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Construction sites face persistent safety challenges, with incidents often resulting in severe injuries 

or fatalities. In the U.S., these safety concerns are heightened due to the high volume of construction 

projects and complex working conditions. This study conducts a data-driven analysis of construction 

safety incidents in the Southeastern U.S., utilizing five Machine Learning (ML) techniques to classify 

fatal or non-fatal incidents. A dataset of 1,963 incidents obtained from the OSHA was analyzed with 

the ML techniques for their prediction accuracy of classifications. Key findings reveal that random 

forest and decision trees achieved the highest accuracy and reliability in classifying fatal or non-fatal 

incidents, with random forest outperforming all models in the classifications. Feature importance 

analysis highlighted factors such as age, height, occupation, and event type as significant predictors 

of injury severity. The study’s implications are substantial for construction safety management; ML 

models can provide predictive insights that support proactive safety measures on construction sites. 

By identifying high-risk factors associated with severe injuries, this research contributes to the 

development of data-driven safety interventions and policy improvements aimed at reducing incident 

rates. The findings underscore the potential of ML in advancing construction safety through targeted 

risk assessment and preventive strategies. 
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Introduction 

 

The construction industry often compromises safety management due to cost-cutting pressures, 

especially in competitive bidding scenarios, unless required by law or client expectations (Ayhan and 

Tokdemir, 2019). Construction megaprojects pose significant safety risks with their complex indoor 

and outdoor work environments yet implementing comprehensive prevention strategies remains 

difficult (Lin et al., 2024). Recent safety advancements emphasize proactive measures, transitioning 

from reactive approaches based on historical data to using predictive indicators such as safety controls 

and risk perception to avert incidents (Ghosh et al., 2023). Analyzing accident precursors (e.g., near-

misses) enhances early detection and site safety (Hashmi et al., 2024). 

 

This research fills a critical gap by applying Machine Learning (ML) to understand the severity of 

safety incidents, which is underexplored in the context of Southeastern U.S. construction, specifically 

considering thirteen U.S. states in the region. They include Alabama, Arkansas, the Carolinas, 

EPiC Series in Built Environment

Volume 6, 2025, Pages 856–865

Proceedings of Associated Schools of Con-
struction 61st Annual International Conference

W. Collins, A.J. Perrenoud and J. Posillico (eds.), ASC 2025 (EPiC Series in Built Environment, vol. 6),
pp. 856–865



Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, Tennessee, Virginia, and West 

Virginia. This study employs five ML techniques, Logistic Regression, K-Nearest Neighbors, Support 

Vector Machine, Decision Trees, and Random Forests, to build predictive models aimed at informing 

proactive safety strategies. These models are developed using a comprehensive 10-year (2013-2023) 

safety dataset obtained from the Occupational Safety and Health Administration (OSHA) (OSHA 

Enforcement Data, n.d.). This study aims to enhance proactive safety management by applying ML to 

predict safety incidents, answering two important questions: 1) Which ML technique offers the most 

accurate prediction in classifying between fatal and non-fatal incidents? 2) How can ML models be 

used to assess the likelihood of fatal and non-fatal incidents?  

 

This research is motivated by the potential of ML to revolutionize construction safety by reducing 

incident rates through timely and data-driven interventions. Ultimately, the findings will have the 

potential to inform policy, enhance on-site safety strategies, and reduce the frequency and severity of 

construction-related accidents, setting a new standard for safety management practices in the 

construction sector.  

 

Literature Review 

 

The use of ML techniques has been dramatically increasing in construction safety management 

nowadays (Kaveh, 2024). ML is categorized, depending upon the type of data to be analyzed, into 

supervised, unsupervised, semi-supervised, and reinforcement learning. Supervised learning, the most 

common approach in this domain, uses labeled data to predict safety incidents. For instance, Poh et al. 

(2018) used these models to forecast hazards based on historical incident reports, aiding early risk 

prevention (Bugalia et al., 2022). Unsupervised learning, which identifies patterns in unlabeled data, 

has been leveraged to group similar safety hazards (Kaveh, 2024). Bugalia et al. (2022) employed 

clustering techniques to discern emerging risks. Semi-supervised models combine labeled and 

unlabeled data and have proven valuable in scenarios where complete data labeling is impractical (Lin 

et al., 2024). Reinforcement learning, which adapts safety strategies through feedback mechanisms, is 

effective for developing optimized safety protocols (Kaveh, 2024). By employing these ML 

techniques, construction firms can enhance risk management, making construction sites safer and 

more efficient. 

 

In this study, the five ML techniques have shown significant potential in predicting safety incidents. 

Logistic Regression is valued for simplicity and interpretability in binary classification, aiding 

decision-making in safety contexts (Kuhle, 2018; Zhu et al., 2021). Decision Trees offer transparent 

decision pathways but risk overfitting, making them suitable for identifying risk factors in 

construction safety (Charbuty & Abdulazeez, 2021; Ghosh et al., 2014). Random Forest enhances 

prediction accuracy by aggregating multiple trees, proving effective in managing complex datasets in 

safety research (Baykal, 2024; Kim et al., 2023). Support Vector Machines (SVM) excel in high-

dimensional spaces, efficiently identifying accident-prone sites (Shetty et al., 2024). Lastly, K-Nearest 

Neighbors (KNN) provides intuitive pattern recognition, though computationally intensive, helping 

classify hazardous conditions for proactive safety management (Cheng & Hoang, 2016; Zhu et al., 

2021). Together, these models contribute to a nuanced approach to predicting and mitigating 

construction safety incidents. 
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Research Method 

 

Data Description 

 

This study uses a dataset from the OSHA on construction safety incidents in the Southeastern U.S. 

from 2013 to 2023, totaling 1,963 incident cases (OSHA Enforcement Data, n.d.). Each case provides 

very detailed information (e.g., injury type, injury time, inspection outcomes, etc.), allowing each case 

to have a total of 24 variables at least. The comprehensive list of the variables (or features as an ML 

term) is presented in Table 1. Feature engineering expanded the dataset from the original 24 to 28 

variables by including time-related information such as time of day, day of week, month, and season 

(Variable No. 25 to 28 in the table). It should be noted that not all 1,963 incident cases included the 28 

variables. For example, the cause-of-fatality variable (Variable No. 22) is only applicable for fatality 

cases and does not apply to non-fatal cases. Additionally, categorical variables were numerically 

encoded to ensure compatibility with ML models. 

 

Table 1. Data points for each variable for feature engineering application  

Variable 

No. 
Variables 

No. of 

Data 

Variable 

No. 
Variables 

No. of 

Data 

1 Summary NR 1963 15 Source of Injury 263 

2 Reporting ID 1963 16 Event Type 1963 

3 Event Date 1963 17 Human Factor 263 

4 Event Description 1963 18 Occupation 1963 

5 Event Keywords 1963 19 Degree of Injury 1963 

6 End Use 1454 20 Tasks Assigned 1961 

7 Stories in Building 1035 21 Cause of Injury 1372 

8 
Height for Non-

Building 
800 22 Cause of Fatality 241 

9 Project Cost 327 23 Distance of Fall 425 

10 Project Type 1497 24 Height of Person 454 

11 Age 1963 25 Month 1963 

12 Sex 1963 26 Day of Week 1963 

13 Nature of Injury 263 27 Time of Day 1963 

14 Part of Body 263 28 Season 1963 

 

Methodology 

 

The Jupyter notebook was used to code the five ML models with the Python programming language. 

The coding steps for all five models were similar but not precisely the same, as indicated in Figure 1. 

At first, some essential libraries like pandas, numpy, and scikit-learn were imported in the Jupyter 

notebook for data manipulation, visualization, and model training. The original dataset was then 

loaded for a feature engineering application following by converting categorical variables into a 

binary format (also known as a one-hot encoding). The dataset was then arbitrarily split into 80% for 

model training and 20% for model testing. It is worth noting that SVM, KNN, Decision Trees and 

Random Forests took a data scaling step to standardize feature scales for better optimization prior to 

being split, while Logistic regression was run without any standardization treatment. The prediction 

performance of each ML was evaluated based on four metrics (precision, recall, F1-score, and 

accuracy), which will be explained in the next section. In addition, a confusion matrix is provided to 

report the performance of ML models, displaying the number of true positives, true negatives, false 

positives, and false negatives. 
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Figure 1. Coding Steps for Machine Learning Techniques 

 

Evaluation Metrics 

 

In evaluating ML models, especially for classification tasks, precision, recall, F1-score, and accuracy 

are the fundamental metrics. Each of these metrics provides unique insights into the model’s 

performance and can be used to assess its strengths and weaknesses in different aspects. Precision 

measures the accuracy of positive predictions, representing the proportion of true positive predictions 

(correctly identified positives) among all positive predictions made by the model. Recall, also known 

as sensitivity or true positive rate, assesses the model’s ability to identify all relevant instances in a 

dataset. It is the proportion of true positives out of the total actual positives. A high recall indicates 

that the model captures most of the true positives, which is crucial in applications like fraud detection, 

where missing a positive case could be risky. The F1-score is the harmonic average of precision and 

recall, providing a single measure that balances both. It’s particularly useful when there is an uneven 

class distribution, as it penalizes extreme values in either precision or recall. A high F1-score indicates 

that the model achieves a good balance between precision and recall, making it useful in applications 

where both false positives and false negatives need to be minimized. Accuracy is the ratio of correctly 

predicted instances to the total number of instances. While accuracy can be helpful, it may be 

misleading when dealing with imbalanced datasets. For example, in a dataset where one class vastly 

outnumbers another, a model can achieve high accuracy simply by predicting the majority class. Each 

of these metrics are, respectively calculated for each ML model, using the following equations:  

 

• Precision = TP/(TP+FP) where TP = True Positives, and FP = False Positives 

• Recall = TP/(TP+FN) where FN = FN= False Negatives 

• F1-Score = 2*(Precision*Recall)/(Precision+Recall)  

• Accuracy=(TP+TN)/(TP+TN+FP+FN) where TN= True Negatives 

Import Essential Libraries Load Data thru File Path Apply Feature Engineering 

Apply One-Hot Encoding Split Data: Train and Test Sets 

Logistic Regression SVM KNN DT & RF 

Scale Features 

Train & Test Data 

Predict Data 

Scale Features 

Train & Test Data 

Predict Data 

Scale Features 

Train & Test Data 

Predict Data 

Evaluate Model Evaluate Model Evaluate Model 

Train & Test Data 

Predict Data 

Evaluate Model 
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Results and Discussion 

 

Comparison of Machine Learning Techniques 

 

Table 2 summarizes the performance metrics for the five ML techniques used. It is important to 

recognize that the evaluation scores provided are based exclusively on a subset of the original 1,963 

cases, specifically 20% (approximately 393 cases). In other words, these scores do not include any 

data points used in model training. The analysis revealed varying scores among the techniques. In the 

table, note that since the accuracy metric mixes both precision and recall components, it accounts for 

both fatal and non-fatal injury classifications, while the other three metrics (precision, recall, and F1-

score) are presented separately for each of fatal and non-fatal classifications. All these scores are also 

presented for a visual comparison in a bar chart for each of the classifications in Figure 2. 

 

For considering non-fatal classifications only, decision trees and random forest achieved the best 

scores for the first three metrics (i.e., precision, recall, and F1-score), while Logistic regression and 

KNN showed the weakest performance for the same metrics. Despite the decision trees having a 

higher recall rate (0.82), random forest maintained superior precision, successfully predicting 74% of 

non-fatal incidents. This result reinforces its efficacy in handling the non-fatal case classification task. 

For a fatal injury classification, random forest recorded the best prediction performance for the first 

three metrics as the non-fatal classification, establishing its superiority over the other techniques. 

Logistic regression and KNN delivered subpar results, deeming them unsuitable for this classification. 

 

Table 2. Comparison of Prediction of Machine Learning Techniques  

ML Type 
Degree of 

Injury 
Precision Recall F1-Score Accuracy 

Logistic 

Regression 

Non-Fatal 0.68 0.55 0.61 
0.62 

Fatal 0.57 0.59 0.52 

SVM 
Non-Fatal 0.67 0.72 0.70 

0.66 
Fatal 0.64 0.58 0.51 

KNN 
Non-Fatal 0.64 0.67 0.65 

0.62 
Fatal 0.58 0.56 0.57 

Decision 

Trees 

Non-Fatal 0.67 0.82 0.74 
0.68 

Fatal 0.71 0.51 0.59 

Random 

Forest 

Non-Fatal 0.74 0.80 0.77 
0.74 

Fatal 0.73 0.66 0.70 

 

As for the accuracy metric that represents the prediction performance for both non-fatal and fatal 

cases, Logistic regression and KNN demonstrated the lowest accuracy, indicating their inefficacy in 

correctly predicting fatality classifications. SVM and decision trees slightly outperformed logistic 

regression and KNN but lagged behind random forest. Random forest stood out as the top-performing 

algorithm, boasting a 6% higher accuracy. Overall, random forest proved the most effective, excelling 

across all evaluation metrics (precision, recall, F1-score, and accuracy). The high accuracy of random 

forest highlights its reliability in classifying injury severity.  
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(ii) 

Figure 2. Comparison of different machine learning models for (i) non-fatal classification and (ii) 

fatal classification 

 

Confusion Matrix 

 

The confusion matrix, a vital tool for evaluating classification models, compares predicted labels with 

actual outcomes, categorizing results as true positives, true negatives, false positives, or false 

negatives. The matrix establishes the accuracy of a classification model by presenting the number of 

accurate and inaccurate predictions for each category. It comprises four categories: true positives, 

false positives, true negatives, and false negatives. The true positives are the correctly predicted 

positive class, while the true negatives are the correctly predicted negative class. On the other hand, 

the false positives are the incorrectly predicted positive for a true negative outcome, and the false 

negatives are the incorrectly predicted negative for a true positive outcome. 

 

Figure 3 presents the confusion matrix for the most accurate ML technique for this study: random 

forest. The model correctly identified 170 true positives (non-fatal cases labeled as Class 0 in the 

matrix) and 119 true negatives (fatal cases labeled as Class 1 in the matrix). However, it misclassified 

43 instances as false positives and 61 as false negatives, suggesting that the model has room for 

improvement.  
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Figure 3. Confusion matrix heatmap for the random forest model 

 

Feature Importance 

 

In ML, feature importance assigns scores to independent variables (or features as a ML term) 

according to their performance in predicting a target dependent variable. It facilitates the 

interpretation of models by outlining the contribution of each feature in predicting the target variable. 

In this study, feature importance was extracted from the random forest model to understand how each 

factor influences the degree of injury for the fatal and non-fatal classification. The feature importance 

scores were used to rank the input variables that influence the target variable and enhance the model's 

accuracy. 

 

Figure 4 displays the top ten influential features that affected the model’s performance. The analysis 

identified age as the most influential predictor (0.085) for determining whether an incident would be 

fatal or non-fatal, with all other variables having lesser predictive value. Following age, the next most 

significant features were height for non-building structures (0.04), unreported occupations (0.031), the 

number of stories in a building (0.028), the individual's height (0.027), fall distance (0.027), time of 

day in hours (0.016), incidents occurring on Wednesday (0.015), a struck-by event type (0.013), and a 

fall event type (0.013). These features played a significant role in explaining the current model’s 

accuracy and interpretability among the 28 variables used.  

 

Practicality of ML in Construction Safety and Future Work 

 

The predictions from ML techniques, as shown in Table 2 and Figures 2 and 3, have practical 

implications for the construction industry, particularly in improving safety protocols and injury 

prevention strategies. The relatively high precision and recall for non-fatal injuries using random 

forest (precision: 0.74, recall: 0.80, F1-score: 0.77) suggest that this model can effectively identify 

scenarios that may lead to non-fatal injuries. Similarly, its performance for fatal injuries (precision: 

0.73, recall: 0.66, F1-score: 0.70) indicates its potential for identifying high-risk situations. These 
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insights could help prioritize areas where safety measures need to be strengthened, such as better 

equipment maintenance or enhanced worker training in high-risk environments. 

 

  
Figure 4. Feature importance for the random forest model 

 

However, the varying performance across models highlights the importance of selecting the most 

suitable ML technique for specific applications. For instance, decision trees and random forest 

outperform others in predicting fatal injuries, with random forest offering a better balance between 

precision and recall. This could guide construction companies in adopting tailored predictive analytics 

tools to monitor worksite conditions and proactively address hazards. Moreover, integrating these 

models into real-time monitoring systems could help identify and mitigate risks dynamically, 

potentially reducing both fatal and non-fatal injuries. 

 

In practical terms, leveraging these predictive models could lead to improved resource allocation for 

safety interventions, better compliance with regulatory standards, and a reduction in injury-related 

costs. By adopting ML-driven safety measures, the construction industry can foster a safer working 

environment, enhancing worker confidence and overall productivity. 

 

Future research could focus on integrating more diverse and comprehensive datasets to improve the 

predictive accuracy of ML models for construction injury outcomes. Expanding datasets to include 

variables like environmental conditions, worker fatigue, training levels, and real-time sensor data 

could provide a more nuanced understanding of injury risks. Additionally, employing advanced 

feature engineering techniques to identify critical predictors of fatal and non-fatal injuries could 

enhance the models’ performance, particularly in improving recall for fatal injuries, which remains 

relatively low in some models. 

 

Another consideration could be the exploration of ensemble learning methods and hybrid ML models. 

Combining the strengths of multiple models, such as random forest and SVM, could yield better 

predictive performance by leveraging their complementary capabilities. Furthermore, incorporating 

deep learning techniques, such as recurrent neural networks (RNNs) or convolutional neural networks 

(CNNs), may enhance the ability to process complex, time-sequenced, or image-based data, such as 
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video footage from construction sites. These advancements could significantly enhance the practical 

utility of ML in reducing construction injuries. 

 

Summary and Conclusion 

 

The aim of this study was to evaluate and compare the effectiveness of five ML techniques (Logistic 

regression, SVM, KNN, decision trees, and random forest) in classifying the severity of construction-

related injuries as fatal or non-fatal. Using a dataset of construction safety incidents (a total of 1,963 

cases), the prediction performance of each model was analyzed to assess their performance with the 

classification metrics. The results indicate that random forest was the top-performing technique 

showing the highest overall accuracy and outperforming the other methods across all evaluation 

metrics. Random forest accurately classified 74% of non-fatal incidents and 73% of fatal incidents, 

making it the most effective model for this classification task. Logistic regression and KNN 

demonstrated the lowest accuracy, suggesting they are less suitable for fatality classification in this 

context. The feature importance analysis highlighted age as the most influential factor in the model’s 

classification performance. 

 

This study concludes that ML techniques, particularly random forest, can serve as reliable tools for 

predicting injury severity in construction settings. Random forest’s superior performance in both fatal 

and non-fatal classifications underscores its value for enhancing workplace safety by identifying high-

risk factors and tailoring safety measures. Future work could explore incorporating additional features 

and fine-tuning algorithms to improve predictive accuracy further. Overall, the findings provide a 

valuable foundation for applying advanced ML in construction safety management, contributing to 

proactive injury prevention strategies. 
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