
based on Average, maximum, minimum, and standard deviation for each category. It is clear
that based on the average accuracy results for testing data set, 90/10 gain accuracy value
equals 97.27, which is outperforming other categories. Figure 5, we show the accuracy and loss
of the network during the training process for the 90/10 category, respectively. The increase
in accuracy and decrease in loss often represent the network’s ability to capturing common
patterns. Figure 6 shows the performance of CNN based on the box-plot diagram for both
training and testing data sets. It is evident that, based on the average accuracy values, the
90/10 category has a stable performance over the testing data set. Finally, we can notice that
the performance of CNN depends on the size of the input data. It is crucial to select a good
ratio between training and testing data sets.

Table 3: CNN Simulation Results for 11 independent runs.

.. . Training data set. Testing data set.
Training/Testing % - Max. Min. St Avg. Mas.  Min. Std.
70730 99.12 100.00 97.14 0.87 | 9652 9833 9500 0.97
80,20 9784 100.00 8504 4.00 | 95.01 9875 80.00 5.36
90,10 98.60 100.00 9417 1.62 | 97.27 100.00 92.50 2.08

5 Conclusion and Future Work

In this paper, we employed a CNN architecture to detect pavement cracks from a benchmark
data set obtained from AigleRN. A set of experiments were performed using different sizes of
training/testing data set. The achieved results show that 90/10 data division can produce a
stable and robust automated pavement cracks system. CNN can produce a high classification
accuracy in an acceptable real-time execution. Our future work includes the development of
an autonomous robot system (ARS), that consisits of the lightwaight CNN, WiFi camera, and
GPS sensor compents that can be to be executed online to detect pavement cracks. We also
plan to build a GUI to analyze the detection and analysis of pavement in a better way.
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