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Abstract 
Augmented reality (AR) devices are becoming more prevalent and powerful enough 

to allow more virtual agents to be run simultaneously.  This paper explores the ideal 
frequency to update the control logic for each virtual agent using the framerate as a 
measurement.  This paper details the averaged result of a stair-step confidence test that 
was run five times for each frequency.  This experiment was run on the Microsoft 
HoloLens 2. 

1 Introduction 
Augmented reality (AR) is growing more popular and approaching widespread availability to the 

public [1].  Newer devices with more capabilities are being developed along with more accessible 
libraries.   AR projects virtual objects onto the real world providing the ability to add information to the 
visual perception of the user [2].  This augmentation can allow virtual characters, or agents, to appear 
as if they are present in the real-world providing information to the user. Because of this nature, it is 
practical to have the AR device mobile and untethered to a stationary computer. 

Therefore, many of the modern AR devices are not personal computers, but rather smaller, lighter 
mobile devices that can be carried or worn. Some examples of AR devices include smart phones, 
Microsoft HoloLens, and Magic Leap 1 [3]–[5] .  While these devices are continuously improving their 
capabilities most cannot match the raw processing power of a modern-day personal computer 
configured for research.   

Along with the limitation of processing power, there are no libraries or APIs for developing on these 
devices.  In general, a developer can choose to use the manufacturer’s drivers directly, Unity3D Game 
Engine, or the Unreal Game Engine.  Using the game engines will help abstract some of the more 
tedious problems that come with the device allowing the developer to focus more on the application. 
However, these development platforms are designed specifically to create games, meaning any virtual 
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agent that requires a periodic update will most likely be programmed from a typical game design 
approach. 

Considering both the limited computation of the mobile device and the influence of game design on 
the augmented reality development this paper determines the most efficient frequency to update control 
scripts on the virtual agent while still maintaining smooth performance.  Please note, this paper is not 
addressing rendering or physics engine optimization but test for the optimal frequency of invoking 
control scripts for virtual agents.   The control scripts used in the test have been written to mimic a 
typical game programmer profile; the code will employ best practice but not optimized to the level used 
in algorithm analysis research.    

The experiment detailed below employs an unbounded stair-step test to compare the number of 
active virtual agents against the framerate of the AR application.  Framerate is important to AR because 
it may cause the user to experience motion sickness if it falls too low. The unbounded test will 
consistently create new virtual agents for five seconds, wait for five seconds, and then repeat.  This 
provides an opportunity to determine if the device can handle the computation while more load is added 
and when it is stable.   

 This paper provides a brief related works justifying use of virtual agent in AR.  A methodology 
section provides a detailed explanation of how the program was setup, followed by an explanation of 
the testing procedure and the results.  This paper concludes with a future work and closing thoughts. 

2  Related Work 
This paper considers virtual agent to mean any projected visualization in an augmented reality 

application that must change, move, or adapt to outside stimuli, thus, requiring a control script to 
function. The term virtual agent conjures mental images of brightly colored cartoon characters running 
around. While such virtual agents have been used in AR applications to assist with user interaction [6]–
[10], not all virtual agents are 3D game characters. Many virtual agents will be informational elements 
that change and adapt. For example, a virtual agent may be nothing more than a label or text message 
that appears identifying a desired product in the grocery store [11]. Another example in the realm of 
health applications is visualizing different organs during surgery or education [12]–[14].  This 
visualization may need to change, update, or provide some form of response due to the user’s action 
requiring some form of control script. Another important field in AR is bridging the gap between 
robotics and humans [15], [16].  These applications will employ virtual agents to represent robots or 
robot-human scenarios and goals.   Again, these informational virtual agents will need a control script 
to update, move, and adapt to different input from the user. 

Currently many of the augmented reality applications only focus on one or two virtual agents at 
once.  Therefore, processing power for their control scripts is not a large concern; however, as the field 
grows expanding the scale of these applications, it is foreseeable that an AR application may have 
hundreds of virtual agents running simultaneously.  Due to this expectation, the experiment described 
in the next section seeks to determine the best practice for designing virtual agent control scripts. 

3 Methodology 
The experiment outlined in this paper was run on a Microsoft HoloLens 2.  The program used in 

this experiment was written with Unity 2020.3 and used the Mixed Reality Tool Kit (MRTK 2.0). This 
program would add a new virtual agent at a frequency of 2 Hz for five seconds and then wait for five 
seconds to determine if the system was stable. The above sequence of spawning and waiting would 
repeat until there were 100 agents, during which the frame rate was recorded to a file at the frequency 
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of 10 Hz. The frame rate was calculated using the unscaled delta time property to provide the most 
accurate values possible (Equation 1). 

 
𝑈𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒	𝑖𝑠	𝑎𝑛	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝑖𝑛	𝑠𝑒𝑐𝑜𝑛𝑑𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑙𝑎𝑠𝑡	𝑓𝑟𝑎𝑚𝑒	 

𝑡𝑜	𝑡ℎ𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	[17]. 

𝐹𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒 =
1

𝑈𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝐷𝑒𝑙𝑡𝑎𝑇𝑖𝑚𝑒 

Equation 1: Equation Used to Calculate Framerate 

The program recorded the framerate every tenth of a second and kept the file writer open to minimize 
computational overhead. The program would only append information, never delete, or search through 
the file.  This limitation with the file handler was explicitly done to minimize its computational load on 
the HoloLens 2.  

The virtual agents were programmed by employing best practices with Unity 3D; however, no other 
optimization was done. This programming style imitated a typical game programmer and not 
necessarily a researcher in computer science.   The reason for imitation is to ensure the test script 
represents a typical program written for this platform. 

When a virtual agent was created, it was given a team: red or blue. The agent invoked a control 
function called handle update, which provided the control algorithm.  

Each agent ran the same function to control themselves.  However, the frequency this function was 
invoked varied throughout the experiment, and the resulting framerates were compared.  Five individual 
tests were administered for each following frequency:  

• Update (once per frame) 

• Fixed Update (20 Hz) 

• 20 Hz coroutine 

• 10 Hz coroutine 

• 5 Hz coroutine 

• 2 Hz coroutine 

The control function performed the following tasks: 

1. Control the nav-mesh agent 
2. Fire projectiles at the enemy team 
3. Orient and update the score panel  

The test had a large arena where there were sixteen pre-determined points the virtual agents could 
move. If the virtual agent were within 6 centimeters of the goal, it would then randomly choose a new 
goal and start navigating toward the new nav goal.  

The nav-mesh system in Unity was used as it is a common and popular tool amongst developers.  
This nav-mesh path-finding system is well optimized and would likely be chosen over building a path-
finding algorithm from scratch.  Please note, even though the logic was updated at different frequencies, 
the agents still moved continuously due to the nav-mesh. 

Initially, the nav-mesh agent would be the only logic the virtual agents performed. However, it is 
unlikely that a typical application would only have navigation for a virtual agent be the only overhead. 
Therefore, logic was added to determine if there was a virtual agent on the opposite team within 50 
centimeters in front of it. If there were, the agent would then fire a projectile in the same direction it 
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was facing.  If the projectile struck the other virtual agent, then the score of the first would increase by 
one.  These projectiles also had a timer on them so that they would be destroyed after one second. The 
rate of fire was controlled by an additional co-routine that would wait for .3 seconds before allowing 
the virtual agent to fire again.    

Each virtual agent had a small canvas above itself in world space. This canvas displayed the current 
score for each virtual agent and was used to simulate a visualization load that may be required for an 
AR application. The control function would rotate the canvas to make the visualizations more user-
friendly to ensure it was facing the camera regardless of what direction the virtual agent was moving. 
Typically, this would be done in the update function, but it was added to the control function to keep 
all tests consistent. 

4 Testing 
The testing procedure took five individual tests of the above-mentioned frequencies. The user would 

start each test and disable the default profiler, to keep things consistent, then move outside the arena 
and sit down. The user’s action would be constrained to look around the arena as the different virtual 
elements were spawned and performed their control logic.   This reduction in physical movement is 
essential as fast or erratic movements by the user will cause the system extra computation to keep the 
virtual environment aligned with the real environment.  It was not the intention of this experiment to 
put the AR application under stress from user movement. After the number of agents reached 100, the 
test was stopped, and the framerate was collected in a comma-delimited file. The raw data was very 
noisy, as demonstrated in Figure 1. 

 
Figure 1: Raw Data from 10 Hz Virtual Agent Update Experiment 
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 Five tests were run for each frequency and then averaged together in order to reduce the noise.  
The results were still noisy; therefore, a moving average with a sliding window of size ten was used to 
improve the results further (Equation 2) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑟𝑑! =
∑ 𝑉𝑎𝑙𝑢𝑒!,#$%&'
#$%&()

5  

∀𝑚𝑎	𝑤ℎ𝑒𝑟𝑒	𝑚𝑎 = {10…𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓𝑅𝑒𝑐𝑜𝑟𝑑𝑠}. 

	𝑀𝑜𝑣𝑖𝑛𝑔𝐴𝑣𝑒𝑟𝑎𝑔𝑒*+ =	
∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑟𝑑,*+
,(*+-).

10  

Equation 2: Calculation for Moving Average 

 

  The improvement can be seen by comparing the above graph with Figure 2. Notice the noise is 
significantly reduced. 

 
Figure 2: Averaged Data for Updating a Virtual Agent at 10 Hz. 

5 Results 
At the beginning of the experiment, all frequencies were performed in the acceptable range between 
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update performed the worst as it is the most rigid with the time precision; therefore, the CPU could not 
keep up as more agents were added.  This result coincides with the anecdotal wisdom that fixed updates 
should be used sparingly on mobile devices.   Calling the control function once per frame (Update) 
performed decently. Although, it is worth noting that as the framerate drops, so does the number of calls 
to the control function, creating an unintended feedback loop. Coroutines were used to provide the 20, 
10, and 2 Hz, where the performance was anticipated to improve the slower the frequency.  The results 
differed significantly from the expectation. The 10 Hz coroutine performed the best out of all the tests. 
The 2 Hz coroutine had trouble maintaining the same performance as calling the control function once 
per frame.   The experiment for 2 Hz was repeated to ensure this data was not an anomaly, and the 
second set of results was similar.  It was hypothesized that the 2 Hz test conflicted with the virtual agent 
spawning as they are both using the same frequency. Another experiment was run at 5 Hz, and it 
performed better than 2 Hz but did not outperform the 10 Hz coroutine.           

 
Figure 3: Averaged Data for All Experiments 

 It is worth noting that all the experiments remained above 24 frames per second, satisfying the 
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Frequency (From Best to Worst 
Performance) 

Highest Number of Virtual Agents before 
Dropping Below 50 FPS. 

10 Hz 71 
5 Hz 66 
20 Hz 58 
Update 54 
2 Hz 50 
Fixed Update 50 

Table 1: Highest Number of Virtual Agents while maintaining 50 FPS. 

 The final framerate was also used to determine the performance rating. Due to the system load, 
the framerate recorder would cease to record values of around 92 virtual agents. Therefore, the data 
ends at this point even though the experiment ran to 100 virtual agents. The order of performance is the 
same except at the end, calling the control function once per frame (update) performed better than a 20 
Hz coroutine by one frame per second.  Updating the virtual agents at 10 Hz still outperformed all other 
tests; however, its lead had narrowed significantly (Table 2).  

  
Frequency (From Best to Worst 

Performance) 
Last Framerate (92 Virtual Agents) 

10 Hz 38 
5 Hz 36 
Update 34 
20 Hz 33 
2 Hz 30 
Fixed Update 26 

Table 2: Highest Number of Virtual Agents at the End of the Experiment 

 The conclusion from this data clearly shows that a slower update rate on logic does not 
translate into better performance. Further research is needed to identify why 10 Hz performed 
noticeably better than all other frequencies. Current hypotheses are the Unity 3D coroutine system 
favors this frequency due to some underlying design, or 10 Hz has the least conflicts with the HoloLens 
2 system processes. Regardless, updating the control script of a virtual agent at 10 Hz will provide the 
best performance for the HoloLens 2.   

6 Future Work 
There are two questions that require further investigation. The first question is how this experiment 

will perform on different platforms.  The Mixed Reality Toolkit (MRTK) allows projects to be cross-
platform; therefore, this experiment is hypothetically portable. Comparing the results from different 
platforms would provide an opportunity to see if there was a generalized best practice frequency. 

Another modification to the experiment would be removing all coroutine usage except for agent 
spawning, ensuring the test was not interfering with the framerate. The primary reason this has not 
already been done was to ensure the virtual agents used common practices with game development. 
Coroutines are a common practice, and an experienced game developer would use them.  This means it 
is not unreasonable to expect multiple different coroutines to be used by a virtual agent.              
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7 Conclusion 
This paper has detailed an experiment where different frequencies were used to update control 

scripts on virtual agents in an augmented reality application. The justification was given for why 
specific programming practices were used, and the experiment isolated one factor:  The rate at which a 
function was invoked.  Five different tests were made per frequency, keeping all other factors the same, 
and the results were averaged together.  The data concludes that the ideal update frequency for control 
scripts in virtual agents for the HoloLens 2 is 10 Hz.  
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