
Temporal Patterns for Document Verification
Mirjana Jakšić∗and Burkhard Freitag

University of Passau
Mirjana.Jaksic, Burkhard.Freitag@uni-passau.de

Abstract

In this paper we present a novel user-friendly high-level approach to the specification of temporal
properties of web documents which can be used for verification purposes. The method described is
based on specification patterns supporting an incremental construction of commonly used consistency
criteria. We show that our approach fills the gap between a temporal logic such as CTL as a powerful
tool for specifying consistency criteria for web documents and users that maintain documents but
have no or very limited knowledge about the specification formalism. An empiric assessment of the
usability of specification patterns for web documents confirms that a pattern based specification shows
significantly better results than the direct specification with CTL.

1 Introduction
The concept of consistency is commonly applied to databases, programs, protocols, concurrent pro-
cesses, and systems but can be naturally extended to digital documents. Various notions of consistency
and a wide range of consistency checking methods have been studied in the field of digital documents.

In this paper we address the problem of specifying consistency criteria for the purpose of verification
of web documents. This work is part of the Verdikt project [19]. We focus on temporal properties
of documents along standard reading paths. For example, we check whether in a web-based training
(WBT) document every description of a certain concept is followed by an example of the same concept.
This kind of consistency is particularly useful when having to ensure document coherence and certain
properties of the narrative flow, e.g., in e-learning or technical documentation.

In the Verdikt project the verification is performed by model-checking based on the temporal descrip-
tion logic ALCCTL [18]. For the sake of simplicity and clarity, we express consistency criteria in the
more common, but also less expressive computation tree logic - CTL [6, 9] in this paper. However, the
results described apply also to ALCCTL. Temporal logics are usually used for verification tasks in the
application field of software engineering, but there are also systems using temporal logic for hypertext
verification, e.g. [17]. Applying a temporal logic such as CTL or ALCCTL requires good mathematical
knowledge and a lot of experience and usually involves considerable effort in terms of manpower and
time. For this reason, a high-level mechanism supporting the process of formal specification is highly
desirable. Our goal is to provide a user-friendly high-level specification scheme for temporal properties,
which supports the incremental construction of commonly used consistency criteria for web documents.

Among the existing methods for high-level specification, pattern-based approaches are well estab-
lished and widely used [5, 7, 14]. In many cases they do not require deep-level knowledge of the
underlying specification formalism. We will show that specification patterns which originally have been
introduced for the field of reactive systems [5] can be adapted and enhanced for the purpose of speci-
fying consistency properties of documents. Furthermore, we define an appropriate mapping of patterns
onto CTL formulae. We also show that the construction of commonly used consistency conditions for
web documents can be performed incrementally, thus giving less experienced users the opportunity to

∗This work is partially funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under grant
number FR 1021/7-2

L. Kovacs, T. Kutsia (eds.), WWV 2010 (EPiC Series, vol. 18), pp. 3–18 3

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

proceed from low to higher complexity. The usability of specification patterns has been evaluated in
comparison to a direct specification using plain CTL. The results show that for inexperienced users the
specification with patterns is significantly easier than the one with CTL.

The contribution of this paper consists of:

• defining a set of specification patterns representing general temporal constraints that can be ap-
plied to express document consistency,

• showing how the proposed specification patterns can be used in the process of formalizing con-
sistency criteria for web documents, and

• evaluating the usability of the approach.

The paper is organized as follows. Section 2 describes the problem addressed. Section 3 introduces
specification patterns for documents, section 4 deals with pattern transformation into CTL, while our
specification tool is introduced in section 5. Evaluation results are presented in section 6. Section 7
discusses our results and related work. Section 8 concludes the paper.

2 Problem Description
Our aim is to check the consistency of the narrative structure of a document. The narrative structure
represents relevant aspects of the content and structure in a document’s model and is defined as follows
(see also [19]).

Definition 1 (Narrative units. Start units. Narrative relation. Narrative path). A document D is struc-
tured as a finite set NU 6= ∅ of narrative units where each u ∈ NU is a cohesive, self-contained part
of D. SU ⊂ NU denotes a non-empty set of start units such that each u ∈ SU is a sensible starting
point for reading the document. A narrative relation NR on the set of narrative units is defined by
NR := {(u, u′) ∈ NU × NU | it is sensible to proceed to unit u′ immediately after having read unit
u} . Let NR ⊆ NU ×NU be a narrative relation of a document. Then a (potentially infinite) sequence
(u0, u1, ...) of narrative units is a narrative path iff (ui, ui+1) ∈ NR for each i ∈ N.

Remark 2 (Narrative path). Since web documents are typically not read linearly, narrative paths cannot
be assumed to be acyclic. As a consequence, we have to consider narrative paths to be potentially
infinite. By allowing infinite paths the document model does not put a limit on the number of times a
certain narrative unit can be visited.

Definition 3 (Narrative structure). A narrative structure is a tuple NS = (NU,SU,NR) where NU
is a set of narrative units, SU ⊆ NU is a set of start units, and NR ⊆ NU ×NU is narrative relation
on NU such that the following holds:

i) NR is left-total on NU , i.e. for each u ∈ NU there is some u′ ∈ NU such that (u, u′) ∈ NR.

ii) Any narrative unit of NU can be reached on some narrative path in NR: for each u ∈ NU there
is a start unit s ∈ SU and a narrative path (u0, u1, ...) ∈ NR such that u0 = s and ui = u for
some i ∈ N.

Remark 4 (Narrative structure). Demanding NR to be left-total simplifies the formal verification
framework. For the sake of generality, narrative units which do not have any sensible successor unit
are modelled as being reflexively related with themselves.

The process of reading a web document (by a human reader) can be modeled as a collection of
paths in a state transition system (S,R,L) where the set of states S represents the narrative units of the
document, R ⊆ S×S is a narrative relation on S and L represents a set of local interpretations, one for
each state s ∈ S.

4

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

Definition 5 (Temporal structure. Temporal verification model). A CTL temporal structure is a state
transition system M = (S,R,L), where:

• S is a set of states,

• AP denotes the set of all atomic CTL propositions,

• R ⊆ S×S is a left-total binary transition relation, defining the possible transitions between states,

• L : S 7→ P(AP) is a labeling function, that assigns each state a set I ⊆ AP of atomic CTL
propositions that hold at this particular state.

A temporal verification model of a document is a temporal structure with a distinguished starting state
s0 ∈ S.

Example 6 (Narrative structure). Figure 1a) depicts a fragment of a narrative structure of a web docu-
ment taken from a web based training (WBT) about datastructures. The unit ”start” is followed by the
”definition of datastructures”. After this unit there are two possible branches to follow. The first one
proceeds with an ”example of datastructures”, then with a ”summary” and a ”test about datastructures”,
and finally with the ”end” unit. The other branch continues with a ”definition of abstract datatypes”,
followed by an ”example of abstract datatypes”, and then joins the other branch at the ”summary” unit.
Note, that the fact, that a human reader would probably classify the ”detour” over the ”abstract datatype”
unit as a side note, is inessential in our context.

s0 {start}

s1
{definition,
datastructure}

s2
{example,
datastructure}

s5
{summary,
datastructure}

s3
{definition,

abstract_datatype}

s4
{example,

abstract_datatype}

s7 {end}

s6
{test,
datastructure}

start

definition of
“datastructure“

example of
“datastructure“

definition of
“abstract datatype“

summary of
“datastructure“

end

example of
“abstract datatype“

test about
“datastructure“

a) b)

Figure 1: a) Narrative structure of a document, b) Temporal structure of a document

Let us consider the following sample consistency criteria:

1. On all paths there exists a ”summary” unit before the ”test” unit.

2. Every ”definition of the topic datastructure” is on all succeeding paths followed by an ”example”
of the same topic.

3. After the ”summary” unit, no ”definition” units are allowed.

5

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

Obviously, criterion 1 holds in the structure of Figure 1a). On both paths a ”summary” unit exists
immediately before the ”test” unit.

On the other hand, criterion 2 does not hold in the given structure, because there is a path (”start”,
”definition of datastructure”, ”definition of abstract datatypes”, ”example of abstract datatypes”, ”sum-
mary of datastructure”, ”test about datastructure”, ”end”) with a ”definition of datastructure” not being
followed by an ”example of datastructure”.

Finally, criterion 3 holds in the given structure, because both definitions (”definition of datastruc-
ture”, ”definition of abstract datatype”) appear before the ”summary” unit, concerning both possible
paths.

Example 7 (Temporal structure of a document). Figure 1b) depicts the CTL temporal structure of a
document with a narrative structure as shown in Figure 1a). In this structure holds:

• the set of states is defined as S = {s0, s1, s2, s3, s4, s5, s6, s7},
• atomic propositions correspond to topics (datastructure, abstract datatype) and structural types

(definition, example, summary, ...),

• the transition relation is given by R = {(s0, s1), (s1, s2), (s1, s3), ..., (s6, s7), (s7, s7)},
• the labeling function determining the interpretation of a state is defined as
L = {s0 7→ {start}, s1 7→ {definition, datastructure}, ..., s7 7→ {end}}.

There are two different paths, namely s0 � s1 � s2 � s5 � s6 � s7 � ... (short for: {(s0, s1),
(s1, s2), (s2, s5), (s5, s6), (s6, s7), (s7, s7)}) and s0 → s1 → s3 � s4 � s5 � s6 � s7 �

The main steps of consistency specification and verification are shown in Figure 2. Users appear in
two different roles: First, there are document authors, who provide, organize, and maintain document
fragments. Experienced authors may also be able to specify consistency criteria using the interface for
pattern-based specification to be described later in this paper. Second, there are temporal logic experts
who can specify complex criteria directly in CTL and maintain the verification model, if necessary.

temporal
verification model

CTL
specification

pattern-based
specification

information
extraction and

integration

transformation model-checking

error
report

document-
fragments

3 2

1

4

5

users

Figure 2: Automated verification of semi-structured documents

Assume that there are several text components, possibly in different formats (no. 1 in Figure 2).
The information about the document’s content and structure are available in the form of markup and

6

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

external metadata or are provided by external information extraction tools. The collected information
is represented by a temporal verification model (no. 2 in Figure 2) which essentially formalizes the
narrative structure of the document. This way an abstraction is provided from implementation details
which are irrelevant for the verification tasks.

The specification criteria are expressed in CTL (no. 3 in Figure 2) and verified against the verifi-
cation model by the CTL model checker. The verification results (counterexamples) are then presented
to the user (no. 4 in Figure 2). For example, a CTL formula which expresses the second criterion of
Example 6 reads: AG((definition ∧ datastructure)→ AF(example ∧ datastructure))

Since CTL, as a temporal logic, is likely to be too demanding for non-expert users - which of course
tend to be the majority - a user-level specification method based on specification patterns has been
developed (no. 5 in Figure 2). Patterns represent commonly occurring requirements concerning the
content and structure of documents (see Definition 9). Specification patterns are translated into CTL
formulae. Our approach to automated verification of semi-structured documents is presented in detail
in [19].

3 Specification Patterns for Documents
The primary goal of the work described in this paper is the definition of a high-level specification
formalism for consistency criteria for web documents, which should fulfill the following properties:

• The proposed high-level formalism must represent the temporal properties of web documents and
must be intuitively understandable, so that a user does not have to be aware of the underlying
logic formalism.

• The system should provide a reasonable expressive power and yet stay compact and manageable.

• It is important to support the incremental development of specifications, i.e., it should allow the
user to first recognize the general rule and then to refine it if required.

• The approach has to be extensible and adaptable to possibly different underlying logic formalisms.

A pattern-based approach to the presentation, formulation, and reuse of property specifications in
reactive systems has been introduced in [5]. A set of possible constraints has been defined and patterns
have been created for them. The patterns are provided to the users who can identify similar requirements
in their systems and select patterns that address those requirements. Until now, seven specification
formalisms are supported, among them CTL [1]. We found that many of these patterns could also be
useful for expressing document properties [10, 13]. The abstraction from temporal properties allows
users not to worry about the underlying logic. The flexible definition and organization of the original
patterns allow us to choose only a subset and to adapt and extend it easily for our needs.

Because patterns defined in [5] are meant to be used by users familiar with the underlying specifica-
tion formalism, user support for the specification process is not provided. Different from that situation,
our use cases (see [15]) involve non-expert users; consequently, we have to support them in expressing
formal consistency criteria. To this end, we provide an interface allowing to express loose criteria, which
can be later enhanced if necessary.

Example 8 (Properties of consistency criteria). Let us consider the consistency criterion: There always
exists a ”summary” unit before the first ”test” unit. The following important properties can be observed:

1. It expresses a kind of constraint: the existence of a ”summary” unit.

2. It specifies the part of the document or, more precisely, of its temporal structure, where the speci-
fication should hold: before the first ”test” unit.

7

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

The properties 1. and 2. characterize a specification pattern of the following kind: Within the
considered structure, on all paths starting from the current state, property p holds before property s
holds for the first time. The considered structure can be the whole document, but also any document
fragment.

As one can observe, criteria expressed in natural language are quite ambiguous. For example, re-
quiring that each ”definition of datastructure” is followed by an ”example” on the same topic does not
specify precisely whether there should be an ”example of datastructure” on all following paths after the
”definition of datastructure”, or whether it is enough having an example on some path.

Natural language specifications of certain properties of specification patterns are also ambiguous.
Here are some examples of such ambiguities:

• Does q follows p require that q has to hold on all following paths, or on some path?

• After s could mean after each s or after the first one. It is also not clear what happens if there is
no s in the whole document. Is the criterion satisfied in this case or not?

• Does the meaning of before s include the narrative unit where s holds for the first time or not?

The ambiguities of natural language specifications were the main motivation for us to first define
a set of basic specification patterns together with their corresponding CTL formulae and then to de-
termine how the basic patterns can be modified, i.e. we defined a set of modified patterns with their
corresponding CTL formulae. This way users can execute a two-stage process, first determining the
general properties of the criterion they want to express adding refinements as necessary in the second
step.

The semantics of pattern types, scopes, and modifiers we use is determined by the definition of the
mapping of specification patterns onto CTL as will be detailed in section 4.

Definition 9 (Specification pattern). A specification pattern (for documents) is a generalized represen-
tation of a commonly occurring requirement on the content and structure of documents (cf. [5]).

Specifications are instances of specification patterns.
A specification pattern is represented by a 4-tuple (pattern type, p modifier, scope, s modifier).

• A pattern type (pattern type) determines the type of the constraint expressed by the specification
pattern. Each pattern type is represented by a pattern type name and one or two pattern proper-
ties. Pattern type names (universally, exists, follows, precedes) denote the type of the
constraint and can only be understood in conjunction with pattern properties. A pattern property
is a parameter which represents the CTL formula required to hold by the pattern type. Let p and q
be CTL formulae. Possible values of pattern type are: universally p, exists p, q follows

p, and p precedes q.

universally p means that p holds in every narrative unit. exists p expresses that p has to
hold in some narrative unit. q follows p means each unit satisfying p must be succeeded by a
unit for which property q holds. p precedes q means that if property q holds in some narrative
unit this unit must be preceded by a unit for which property p holds. By default, each pattern type
applies to all paths of a document but this can be overridden.

• A pattern modifier (p modifier) allows to refine a pattern type, by further restricting or loosen-
ing the original meaning. Possible values of p modifier are: nullp, absence, immediatep,
some path. Modifier nullp indicates that the original meaning of a pattern type is not changed.

Table 1 shows the allowed pattern modifiers for each pattern type. For pattern types universally
p and exists p there is a pattern modifier some path. It says that the constraint holds on some
path of a document, as opposed to the default meaning. For the pattern type universally p

8

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

pattern type pattern modifiers
universally p nullp , absence, some path

exists p nullp , some path

q follows p nullp , immediatep

p precedes q nullp

Table 1: Pattern types with allowed pattern modifiers

a pattern modifier absence is defined, which denotes that p does not hold in any narrative unit.
The pattern type q follows p can be used with the modifier immediatep, which expresses that
q must hold in all next narrative units of the one where p holds.

• A scope determines where in a document a specification is intended to hold. A scope is repre-
sented by a scope name and one or two scope properties. A scope property is a parameter, which
will be replaced by a CTL formula at instantiation time. Let s and r be CTL formulae. Possible
values of scope are: globally, before s, after s, and between s and r.

Scope globally requires no parameters and actually expresses an unrestricted scope - a speci-
fication having this scope applies to the whole document structure. before s expresses that the
specification holds before or in the same narrative unit where s holds for the first time. Similarly,
after s requires that the specification holds after or in the same narrative unit where s holds for
the first time. Scope between s and r denotes each part of a document structure between an
appearance of property s and the first following appearance of property r.

Table 2 shows allowed combinations of pattern types and scopes. Every pattern type can be
combined with scopes globally, before s, and after s. Pattern types universally p and
exists p can also be used with scope between s and r.

pattern type scopes
universally p globally, before s, after s, between s and r

exists p globally, before s, after s, between s and r

q follows p globally, before s, after s

p precedes q globally, before s, after s

Table 2: Pattern types with allowed scopes

• A scope modifier (s modifier) allows the refinement of a scope by further restricting the original
meaning. Possible values of s modifier are: nulls, real before, and real after. Modifier
nulls indicates that the original meaning of a scope is not changed.

Table 3 shows the allowed scope modifiers for each scope. Scope before s can be restricted with
a scope modifier real before to express that the constraint expressed by the pattern type holds
really before s, i.e. no later than in the preceding unit of the one at which s holds. Similarly, scope
after s can be restricted with a scope modifier real after to express that it is not sufficient
that the constraint represented by the pattern type holds in the same unit with s, but only after it.

Specification patterns of the form (pattern type, nullp, scope, nulls), where both modifiers are set
to null, are called basic specification patterns, while the others are modified specification patterns.

According to Tables 1, 2, and 3 there are 45 specification patterns for documents, 14 of which are
basic specification patterns.

9

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

scope scope modifiers
globally nulls

before s nulls , real before

after s nulls , real after

between s and r nulls

Table 3: Scopes with allowed scope modifiers

s0 {start}

s3
{definition,
datastructure}

s4
{example,
datastructure}

s7
{summary,
datastructure}

s5
{definition,

abstract_datatype}

s6
{example,

abstract_datatype}

s9 {end}

s8
{test,
datastructure}

s1
{test,
datastructure}

s2
{example,
datastructure}

Figure 3: Temporal structure for Example 10

Example 10 (Basic specification patterns). A temporal structure of a fragment of a WBT document
about datastructures is depicted in Figure 3. The unit ”start” is followed by a preliminary ”test about
datastructures” and an introductory ”example of a datastructure” in the sequel. Thereafter, a ”definition”
and an ”example of datastructure” follow. Further, users can proceed to optional units about ”abstract
datatypes” (”definition” and ”example of abstract datatypes”). Afterwards a ”summary” and a ”test
about datastructure” follow. Finally the ”end” unit is presented. Users already familiar with the subject
can, for the purpose of repetition, proceed to the ”summary of datastructure” immediately after the
”start” unit.
In total, there are three narrative paths through this structure:

p1 ”Standard path” - for users who want to learn about datastructures without additional information:

s0 � s1 � s2 � s3 � s4 � s7 � s8 � s9 �

p2 ”Extended path” - for advanced users who are also interested in additional information about
abstract datatypes:

s0 � s1 � s2 � s3 � s4 � s5 � s6 � s7 � s8 � s9 �

10

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

p3 ”Repetition path” - for users already familiar with the content, for a brief repetition:

s0 � s7 � s8 � s9 �

Consider the following consistency criteria defined for the temporal structure shown in Figure 3:

c1 There is always a ”test” unit before the first ”definition” unit.

This criterion requires that a ”test” exists before the first ”definition”. Obviously, the specifica-
tion pattern of type exists p and scope before s is needed: (exists test, nullp, before
definition, nulls). The corresponding CTL formula1 reads: A[¬definition W test]

c2 Every ”definition of the topic datastructure” is followed by an ”example of a datastructure”.

It is required that every ”definition of datastructure” is followed by an ”example of datastruc-
ture”. This corresponds to the pattern type q follows p and scope globally (this require-
ment concerns the whole document): ((example ∧ datastructure) follows (definition ∧
datastructure), nullp, globally, nulls). The corresponding CTL formula reads:

AG((definition ∧ datastructure)→ AF(example ∧ datastructure))

c3 Each unit between the ”start” unit and ”summary of datastructure” is dealing with datastruc-
tures.

This criterion corresponds to the pattern type universally p and scope between s and r.
”Datastructure” must hold within each narrative unit between the ”start” unit and ”summary
of datastructure”: (universally datastructure, nullp, between start and (summary ∧
datastructure), nulls). Note that due to the pattern modifier nullp this pattern indeed requires
the pattern formula to hold on all paths. The corresponding CTL formula reads:

AG((start ∧ ¬(summary ∧ datastructure))→
A[datastructure W (summary ∧ datastructure)])

Criterion c1 holds in the temporal structure in Figure 3. On paths p1 and p2 the first ”definition” is
found in unit s3 and there is a ”test” before it (unit s1). On path p3 there is no ”definition” and thus the
criterion holds by convention.

Also criterion c2 holds in the temporal structure of Figure 3. There is one ”definition of datastruc-
ture” (unit s3), which is followed by an ”example” on the same topic (unit s4) on the relevant paths p1
and p2. Note that there is also an ”example of datastructure” before the ”definition”, which does not
affect the validity of the criterion.

Criterion c3 does not hold in the temporal structure in Figure 3. On path p2 there are two narrative
units (s5 and s6) between ”start” and ”summary of datastructure” at which datastructure does not hold.

In the sequel we present some examples of modified specification patterns. To better explain the
difference in the meaning between basic and modified specification patterns we also show the corre-
sponding CTL formulae.

Example 11 (Modifier immediatep). Consider the following constraints:

1. Every ”definition of the topic datastructure” has to be followed on all paths by an ”example”
on the same topic. To express this constraint we use the pattern - ((example ∧ datastructure)

1W - weak until; A[p W q] := ¬E[¬q U (¬q ∧ ¬p)]

11

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

follows (definition ∧ datastructure), nullp, globally, nulls). The corresponding CTL
formula reads: AG((definition ∧ datastructure)→ AF (example ∧ datastructure))

The temporal operator F expresses that an example of a datastructure holds eventually in some
narrative unit.

2. Every ”definition of the topic datastructure” has to be immediately followed (i.e. in each next
narrative unit) by ”examples” on the same topic. The pattern used above has to be modi-
fied with immediatep: ((example∧ datastructure) follows (definition∧ datastructure),
immediatep, globally, nulls). In the previous CTL formula the temporal operator F (eventu-
ally) is replaced by

X (next) AG((definition ∧ datastructure)→ AX (example ∧ datastructure))

Both constraints hold in the temporal structure of Figure 3.

Example 12 (Modifier real before). Consider the criterion: there is always a ”summary” unit before the
first ”test”. To represent it, we can use the specification pattern: (exists summary, nullp, before
test, nulls). The corresponding CTL formula reads: A[¬test W summary]

The meaning of the scope before s implies that ”test” and ”summary” could actually hold in
the same narrative unit. To express the more strict specification, that ”summary” occurs really before
”test” (no later than in the preceding unit) we use the specification pattern: (exists summary, nullp,
before test, real before). The corresponding CTL formula reads: A[¬test W (summary∧¬test)]

4 Pattern Transformation to CTL Formulae
The meaning of a specification pattern is determined by its mapping onto a CTL formula. The mappings
of specification patterns onto a CTL formulae are stored in the table of mappings. For every pattern,
there is exactly one formula. Due to space constraints, Table 4 shows only a part of table of mappings
with four patterns described in section 3. Columns one through four represent the specification pattern
(pattern type, pattern modifier, scope, and scope modifier, respectively), and column five contains the
corresponding CTL formula. The complete table of mappings can be found in [12].

pattern type pattern
modifier

scope scope mod-
ifier

CTL formula

exists p nullp before s nulls A[¬s W p]
exists p nullp before s real before A[¬s W (p ∧ ¬s)]
q follows p nullp globally nulls AG(p→ AFq)
q follows p immediatep globally nulls AG(p→ AXq)

Table 4: Table of mappings (partial)

Every specification pattern is mapped onto exactly one CTL formula but not all CTL formulae can
be represented in the form of a pattern instance. For example, there is no corresponding specification
pattern for the following CTL formula: AG EF help (At any point help is eventually reachable). This
problem could be solved by introducing a new specification pattern, or by allowing the composition
of existing patterns. However, there is a tradeoff between expressiveness and usability of the pattern
system which we dealt with in favor of usability.

12

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

1

2

3

4

5

6

7

8

Figure 4: Specification tool

5 Specification Tool
A first prototype of a specification tool provides basic support for the specification process and helps
users to incrementally build a specification pattern.

Figure 4 shows a screen-shot of the GUI. Before building the specification, the user chooses the
document to be verified (no. 1 in Figure 4). After that, the process of constructing a specification starts.
First, the user chooses the constraint type she wants to express (i.e. pattern type) - component 2 in
Figure 4. For each pattern type, there is an explanation of its meaning. Second, a pattern modifier is
to be set - component 3 in Figure 4. Only allowed modifiers for the previously chosen pattern type are
enabled. The appropriate scope is to be chosen as the third component (no. 4 in Figure 4). The last
component of the specification pattern is a scope modifier (no. 5 in Figure 4). Again, only the allowed
scope modifiers for the already chosen scope are enabled.

After having chosen the complete specification pattern, the user is presented with the natural lan-
guage formulation of this pattern with placeholders (no. 6), which are to be bound to atomic propositions
from the temporal model. For the inspection of the temporal model, a dedicated additional tool is pro-
vided [16]. Finally, the CTL formula corresponding to the constructed and refined specification is shown
(no. 7). Having finished the specification, the user activates the model checker (no. 8).

Example 13 (Construction of a consistency criterion). Let us assume that the user wants to specify the
following constraint: On all paths there exists a ”summary” unit before the first ”test” unit. ”Summary”
unit and ”test” unit may not occur in the same narrative unit. The following steps are to be performed:

1. Choose the document to be verified (no. 1 in Figure 4).

13

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

2. Choose the pattern type exists p (no. 2 in Figure 4). This pattern type has one corresponding
parameter (P) which will be instantiated in step 5.

3. Choose the pattern modifier nullp (no. 3 in Figure 4).

4. Choose the scope before s (no. 4 in Figure 4). This scope has one corresponding parameter (S)
which will be instantiated in step 6.

5. Choose the scope modifier real before (no. 5 in Figure 4).

6. The corresponding natural language phrase reads (no. 6 in Figure 4):

On all paths, P holds eventually, before S holds for the first time.

In our example, the user replaces P by the atomic proposition summary and S by the atomic
proposition test.

7. Look up the respective CTL formula from the translation table (cf. Table 4) and replace variables
with atomic propositions determined in step 6: A[¬test W (summary ∧ ¬test)]

8. Verify if the specified criterion holds in the chosen document.

The steps 1 to 5 are performed by the user. In step 6 both the system and user participate, while the
system performs steps 7 and 8.

Our specification tool was implemented in Java 1.6. For model checking we used the CTL model
checker NuSMV [4].

6 Evaluation
We evaluated the method of pattern-based specification of consistency criteria as compared to a direct
specification using plain temporal logic CTL. Goals of the evaluation were:

• to show that even inexperienced users, after receiving instructions about specification patterns and
their usage, can successfully use them,

• to show that under comparable conditions, the application of specification patterns by inexperi-
enced users leads to remarkably better results than the usage of plain temporal logic like CTL.

The evaluation has been conducted with 108 volunteer participants, all of which were students from
various fields of study. The participants were split into two groups of 54 members each. No participants
had previous experience with either CTL or specification patterns for web documents.

Test questions addressed the formulation of consistency criteria concerning a single test document.
Both groups had to specify the same five consistency criteria. The first group (control group) was asked
to specify criteria using CTL whereas the second group (experimental group) had to apply specification
patterns. The test document was a user manual for a digital camera, found on the manufacturer web site;
for details see [11].

The test was performed separately for each group. At the beginning, both groups were given an intro-
duction to the Verdikt project and the test environment. Afterwards, the first group attended a practical
compact training course in CTL (ca. 45 minutes). The CTL-syntax and semantics were explained on a
rather intuitive level relying mostly on examples and graphical illustrations. Some examples shown had
a structure similar to the test questions. After the CTL training, the participants of the first group were
asked to answer the test questions separately and individually, i.e., without team work. An overview of
CTL operators was available to each student for reference.

14

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

The second group was introduced to the structure and meaning of specification patterns as well as
examples of their usage (ca. 30 minutes). As for the first group, some examples shown had a structure
similar to the test questions. As reference material a list of all specification patterns was available.

We validated the answers as either usable or unusable. A specification was considered usable, if no
”false positives” resulted when using it in a verification run. However, we classified as acceptable ”false
negatives” that were produced when applying a specification that was usable in the aforementioned
sense. That is, specifications that were stricter than required were classified as usable and weaker
specifications were classified as unusable.

The validation results confirm the usability of our approach. The results show that after having
received brief instructions about specification patterns even inexperienced users can use them with a
success rate of over 70%. The validation results confirm also that for inexperienced users it is consid-
erably easier to express the criteria by using specification patterns as compared to using CTL formulae.
Under comparable conditions, participants of the first group (CTL) could only answer ca. 32% of all
questions correctly, while for the second group the success rate was over 70%. Precise validation results
are presented in Table 5 and in the diagram of Figure 5.

correctly answered # participants from
questions per participant group 1 (CTL) group 2 (patterns)

5 0 18
4 4 15
3 8 10
2 22 5
1 18 0
0 2 6

totally participants 54 54

Table 5: Validation results

20

25

5

10

15

20

25

Group I (CTL)

Group II (Patterns)

0

5

10

15

20

25

5 4 3 2 1 0

Number of correctly answered questions per participant

Group I (CTL)

Group II (Patterns)

0

5

10

15

20

25

5 4 3 2 1 0

Number of correctly answered questions per participant

Group I (CTL)

Group II (Patterns)

0

5

10

15

20

25

5 4 3 2 1 0

Number of correctly answered questions per participant

Group I (CTL)

Group II (Patterns)

0

5

10

15

20

25

5 4 3 2 1 0

Number of correctly answered questions per participant

Group I (CTL)

Group II (Patterns)

Figure 5: Number of correctly specified criteria per participant

The validation of test results has also confirmed our assumption that the instantiation of parameters
should be additionally supported. This problem is addressed by the Verdikt project [16].

15

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

7 Discussion
The described temporal patterns with CTL as the underlying formalism are adequate for expressing
path-oriented temporal criteria for web documents. Criteria also containing semantical dependencies,
like, e.g., every definition of some topic is on all succeeding paths followed by an example of the same
topic, cannot be expressed in CTL. Within the Verdikt project, we use a temporal description logic
ALCCTL [18] as a specification formalism. Our patterns can also be used with ALCCTL [19], but in
this case the instantiation of parameters becomes rather complex and therefore has to be additionally
supported. To this end, in our ongoing research we are extending the method described here towards a
user-friendly representation of ontological knowledge.

If a criterion does not hold in the temporal structure, the model checking results in a rather technical
counter-example, which is not very informative for a user. For this reason, an incremental construction
of counterexamples has been defined [20].

The prototype of the specification tool presented in section 5 shows only one rather simplified way
to support the usage of specification patterns. Our ongoing research considers also an example-based
specification method.

Our approach to document verification by model checking is not targeted at the XML data model
of ordered trees but at documents with a graph (but not necessarily tree) structure such as hypertext.
Properties of paths in such graph-structured documents are hard to express and inefficient to check using
XPath and first order logic. A detailed study of the expressiveness and performance of our approach as
compared to methods based on XML processing is presented in [18].

The problem of high-level specification appears in different research areas and there are also diverse
approaches to its solution. Diagram-based languages have been suggested in the areas of real time
systems [2] and workflow modeling [3]. These graphical languages are closely related to the underlying
formalism and, as a result, it is impossible to interpret or create diagrams without deep knowledge about
the logic they represent.

Dwyer et al. were the first to present specification patterns for temporal properties [5]. Many
other researchers dealing with temporal specifications have adapted these patterns to different purposes.
In the sequel we refer to two of them. In [7] the authors adopted the idea of specification patterns.
An interactive visual framework that employs structured English sentences as a user front-end for the
specification of Clocked CTL (CCTL) formulae for model-checking has been developed. [14] deals with
timing-based requirements for embedded systems. The authors present real-time specification patterns
in terms of three commonly used real-time temporal logics (MTL, TCTL, RTGIL). In addition, they
have developed a structured English grammar, to further facilitate the understanding of a specification
meaning. In the application field of web documents, which could possibly have a very complex structure
with many branches, the representation of patterns only by structured language is not sufficient. Our
ongoing research considers an additional example-based support for the specification process.

Conceptual authoring [8] is a method which uses a natural language text as a means of presenting
semantic content during knowledge editing. By this method all editing operations are defined directly
on an underlying logical representation, governed by a predefined ontology. By using common generic
phrases users need not be aware of the underlying formalism. We will evaluate conceptual authoring
within our ongoing research concerning parameter instantiation, as mentioned above.

8 Conclusion and Outlook
A user-friendly method for the high-level specification of consistency criteria for web documents has
been presented and its usability has been shown. We define specification patterns for web documents
as a high-level formalism for consistency criteria. Patterns hide the underlying logic formalism and

16

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

are represented by simple natural language expressions, like, e.g., existence before. They also allow
for the incremental building of specifications. This is especially convenient for users not familiar with
temporal logics and can make all the difference between using temporal logic for consistency checking
and ignoring it altogether. The usability of our approach has also been demonstrated. We believe that we
found a good balance between expressive power and usability. If necessary, the system can be extended
with new patterns and also adapted to another underlying formalism.

In future work we will adapt our patterns to the temporal description logic ALCCTL [18] to increase
their expressive power. First experiments let us expect that the proposed specification patterns and
specification environment help users to formalize application-specific constraints on documents. We
will also examine the possibility of composing of specification patterns. The usability of patterns is
going to be increased by an example-based specification method.

9 Acknowledgments
Dr. Petia Genkova, University of Passau, contributed to the evaluation with valuable insights.

References
[1] Property Pattern Mappings for CTL. http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml.

Last visited March 2010.
[2] A. Del Bimbo, L. Rella, and E. Vicario. Visual specification of branching time temporal logic. In Proc. of the

11th Int. IEEE Symp. on Visual Languages, pages 61–68. IEEE, 1995.
[3] Marco Brambilla, Alin Deutsch, Liying Sui, and Victor Vianu. The role of visual tools in a web application

design and verification framework: A visual notation for LTL formulae. In Proc. of ICWE 2005, volume 3579
of LNCS, pages 557–568. Springer, 2005.

[4] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NUSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Transfer, 2(4):410–425, 2000.

[5] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifications for finite-
state verification. In Proc. of the 21st int. conf. on software engineering, pages 411–420. IEEE, 1999.

[6] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of theoretical Comp. Sci.:
Formal Models and Semantics, pages 996–1072. Elsevier, 1990.

[7] S. Flake, W. Mueller, and J. Ruf. Structured english for model checking specification. In K. Waldschmidt and
C. Grimm, editors, Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen. VDE Verlag, 2000.

[8] Catalina Hallett, Donia Scott, and Richard Power. Composing questions through conceptual authoring. Com-
putational Linguistics, 33(1):105–133, 2007.

[9] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, Cambridge, England, 2000.

[10] Mirjana Jakšić. An approach to the example-based consistency checking of web documents. In Proc. of the
18th Workshop on Foundation of Databases, pages 75–79, Wittenberg, Germany, 2006.

[11] Mirjana Jakšić. Evaluation eines Ansatzes zur Muster-basierten Spezifikation von Konsistenzkriterien fuer
Web-Dokumente. Technical Report MIP-0906, University of Passau, Germany, 2009. http://www.fim.uni-
passau.de/fileadmin/files/forschung/mip-berichte/mip-0906.pdf.

[12] Mirjana Jakšić and Burkhard Freitag. Temporal Patterns for Document Verification.
Technical Report MIP-0805, University of Passau, Germany, 2008. http://www.fim.uni-
passau.de/wissenschaftler/forschungsberichte/mip-0805.html.

[13] Josef Köck. Musterbasierte Spezifikation von Dokumenteigenschaften. Master’s thesis, Lehrstuhl für Infor-
mationsmanagement, Universität Passau, 2006. (in German).

17

Temporal Patterns for Document Verification M. Jakšić, and B. Freitag

[14] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In Proc. of the 27th ICSE, pages 372
– 381, St. Louis, MO, USA, 2005. ACM Press.

[15] Christian Schönberg, Mirjana Jakšić, Franz Weitl, and Burkhard Freitag. Verification of web content: A case
study on technical documentation. In Proceedings of WWV 09, pages 53–68, Linz, Austria, 2009.

[16] Bernhard Stadler. Dokumentmodellierung mit Ontologien. Bachelorarbeit, Lehrstuhl für Informationsman-
agement, Universität Passau, 2008.

[17] P. David Stotts, Richard Furuta, and Cyrano Ruiz Cabarrus. Hyperdocuments as automata: Verification of
trace-based browsing properties by model checking. Information Systems, 16(1):1–30, 1998.

[18] Franz Weitl. Document Verification with Temporal Description Logics. PhD thesis, University of Passau,
2008. http://nbn-resolving.de/urn:nbn:de:bvb:739-opus-12528.

[19] Franz Weitl, Mirjana Jakšić, and Burkhard Freitag. Towards the Automated Verification of Semi-structured
Documents. Data & Knowledge Engineering, 68:292–317, 2009.

[20] Franz Weitl and Shin Nakajima. Incremental construction of counterexamples in model checking web docu-
ments. In Proceedings of WWV 2010, Wien, Austria, 2010.

18

	Introduction
	Problem Description
	Specification Patterns for Documents
	Pattern Transformation to CTL Formulae
	Specification Tool
	Evaluation
	Discussion
	Conclusion and Outlook
	Acknowledgments

