
EPiC Series in Computing
Volume 71, 2020, Pages 1–18

Vampire 2018 and Vampire 2019.
The 5th and 6th Vampire Workshops

SAT, Computer Algebra, Multipliers ∗

Daniela Kaufmann1, Armin Biere1, and Manuel Kauers1

Johannes Kepler University, Linz, Austria
daniela.kaufmann@jku.at armin.biere@jku.at manuel.kauers@jku.at

Abstract

Verifying multiplier circuits is an important problem which in practice still requires substantial
manual effort. The currently most effective approach uses polynomial reasoning. However parts of a
multiplier, i.e., complex final stage adders are hard to verify using computer algebra. In our approach
we combine SAT and computer algebra to substantially improve automated verification of integer
multipliers. In this paper we focus on the implementation details of our new dedicated reduction
engine, which not only allows fully automated adder substitution, but also employs polynomial re-
duction efficiently. Our tool is furthermore able to generate proof certificates in the practical algebraic
calculus and we also investigate the size of these proofs for one specific multiplier architecture.

1 Introduction
Formal verification of arithmetic circuits is extremely important to help to prevent issues like the famous
Pentium FDIV bug. There have been many attempts since then to verify such circuits, but even today the
problem of formally verifying arithmetic circuits, and especially multiplier circuits, is still considered to
be hard and cannot be applied fully automated. In principle, theorem provers in combination with SAT
are able to certify industrial multipliers [12]. However, such approaches lack automation.

Currently the most successful automated approach uses polynomial reasoning [4,13,17,18,23] and
in recent years has seen significant progress. The approach of [17, 18] employs local cancellation of
vanishing monomials in converging cones, which allows to verify a large variety of multiplier architec-
tures much more efficiently than previous work. The authors of [4,23] eliminate redundant polynomials
by identifying full- and half-adders in the multipliers. This technique is able to verify large simple
multipliers, but fails on even slightly more complex multiplier architectures.

In our method [14] we combine two approaches, i.e., SAT and computer algebra. We observe
that final stage adders of multipliers are a real challenge for the algebraic approach as some adder
designs rely on sequences of OR-gates, which lead to an explosion of the polynomial representation
of the intermediate results. Contrarily SAT solvers can easily verify the equivalence of adder circuits.
Therefore we apply adder substitution and replace complex final stage adders by simpler adders and
verify the correctness of the substitution using SAT solvers. The correctness of the simplified multiplier
is shown using computer algebra. Our method is an order of magnitude faster than related work and is
able to verify circuits with input bitwidth 2048.
∗Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE), P31571-N32, SFB F5004, LIT AI Lab funded by the

state of Upper Austria.

L. Kovacs and A. Voronkov (eds.), Vampire 2019 (EPiC Series in Computing, vol. 71), pp. 1–18

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

Our reduction engine AMULET [14] detects complex final stage adders and applies adder substi-
tution fully automatically. A bit-level miter in conjunctive normal form (CNF) as well as a rewritten
multiplier is generated. In the verification phase AMULET uses the structure of the polynomial represen-
tation of circuits and thus is more efficient in circuit verification than computer algebra systems [7, 22]
used in our previous work. Additionally we apply preprocessing based on variable elimination.

Furthermore AMULET efficiently produces certificates in the PAC format [21], which allow to check
the correctness of the verification results. None of the related work [4, 17, 18, 23] produces certificates.

This paper provides supplementary material for an invited talk at Vampire’19 of the second author
based on [13, 14]. We discuss the implementation of AMULET and present the underlying algorithms
of [14] in more detail. Additionally we provide a generalization of our incremental approach of [13].
We further show that we are able to generate proof certificates of quadratic length for simple multipliers.

2 Algebraic approach
We consider acyclic gate-level circuits C which implement integer multiplication. The circuits have 2n
input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1}, as well as 2n output bits s0, . . . , s2n−1 ∈ {0, 1} and
further a number of internal logical gates denoted by g0, . . . , gk ∈ {0, 1}. Let R be a commutative ring
with unity and let R[X] be the polynomial ring over R and the set of variables

X = { a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , s2n−1, g0, . . . , gk}.

A term τ = xd1
1 · · ·xdr

r is a product of powers of variables for certain d1, . . . , dr ∈ N. A monomial is a
multiple of a term cτ , with c ∈ R and a polynomial p is a finite sum of monomials.

An order ≤ is fixed on the set of terms such that 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2 for all terms
τ, σ1, σ2. Such an order is a lexicographic term order if for all terms σ1 = xd1

1 · · ·xdr
r , σ2 = xe11 · · ·xerr

it holds that σ1 < σ2 iff there exists i with dj = ej for all j < i, and di < ei. The largest term (w.r.t. ≤)
in a polynomial p = cτ + · · · is called the leading term lt(p) = τ . The leading coefficient and leading
monomial of p are defined accordingly. Furthermore we call p− cτ the tail of p.

The specification of a circuit describes the desired relation between the outputs and inputs of a
circuit. If for all possible inputs the circuit computes the desired output, we say that the circuit fulfills
its specification and thus is correct. Formal verification aims to derive whether a circuit fulfills its
specification or not. In the algebraic verification approach we model each logical gate by a polynomial.
Correctness of the circuit is shown by deriving that the specification, also encoded as a polynomial L,
is implied by the gate polynomials.

The polynomial ringR is fixed with the specification. Although we model integer multiplication, we
showed in [14] that it is beneficial to use more general polynomial rings which allow modular reasoning.

Definition 1. The specification Un of n-bit unsigned integer multipliers in the ring Z22n [X] is given as

Un =

2n−1∑
i=0

2isi −
(n−1∑

i=0

2iai

)(n−1∑
i=0

2ibi

)
(1)

As discussed in [14] modular reasoning also allows to define the specification of truncated multipli-
ers, i.e., a truncated multiplier only returns the n least significant output bits.

Definition 2. The specification Tn of n-bit truncated multipliers in the ring Z2n [X] is given as

Tn =

2n−1∑
i=0

2isi −
(n−1∑

i=0

2iai

)(n−1∑
i=0

2ibi

)
=

n−1∑
i=0

2isi −
n−1∑
i=0

n−1−i∑
j=0

2i+jaibj . (2)

2

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

After fixing the specification and thus the coefficient ring R, each logical gate in the circuit is
encoded as a polynomial, such as:

u = ¬v implies 0 = −u+ 1− v u = v ∨ w implies 0 = −u+ v + w − vw
u = v ∧ w implies 0 = −u+ vw u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(3)

The polynomial equations in (3) are chosen in such a way that the possible solutions with u, v, w ∈
{0, 1} of the polynomials in R[X] are the solutions of the gate constraints and vice versa. Note, the
polynomials above are defined in the ring Z[X] and thus the structure may differ for different coefficient
rings R. We order the terms according to a reverse topological lexicographic term order, such that the
output variable of a gate is always greater than the variables attached to the input edges of that gate.

Definition 3. By G(C) ⊆ R[X] we denote the set of circuit polynomials which contains for each gate
of C the corresponding polynomial of (3). We further have Boolean value constraints x(1− x) = 0 for
x ∈ X , encoding that x is a Boolean variable. Let B(Y) = {y(1 − y) | y ∈ Y } ⊆ R[X] for Y ⊆ X ,
be the set of Boolean value constraints for Y .

Definition 4. A nonempty subset I ⊆ R[X] is called an ideal if ∀ p, q ∈ I : p + q ∈ I and ∀ p ∈
R[X] ∀ q ∈ I : pq ∈ I . A set P = {p1, . . . , ps} ⊆ R[X] is called a basis of I if I = {p1q1+· · ·+psqs |
q1, . . . , qs ∈ R[X]}. We say I is generated by P and write I = 〈P 〉. The sum of two ideals I and J is
defined as I + J = {p+ q | p ∈ I, q ∈ J}.

In [14] we showed that the question whether L is implied by the gate polynomials of C and the
Boolean value constraints can be answered by deciding a so-called ideal membership problem: “Given
q ∈ R[X] and a (finite) set of polynomials P ⊆ R[X], decide whether q ∈ 〈P 〉.”
Definition 5. Let P ⊆ R[X]. If for a certain term order, all leading terms of P only consist of a
single variable with exponent 1 and are unique and further all leading coefficients are multiplicatively
invertible in R, then we say P has unique monic leading terms (UMLT). Let X0(P) ⊆ X be the set of
all variables that do not occur as leading terms in P . We further define B0(P) = B(X0(P)).

It is easy to see that for an acyclic circuit C the set G(C) has UMLT for a fixed reverse topological
term order. Further X0(P) contains only circuit inputs ai, bi.

Definition 6. Let C be a circuit and let J(C) = 〈G(C) ∪B0(C)〉 ⊆ R[X], with B0(C) = B0(G(C)).

Corollary 1. [14] A circuit C fulfills L iff L ∈ J(C).

The theory of Gröbner bases [3] offers a decision procedure for the ideal membership problem. For
our purpose we use the more general theory of D-Gröbner bases [2], where the coefficient domain D is
a principal ideal domain (PID). Let p, q, r ∈ D[X] and let P ⊆ D[X]. A basis P of an ideal I ⊆ D[X]
is a D-Gröbner basis of I iff ∀q ∈ I ∃p ∈ P : lm(p) | lm(q). Every ideal of D[X] has a D-Gröbner
basis, and there is an algorithm (Thm. 10.14 of [2]) which, given an arbitrary basis of an ideal, computes
a D-Gröbner basis of it in finitely many steps.

We say q D-reduces to r w.r.t. p if there exists a monomial m′ in q with m′ = m lm(p) and
r = q−mp. The remainder r of the D-reduction of q by P is such that q− r ∈ 〈P 〉 and r is D-reduced
w.r.t. P . If P is a D-Gröbner basis, then r = 0 iff q ∈ 〈P 〉.

For the specifications listed in Def. 1 and Def. 2 we fixed the polynomial rings to Zl[X] for l ∈ N.
In general Zl is not a PID, but we showed in [14] that the ideal membership problem in Zl[X] can be
converted to an ideal membership problem in the ring Z[X], with Z being a PID. Whenever we want to
decide whether a polynomial q ∈ I ⊆ Zl[X] we can instead check whether q ∈ I+ 〈l〉 ⊆ Z[X]. For the
latter we have the concept of D-Gröbner bases available. And since G(C) has UMLT we can directly
derive a D-Gröbner basis for J(C) + 〈l〉.
Lemma 1. [14] Let l ∈ N. Then G(C) ∪B0(C) ∪ {l} is a D-Gröbner basis for J(C) + 〈l〉 ⊆ Z[X].

3

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

2.1 Incremental Verification

In [13] we introduced an incremental verification algorithm, which splits the verification problem into
smaller more manageable subproblems by partitioning the circuit into column-wise slices and splitting
the word-level specification into multiple smaller specifications which relate the partial products, incom-
ing carries, sum output bit and the outgoing carries of each slice. However this algorithm is tailored to
multiplication of unsigned bit-vectors. In this section we show how to apply this procedure to different
multiplier specifications. As the number of output bits varies for different multipliers, eg. in Def. 2, we
denote the number of output bits by the constant m and fix l = 2m in this section.

Definition 7. Let Ii := {gate g | g is in input cone of si} be the input cone of each output bit si
for 0 ≤ i < m. A slice Si is defined as the difference of consecutive cones Ii, i.e., S0 := I0 and
Si+1 := Ii+1 \

⋃i
j=0 Sj .

Definition 8 (Sliced Gröbner Bases). Let Gi(C) be the set of circuit polynomials of the gates in a slice
Si. The terms are ordered such that the requirements of Lemma. 1 are fulfilled. We define byX0(Gi) the
set of variables that do not occur as leading terms in Gi(C) and further define B0(Gi) = B(X0(Gi)).

Corollary 2. Gi(C) ∪B0(Gi) ∪ {2m} is a D-Gröbner basis for 〈Gi(C) ∪B0(Gi)〉+ 〈2m〉.

Corollary 2 follows directly from Lemma. 1. It is easy to see that 〈Gi(C) ∪ B0(Gi)〉 contains all
the Boolean value constraints B(Gi) for the gate variables in Si, thus we may use them in the reduction
process to eliminate exponents greater than 1 in the intermediate reduction results. After splitting the
circuit, we are now going to split the word-level specification of a multiplier.

Definition 9. Let C be a multiplier circuit which is sliced according to Def. 7 and let L be the speci-
fication of C. For slice Si with 0 ≤ i < m let Pi =

∑
j+k=i αjkajbk be the partial product sum of

column i, where the constant αjk is the coefficient of the term ajbk in L.

Definition 10. Let C be a multiplier circuit. A sequence of m + 1 polynomials C0, . . . , Cm over the
variables of C is called a carry sequence if for all 0 ≤ i ≤ m it holds that

−Ci + Ci+1 + αisi + Pi ∈ J(C)

where the constant αi is the coefficient of si in L. We call the polynomials−Ci +Ci+1 +αisi +Pi the
carry recurrence relations for the sequence C0, . . . , Cm.

It remains to fix the boundary polynomial Cm, where we simply choose Cm = 0. Our incremental
algorithm is shown in Alg. 1 and it follows from the proof of Thm.6 in [13] that Alg. 1 is correct.

Algorithm 1: Multiplier Checking Algorithm
Input : Circuit C with m output bits, sliced Gröbner bases Gi

Output: Determine whether C is a correct multiplier
1 l← 2m, Cm ← 0;
2 for i← m− 1 to 0 do
3 Ci ← Remainder(Ci+1 + αi2

isi − 2iPi, Gi(C) ∪B(Gi) ∪ {l})
4 return C0 = 0

4

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

Partial Product Generation

Partial Product Accumulation

Final Stage Adder

an−1, . . . , a0 bn−1, . . . , b0

xm ym . . . x0 y0 cin

sk . . . s0sk+1. . .s2n−2s2n−1

s′0
. . .s′mcm+1

Figure 1: The components of a multiplier.

3 SAT
Computer algebra is able to verify simple multipliers very efficiently. However more complex multiplier
architectures still impose quite a challenge and lead to a monomial blow-up in the intermediate reduction
results. The reason for this blow-up are certain adder structures, which are part of the multipliers. During
preparation for the SAT Race 2019 [15] we observed that checking the equivalence of different adder
circuits is rather trivial for SAT solvers. We make use of this observation in the verification procedure
and combine computer algebra and SAT. We summarize the main idea, as presented in [14].

Generally multipliers can be decomposed into three components [20], which are shown in Fig. 1.
In the first component partial product generation (PPG) the partial products aibj as contained in L are
derived. This can for example be achieved using simple AND-gates or using a more complex Booth
encoding. In the second stage partial product accumulation (PPA) the partial products are reduced to
two layers using full- and half-adders. In the last stage the output of the circuit is computed using an
adder circuit. Hence we call this component final stage adder (FSA).

Adder circuits can be split into two groups. Either the carries are computed simultaneously with the
sum bits or they are calculated separately before the sum to decrease the latency of carry computation.
A scheme for both adder types can be seen in Fig. 2. Adders of the first group are usually based on
a sequence of half- and full-adders, which gives them a simple but inefficient structure, eg., ripple-
carry adders. Adders of the second group are also called generate-and-propagate (GP) adders. In a
GP adder with inputs x0, . . . , xm, y0, . . . , ym, cin and outputs s′0, . . . , s

′
m, cout the output bits s′i are

calculated as s′i = pi⊕ ci, with pi = xi⊕yi. The carries ci are recursively generated using the equation
ci = (xi−1∧yi−1)∨(ci−1∧pi−1) with cm+1 = cout and c0 = cin. The precise derivation of the carries
ci (recursively, unrolled or mixed) depends on the architecture of the adders, but is generally computed
using sequences of OR-gates. These sequences of OR-gates make the GP adders hard to verify using
the algebraic approach as the following example shows.

Example 1. Let o = o2∨x0, o2 = o1∨x1, o1 = x3∨x2 represent a sequence of three OR-gates, which
can be simplified to o = x0∨x1∨x2∨x3. The corresponding polynomial representation o = x0 +x1−
x0x1+x2−x0x2−x1x2+x0x1x2+x3−x0x3−x1x3+x0x1x3−x2x3+x0x2x3+x1x2x3−x0x1x2x3
contains 24 − 1 monomials.

5

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

p3 p2 p1

y2x2 y1x1 y0x0

s′2 s′1 s′0

Carry generation

y2x2 y1 x1 y0 x0

cincout

c2 c1

FA FA FA

y2 x2 y1 x1 y0 x0

cincout
c1c2

s′2 s′1 s′0

Figure 2: GP adder (left) and equivalent RCA (right).

In our approach we identify whether the FSA is a GP adder, using the equations s′i = pi ⊕ ci and
pi = xi⊕ yi. The algorithm is described in detail in Sect. 4, where we present our tool AMULET. If we
detect that the FSA is a GP adder, we substitute the FSA by a simple ripple-carry adder (RCA), which
has the same inputs x0, . . . , xm, y0, . . . , ym, cin than the original FSA. We do not change the first two
stages PPG and PPA. To prove that the RCA is equivalent to the GP adder we generate a bit-level miter
in CNF, which is verified by a SAT solver. However, if the FSA is not a GP adder we do not apply
adder substitution. After substitution we verify the rewritten AIG in AMULET using computer algebra.
Figure 3 shows the original multiplier (orange) as well as the RCA and the bit-level miter (green). The
dashed boxes depict which components of the extended multiplier are verified using SAT (blue) and
computer algebra (red).

Partial Product Generation

Partial Product Accumulation

FSA RCA

Miter

s2 s1 s0 s′2 s′1 s′0

0

Computer
algebra

SAT

an−1, . . . , a0 bn−1, . . . , b0

xm, ym, . . . , x0, y0, cin

Figure 3: Reasoning techniques used to verify the extended multiplier circuit.

6

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

Algorithm 2: Adder substitution AMULET

Input : Circuit C in AIG format
Output: Rewritten Circuit C′ in AIG format, bit-level miter as CNF F

1 Init(C);
2 τ ← 1;
3 cout, τ ←Identify-Carry-Out(s2n−1);
4 if τ = 0 then
5 return C, 0;
6 j ← 2n− 2, σ ← 1;
7 while σ and j ≥ 0 do
8 σ ← Check-if-XOR (sj);
9 σ, cj , pj ← Identify-pj-and-cj (sj , σ);

10 σ, xj , yj ←Mark-Adder-Inputs (pj , σ);
11 j ← j − 1;
12 cin ← cj ;
13 τ ← Follow-and-Mark-Paths(cout, X, Y, cin);
14 for i← j + 1 to 2n− 2 do
15 τ ← Follow-and-Mark-Paths(si, X, Y, cin, τ);
16 if τ = 0 then
17 return C, 0;
18 R← Generate-AIG-RCA(X,Y, cin);
19 M ← Generate-Miter(C,R);
20 F ←Miter-to-CNF(M);
21 C′ ← Generate-Rewritten-AIG(C,R);
22 return C′, F

4 AMulet
In this section we explain implementation details of our tool AMULET. Our tool, which is written in C
reads multipliers given as And-Inverter-Graphs (AIG) [16] and automatically applies adder substitution
and verification. Additionally we are able to generate proof certificates.

4.1 Adder Substitution
Our algorithm, which identifies whether the FSA is a GP adder and, if necessary, replaces the FSA by a
RCA is shown in Alg. 2. It reads the original multiplier and returns a circuit in the AIG format as well
as a CNF. To identify GP adders we highly relate on their structure as presented in Sect. 3. In particular
we rely on the fact that the outputs s′i are always outputs of XOR-gates and that the carries ci are never
outputs of XOR-gates.

In the initialization phase AMULET reads the given multiplier and for each node in the AIG we
introduce a unique variable. Variables in AMULET are organized in an ordered array, where the indices
match the literal (divided by 2) of the AIG node. As there is a one-to-one correspondence between
variables and AIG nodes we will use both terms interchangeably. We further identify whether the
variable is an output or an internal gate of an XOR gate, using syntactic pattern matching.

The variable τ of line 2 acts as an error-flag. In line 3 we identify whether the output s2n−1 of
the multiplier is the carry output cout of the FSA, which is not always the case. In some multiplier
architectures the output s2n−1 is computed as an XOR, whose inputs are the carry output cout of the
FSA and some output from the PPA step, which is usually again an XOR gate. Thus in line 3 we identify
whether s2n−1 is an XOR gate. If not, then s2n−1 = cout. If on the other hand s2n−1 is an XOR gate we

7

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

examine the inputs of s2n−1 and identify which child is not an XOR gate. This child is then identified
as cout. If both inputs are not XOR gates, we cannot clearly identify cout of the FSA and set τ = 0. In
that case the algorithm terminates and returns the original multiplier and an empty bit-level miter.

In the while-loop we identify the inputs x0, . . . , xm, y0, . . . , ym, cin of the FSA. We do not know
the concrete value of m in advance, as it depends on the multiplier architecture. Hence we recursively
iterate over the outputs of the multiplier. We start the loop at the output s2n−2, since s2n−1 was used
to identify the carry output of the FSA. In line 8 we check if the output sj is an XOR gate. If so, we
identify the propagate bit pj and the carry bit cj in the next step. Here we rely on the fact that pj is an
XOR gate and cj is not an XOR gate. Using pj we mark the inputs xj , yj of the adder in the next step.

As shown in Fig. 1 not all output bits of the multiplier are computed by the FSA. Smaller output
bits may already be computed in the PPA step. Hence at some point we are not able to identify pj , cj or
xj , yj anymore, which we capture in σ. If the FSA is not a GP adder the loop will directly stop after the
first iteration. The carry-in cin of the FSA is set to the smallest cj , which was identified.

In lines 13 to 15 we mark all gates which belong to the FSA. We start at the carry output cout resp.
sum outputs sj+1, . . . , s2n−1 and follow all paths in the input cones until we either reach a marked
input xi, yi or cin. We mark the visited variables. If at some point we reach the input variables ai, bi of
the multiplier the FSA is not a GP adder, i.e., we were not able to clearly identify the boundaries of the
FSA. Consequently adder substitution was not successful and the initially given AIG is returned without
generating a bit-level miter. If on the other hand all paths stop at the marked inputs or at cin, we have
successfully identified and marked all gates belonging to a GP adder and apply adder substitution.

We generate an equivalent RCA in line 18. A RCA is simply a sequence of full-adders, cf. Fig. 2
and the AIG encoding of a full-adder can be seen in Fig. 5b. After the RCA is generated, the bit-level
miter is defined. It contains all the gates which are identified to belong to the GP adder and the gates
of the RCA. Furthermore we add XOR gates, whose inputs are corresponding pairs of output bits of the
two adders. These XOR gates are summed up by a sequence of OR-gates, cf. Fig. 3. If the two adders
are equivalent, all equivalent pairs of output bits compute the same result. Thus the outputs of the XOR
gates are 0, consequently all OR-gates are 0 and the output of the miter is 0.

The equivalence of the adders is verified using a SAT-solver. Hence the bit-level miter is translated
into a CNF F in line 20. More precisely, the propositional formulas represented by each AIG node
are translated into CNF, which is rather straightforward. If for example an AIG node represents x =
a ∧ b, the equivalent propositional formula is ¬(x ↔ a ∧ b) = > which can be translated to the CNF
(x ∨ a ∨ b) ∧ (x ∨ a) ∧ (x ∨ b) = >. We iterate over each node and output the corresponding clauses
in DIMACS format. The final clause which is added, is the assumption that the output of the miter is 1.
Thus for a correct adder substitution the SAT solver has to return that the CNF is UNSAT.

In the rewritten multiplier, we keep all nodes of the original multiplier, which are not marked to be
an element of the FSA and replace the subgraph defining the GP adder by the AIG of the RCA. The
rewritten AIG C ′ as well as the CNF F are returned by AMULET.

4.2 Verification

After applying adder substitution the multiplier is verified. The pseudo-code can be seen in Alg. 3.
During initialization, which is similar to Alg. 2, we fix the specification polynomial L ∈ Zl[X] and
thus the constant l. As there are now more data structures involved, in particular representation of
polynomials, let us briefly discuss our design decisions. The variables are organized as an ordered array.
Terms are represented as ordered linked lists of variables. In general terms will be used multiple times
during the reduction process, thus they are organized in a hash table. Monomials contain a coefficient
and a term. Since the values of the coefficients exceed 264 we use the GMP library [8] for number
representation. Polynomials are represented as sorted linked lists of monomials. In the data structure

8

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

Algorithm 3: Outline of verification flow in AMULET

Input : Substituted Circuit C in AIG format
Output: Determine whether C is a multiplier

1 L, l← Init(C);
2 for i← 0 to 2n− 1 do
3 Si ← Define-Slices(i);
4 Order-Slices (Si);
5 Gi(C)← Init-Polynomials-of-Slices (Si);
6 Ω← Search-for-Booth-Encoding (C);
7 for i← 0 to 2n− 1 do
8 Local-Elimination (Gi(C), l);
9 Global-Elimination (Ω);

10 C0 ← Incremental-Reduction (L, Gi(C));
11 return C0 = 0

a b

x

−x+ ab

a b

x

−x− ab+ a

a b

x

−x+ ab− a− b+ 1

Figure 4: All polynomial encodings covered by AIG nodes

slice we store the gates which are assigned to a slice and the corresponding gate polynomials.
We use our incremental verification approach, cf. Alg. 1. Hence we define the slices as differences

of consecutive input cones as introduced in Def. 7. However in certain cases not all gates are assigned
to the correct slices. To this end we merge and promote gates as described in [13]. Additionally we
identify which nodes are carry nodes, i.e., which nodes are used as inputs of nodes in bigger slices.

After the slices are defined we fix the reverse topological lexicographic term ordering in line 4.
The gates inside the slices are ordered according to their reverse topological appearance and slices are
ordered in descending order. Thus also the total order of the variables is reverse topological. As a
consequence the polynomials Gi(C), which are introduced in line 5, automatically form a D-Gröbner
basis. Each AIG node represents an AND-gate between two inputs, which may or may not be inverted.
Consequently three different polynomials are possible, as can be seen in Fig. 4. For each node we
introduce the corresponding polynomial with x, a, b replaced by the corresponding variables. We further
add for each output si a linking polynomial −si + gk to clearly mark which AIG node represents an
output bit. All these polynomials mark our initial constraint set, i.e., the set G(C) of Def. 3.

We apply syntactic pattern matching to identify whether the partial products are generated using a
Booth encoding. Patterns which define Booth encoding usually stretch over more than one slice and we
want to eliminate these nodes during “Global-Elimination” to reduce the size of the carries.

Before we apply “Global-Elimination” we locally eliminate variables in the sliced Gröbner bases
Gi(C). We described in [14] a procedure which allows us to locally eliminate variables without violating
the D-Gröbner basis property.

Theorem 1 ([14]). Let P ⊆ Z[X] be a D-Gröbner basis of 〈P 〉with UMLT. Let q ∈ P be a polynomial
with lt(q) = z and no other polynomial p ∈ P contains z. Then P \ {q} is a D-Gröbner basis with
UMLT for the ideal J = I ∩ Z[X \ {z}].

9

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

Algorithm 4: Local-Elimination
Input : Ordered sliced Gröbner bases Gi, constant l
Output: Simplified ordered sliced Gröbner bases Gi

1 p0, . . . , pm ← Ordered-List-of-Polynomials(Gi(C));
2 τ ← 1;
3 while τ do
4 τ ← 0;
5 for j ← 0 to m do
6 if Check-for-Elimination(pj) then
7 q ← Find-Parent-Polynomial(p0, . . . , pj−1);
8 q ← D-reduction(q, pj , l);
9 Gi(C)← Gi(C) \ {pj};

10 τ ← 1;
11 return Gi(C)

Algorithm 5: D-reduction in AMULET

Input : Two polynomials p and q ∈ Z[X], constant l
Output: Remainder r of D-reducing p modulo q

1 pd ← Divide-by-lm(p, q);
2 pm ←Multiply(pd, q, l);
3 r ← Add(p, pm, l);
4 return r

We use the conclusion of Thm.1 as follows. Assume z ∈ X shall be eliminated and let p, q ∈ Gi(C)
be such that lt(p) = z and z is contained in q. To eliminate z of Gi(C), we D-reduce q by p and
subsequently delete the polynomial p.

The pseudo-code for “Local-Elimination” is shown in Alg. 4. We iterate over the polynomials pj
in Gi(C) and check whether the variable of the leading term is a candidate for local elimination, i.e.
we check if the variable is contained in exactly one other polynomial of the same slice and if it is not
marked as a carry variable. If both checks succeed, we search for the polynomial q, which contains the
leading term of pj and apply D-reduction of q by pj . Since the polynomials are ordered, we only have
to consider polynomials pi > pj in this search.

Algorithm 5 shows how D-reduction is implemented in AMULET. In “Divide-by-lm” we use the
UMLT property. Let v = lt(q) . We iterate over the monomialsm in p and check whether v is contained
in m. If v is contained in m we generate a monomial m′ which consists of all variables of m different
from v. Furthermore we set coeff(m′) = coeff(m). All these generated monomials m′ are summed
up and define the polynomial pd. The operations “Multiply” and “Add” correspond to the elementary
polynomial operations. For addition we use the fact that polynomials are ordered lists of monomials. We
iterate over the two polynomials simultaneously and merge them in an interleaved way. More precisely,
we start at the leading monomials of p and pm and compare them. If the monomials are different, we
add the larger monomial to r. If the monomials are equal we generate a new monomial, which has the
same term and the coefficient is the sum of the two coefficients. This way we ensure that r is again
ordered. For multiplication we multiply each monomial of pd with each monomial of q and sort the
calculated monomials. In both operations we directly divide the calculated coefficients by the constant
l in order to achieve reduction by l. We further handle reduction by B(Gi) implicitly, i.e., we replace
xi by x during multiplication too, for all i > 0.

10

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

Example 2. Let p = −a + 2bc − bd and q = −b + 2xy ∈ Z4[X]. The intermediate results of Alg. 5
are pd = 2c− d, pm = −2bc+ bd− dxy and r = −a− dxy.

Let us continue the discussion of Alg. 4. The polynomial q is replaced by the remainder of the
D-reduction step and the polynomial pj is eliminated from the sliced Gröbner basis Gi(C). We repeat
variable elimination until no more polynomial in Gi(C) can be considered for local elimination, i.e., all
variables of its leading term are either carries or contained in multiple polynomials of the same slice.
The rewritten Gröbner basis Gi(C) is returned.

Now consider Alg. 3, where we repeat “Local-Elimination” for all sliced Gröbner bases Gi(C).
In “Global-Elimination” we eliminate the variables which were previously marked, independently how
often they occur of whether they are carries. To this end we have to iterate over all polynomials inG(C),
finding their parent polynomials for D-reduction.

After variable elimination we apply the incremental checking algorithm as presented in Alg. 1. We
start with s2n−1 and apply D-reduction by the polynomials in G2n−1(C). In order to consider each
polynomial of a slice only once for D-reduction, we D-reduce by the polynomials in Gi(C) in reverse
topological order. After we applied D-reduction by all polynomials of a slice we add to the remainderCi

the partial products and output bit of the next smaller slice in order to deriveCi+αi−12i−1si−1−2iPi−1.
After reducing by G0(C), we check whether the final result is 0.

5 Proof Generation
Formal verification derives correctness of a given system. However, the process of verification as well as
the implementation might not be bug-free. A common approach to increase the confidence in automated
reasoning tools is to generate proof certificates, which are checked by independent proof checkers.

For example, providing certificates of unsatisfiability is mandatory in the SAT competition since
2013. Generating and checking proofs efficiently is a lively research topic in the SAT community and
several proof formats such as RUP [9], DRUP [11], DRAT [10] and LRAT [6] are available.

In order to provide proof certificates for reasoning tools using computer algebra we developed in [21]
a proof format, called practical algebraic calculus (PAC), which is based on the polynomial calculus [5]
and captures whether a polynomial is contained in the ideal generated by a given set of polynomials.

Our tool AMULET is able to generate proof certificates in the PAC format [21] to validate the result
of Alg. 3. These proofs can be checked by our independent proof checker PACTRIM [21]. We write
proofs as sequences, where each rule is of the following form:

d + : pi, pj , pi + pj ;
pi, pj appearing earlier in the proof or are contained in G(C) ∪ {l}
and pi + pj being reduced by B(X)

d ∗ : pi, q, qpi;
pi appearing earlier in the proof or is contained in G(C) ∪ {l}
and q ∈ R[X] being arbitrary and qpi being reduced by B(X)

These rules model the properties of an ideal, as given in Def. 4. Thus every conclusion polynomial
p = pi + pj or p = qpi is an element of 〈G(C) ∪ {l}〉. We extend the proof rules by an optional
deletion information d, similar to clause deletion in [11]. If d occurs in a proof rule the antecedents pi
and pj are deleted from the inference set, which helps to reduce the memory usage of PACTRIM.

We do not explicitly write down proof rules when reducing a Boolean value constraint. Similar to
verification, reduction by B(X) is computed implicitly, e.g., ∗ : x, x, x; is a valid proof rule.

Definition 11. The length of a PAC proof is defined as the number of generated proof rules. The size
is determined as the total number of monomials in the conclusion polynomials, counted with repetition
and degree defines the maximum degree seen in the conclusion polynomials.

11

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

PAC proofs are generated in AMULET as follows. The set of polynomials G(C) ∪ {l}, which are
defined in line 5 of Alg. 3 determines the initial constraints set. The specification L defines the target
polynomial, i.e., the polynomial which is checked whether it is inferred by the proof rules. Proof rules
have to be generated whenever polynomials are manipulated, that is for variable elimination, either
locally or globally and during incremental reduction in Alg. 3.

For variable elimination we produce proof rules which simulate D-reduction of a polynomial p by a
polynomial q, cf. Alg. 5. Note that p and q are both contained in G(C) and thus appear earlier in the
proof. In general two rules are generated, a multiplication rule and an addition rule:

(d) ∗ : q, pd, pm; d + : p, pm, r;

In AMULET reducing the polynomials pm and r by the constant l is handled implicitly. However to
generate a complete PAC proof, we need to generate explicit proof rules which model D-reduction of
pm and r by the constant l.

After a polynomial q was used for D-reduction during “Local-Elimination” we know, that we do not
have to consider q anymore, as p was the only polynomial containing the leading variable of q. Thus
we can delete q from the constraints set, which we indicate by the optional parameter “d”. For “Global-
Elimination” we have to be more careful with deletion, as the polynomial q may be used multiple times
for elimination. In both cases we eliminate p as we want to continue with the rewritten polynomial r.

For monitoring the incremental reduction we also have to generate proof rules which simulate D-
reduction of p by q. However in contrast to variable elimination, p is not part of the constraints set and
thus the addition rule would raise an error. On the other hand recall that all elements of an ideal can
be represented as a linear combination of the generators of the ideal, cf. Def 4. To simulate the linear
combination we generate a multiplication PAC rule (d) ∗ : pd, q, pm; for each D-reduction step and store
the computed factor pm. After finishing D-reduction of a slice Si, we sum up all the generated factors
pm to derive the carry recurrence relations. After deriving all carry recurrence relations we sum them
up and if the circuit is correct the final polynomial is the specification of the circuit. In both cases we
sum up the polynomials in a tree-like approach, i.e., ((p1 + p2) + (p3 + p4)) which is more beneficial
compared to summing up the polynomials in order (((p1 + p2) + p3) + p4) as this keeps the number of
monomials in the intermediate summands smaller.

6 Proof Size
Proof complexity aims to analyze computational resources and allows to reason about the performance
of solvers. In this section we want to elaborate the efficiency of AMULET and investigate the complexity
of the generated proofs. In particular we are interested in the proof length, proof size and degree.

Proof complexity for multiplier circuits is for example studied in [1], where it is shown that verifying
ring properties, e.g., commutativity of multiplication, admit polynomial resolution proofs for simple
multipliers. Motivated by this result we experimentally show in [21] that checking commutativity of
simple multipliers generates PAC proofs of quadratic length and cubic size. However these proofs are
generated using existing computer algebra systems [22].

In this section we investigate the complexity of the proofs generated by AMULET for specific family
of multipliers, more precisely btor-multipliers, which implement multiplication of unsigned integers.
These multipliers are generated by Boolector [19] and have a simple architecture as can be seen in
Fig. 5a for input bitwidth 4. They are also used in the experiments of [21] and correspond to the
array multipliers as defined in [1]. In contrast to [1, 21] we investigate the complexity for verifying the
correctness of the circuit. For the proof length and degree we can give a precise bound while for proof
size we derive an upper bound.

12

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p11p20p21p30p31

p02p12p22p32

p03p13p23p33

(a) Outline of a 4-bit btor-multiplier

zy

x

g1 g2

g3

g4 g5

s c

(b) Full-adder as AIG.

yx

g1 c

s

(c) Half-adder as AIG.

ai bj

g0

(d) Partial Products.

Figure 5: The architecture of btor-multipliers and their representation as AIGs.

Lemma 2. Let C be a n-bit btor-multiplier. C contains n half-adders and n2 − 2n full-adders.

Proof. As Fig. 5a shows, we can clearly identify rows and columns in the btor-multipliers. Let Abi
denote the sequence of all partial products ajbi for 0 ≤ j ≤ n− 1. The first row of full- and half-adders
(as seen from the circuit inputs) in C sum up the partial products Ab0 and Ab1. In row k for k ≥ 2 the
partial products Abk are added to the sum-outputs of the adders of row k − 1. Thus a btor-multiplier
consists of n− 1 rows.

In row k with k ≥ 2 the adders sum up two bitvectors of length n, which requires n adders. As we
do not have an incoming carry the first adder is a half-adder and the remaining n − 1 adders are full-
adders. In the first row the partial product a0b0 is directly processed to be output s0. Thus only 2n− 1
bits are summed up, which requires 2 half-adders and n− 2 full-adders. Consequently btor-multipliers
have (n− 2)(n− 1) + n− 2 = n2 − 2n full-adder and n− 2 + 2 = n half-adders. �

Lemma 3. Let C be a btor-multiplier of input bitwidth n. The number of variables is 8n2 − 7n and the
size of G(C) is 8n2 − 9n.

Proof. The total number of variables consists of the input variables a0, . . . , an−1, b0, . . . , bn−1, output
variables s0, . . . , s2n−1 and the internal variables g0, . . . , gk. It is easy to see that we need 4n variables
for the inputs and outputs. The internal nodes either represent partial products or they represent internal
nodes of full- and half-adders, cf. Fig. 5d,5b and 5c. Generating a partial product needs one variable
pij = aibj , thus n2 variables are needed to identify the partial products. According to Lemma 2 btor-
multipliers have n half-adders, each consisting of 3 nodes and n2−2n full-adders consisting of 7 nodes.
Hence the total number of variables is 4n+ n2 + 3n+ 7(n2 − 2n) = 8n2 − 7n.

Each variable, despite of the 2n input variables, generates either a gate polynomial or a linking
polynomial. Thus we have 8n2 − 9n polynomials. �

For proof length we measure the number of generated PAC rules. Because of the specific structure
of btor-multipliers D-reduction by the constant l = 22n is not necessary. Thus each D-reduction step
in variable elimination and in the incremental reduction algorithm produces at most two proof rules,
namely one multiplication rule and one addition rule. Furthermore the partial products are generated
using AND-gates, thus “Global-Elimination” is not necessary and proof rules are only generated in
“Local-Elimination” and “Incremental-Reduction”. Hence each gate constraint in G(C) is considered
only once for D-reduction and thus we have an upper bound of 2(8n2− 9n) = 16n2− 18n proof rules.
This bound is not tight as the following lemma shows.

13

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

Theorem 2. The proof length of n-bit btor-multipliers produced in AMULET is 16n2 − 20n− 1.

Proof. In “Local-Elimination” all AIG nodes gk, which occur in the linking polynomials −si + gk are
eliminated. The variable gk which links s2n−1 is not eliminated, as it acts as a carry. Since the coefficient
of the variables gk in the linking polynomials is 1, only the addition rule is required for D-reduction.
We have 2n− 1 such rules.

In the full- and half-adders the variables with only one parent get eliminated, that is g1 and g4 in
Fig. 5b and g1 in Fig. 5c. In total 2(n2−2n) +n = 2n2−3n variables are eliminated and each of these
eliminations requires two rules. Hence “Local-Elimination” totally requires 2n − 1 + 2(2n2 − 3n) =
4n2 − 4n− 1 proof rules.

For “Incremental-Reduction” we need to consider the multiplication rules as well as the summation
rules. After variable elimination 8n2−9n− (2n−1)− (2n2−3n) = 6n2−8n+1 polynomials remain
in G(C). Each of them, except for the single polynomial −s0 + a0b0 in S0 produces a multiplication
rule. Thus 6n2 − 8n multiplication rules are generated.

The 6n2−8n factors plus the polynomial−s0+a0b0, are summed up slice-wise to produce the carry
recurrence relations. The sum of these carry recurrence relations produces the multiplier specification.
Thus 6n2−8n additions are necessary. Collecting all the generated proof rules leads to the final number
of 4n2 − 4n− 1 + 2(6n2 − 8n) = 16n2 − 20n− 1 proof rules. �

Theorem 3. The degree of the PAC proof of n-bit btor-multipliers is 3.

Proof. The degree of the polynomials in the initial constraints set is at most 2, since the degree of the
polynomials induced by AIG nodes is 2 and the linking polynomials have degree 1.

The degree of the PAC proof can only increase in multiplication rules. In the remainder of the proof
we will heavily use the annotation of the variables as in Fig. 5b and Fig. 5c.

In “Local Elimination” we eliminate g1 and g4 from the full-adders and g1 from the half-adders. As
they have the same internal structure, we only discuss elimination of g1 from half-adders. To eliminate
g1, the polynomial p = −s + (1 − c)(1 − g1) is D-reduced by q = −g1 + (1 − x)(1 − y). Hence
“Divide-by-lm” of Alg. 5 yields pd = c − 1. Consequently, the resulting polynomial of multiplying q
and pd is pm = −g1c+ g1 + xyc− xy − xc+ x− yc+ y + c− 1 and has degree 3.

In the slicing algorithm btor-multipliers are partitioned in such a way, that all nodes of a full- and
half-adder belong to the same slice. Thus the internal nodes of full- and half-adders are reduced in
sequence, which has the consequence, that summing up the factored gate polynomials of internal adder
nodes yields the adder specifications 2(1− c) + s = x+ y + z for full-adders and 2c+ s = x+ y for
half-adders. We use this observation to determine the degree of the factors.

We first discuss half-adders. After local elimination of g1 half-adders are modeled by the polynomi-
als −s + (c − 1)(xy − x − y) and −c + xy. The following multiplication rules are generated during
incremental reduction. The constant α depends on the slice in which the half-adder belongs. Both
conclusion polynomials have degree 3 and adding them yields the specification of a half-adder.

∗ : −s +(c−1)(xy−x−y) , α , −αs+αcxy−αcx−αcy−αxy+αx+αy ;
∗ : −c+xy , α (xy−x−y + 2) , −αcxy+αcx+αcy−2αc+αxy ;

For full-adders the following factors are generated. All of them have at most degree 3.

∗ : −s +(g5−1)(g3x−g3−x) , α , −αs+αg5g3x−αg5x−αg5g3−αg3x+αg3+αx ;
∗ : −c+(1−g5)(1−g2) , −2α , 2αc−2αg5g2+2αg5+2αg2−2α ;
∗ : −g5+g3x , α (g3x−g3−2g2−x + 2) , −αg5g3x+αg5g3+2αg5g2+αg5x−2αg5−2αg3g2x+αg3x ;
∗ : −g3 +(g2−1)(yz−y−z) , α(−2g2x +1) , 2αg3g2x−αg3+αg2yz−αg2y−αg2z−αyz+αy+αz ;
∗ : −g2+yz , α (yz−y−z +2) , −αg2yz+αg2y+αg2z−2αg2+αyz ;

All polynomials, which model partial products are only multiplied by constants. Thus we never
generated a polynomial which has a degree larger than 3. �

14

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

In contrast to proof length and degree we are only able to determine an upper bound for proof size.

Theorem 4. The proof size of n-bit btor-multipliers is in O(n2 log(n)).

Proof. As in the previous proofs we distinguish between “Local Elimination” and “Incremental Reduc-
tion”. Eliminating gk from the 2n linking polynomials−si+gk needs only one addition. The conclusion
polynomial has at most 5 monomials, since each gate constraint contains at most 5 monomials.

Elimination of g1 and g4 in the full-adders and g1 in the half-adders produces one multiplication rule
and one addition rule. In the proof of Thm. 3 we listed the conclusion polynomial pm of the multiplica-
tion, which has size 10. Adding pm to−s+(1−g1)(1−c) yields a polynomial with 7 monomials. Since
we eliminate two variables from each full-adder and one variable from each half-adder, we eliminate
2n2 − 3n variables. Each elimination produces 17 monomials. Thus “Local Elimination” produces at
most 5(2n) + 17(2n2 − 3n) = 34n2 + 41n monomials.

In “Incremental Reduction” we need to consider the multiplication rules as well as the addition rules
which add up the polynomials slice-wise and then totally to gain the word-level specification.

The n2 polynomials defining the partial products are multiplied by constants 2i, thus each conclusion
polynomial has 2 monomials. We have already written down each multiplication rule for the full- and
half-adders in the proof of Thm. 3. Counting the monomials yields 32 monomials for each full-adder
and 12 monomials for each half-adder. Thus in total 2n2+32(n2−2n)+12n = 34n2−52nmonomials
are needed in the multiplication rules.

After the factors are generated, they are added up in a tree-like approach, as discussed at the end of
Sect. 5. If m polynomials are added, the depth of the corresponding addition tree is dlog(m)e+ 1.

First the polynomials within one slice are summed up. The biggest slice is Sn−1, which contains
n − 2 full-adders, 1 half-adder and n partial products. Thus in total 6n − 8 polynomials are added.
For simplicity we drop the constant and assume 6n polynomials are added. The depth of the tree is
dlog(6n)e+ 1 < dlog(6)e+ dlog(n)e+ 1 < dlog(n)e+ 4.

It can be seen in the proof of Thm. 3, that each polynomial contains at most 8 monomials. Thus the
initial layer of the addition tree has at most 48nmonomials. Let us assume adding two polynomials does
not cancel any monomials. Thus in layer i of the addition tree, the polynomials have 2i · 8 monomials.
Since each layer has 1

2i (6n) polynomials, the total number of monomials for each layer is 48n. Adding
up one slice produces at most 48n(dlog(n)e + 4) = 48ndlog(n)e + 192n monomials. Since we have
2n slices, we have at most 96n2dlog(n)e+ 384n2 monomials.

We add up these carry recurrence relations to gain the word-level specification. We have 2n carry
recurrence relations and each of them contains one monomial for the output variable si, at most n −
1 monomials for the incoming carries and n − 1 monomials for the outgoing carries and at most n
partial products and one constant monomial. Adding two consecutive carry recurrence relations cancels
the matching outgoing and incoming carries. Thus after adding two initial polynomials, the resulting
polynomials contains 2 monomials for the output bits, at most 2n− 2 monomials related to carries and
at most 2n partial products and a constant. Letm = dlog(2n)e ≤ dlog(n)e+1. We havem+1 addition
layers and each layer contains 2n

2i polynomials. Thus the upper bound of monomials is

m∑
i=0

2n

2i
(

output︷︸︸︷
2i +

carry in︷ ︸︸ ︷
n− 1 +

carry out︷ ︸︸ ︷
n− 1 +

p.products︷︸︸︷
2in +

constant︷︸︸︷
1) = 2n

m∑
i=0

(n+ 1) + 2n(2n− 1)

m∑
i=0

1

2i
<

2n(n+ 1)(dlog(n)e+ 2) + 4n2(2− 1

4n
) = 2n2dlog(n)e+ 2ndlog(n)e+ 12n2 + 3n.

Altogether our upper bound yields the polynomial 98n2dlog(n)e+ 2ndlog(n)e+ 464n2 − 8n and thus
we are in O(n2 log(n)). �

15

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

0 100 200 300 400 500

Bitwidth n

R
el

at
iv

e
er

ro
r

0.1

0.25
0.5

1

2.5
5

10

25

estimated bound
50n²log(n)

Figure 6: Proof size for n = [2, 512].

0 100 200 300 400 500

Bitwidth n

Pr
oo

f s
iz

e

1
10

10²
10³
104
105
106
107
108
109

real data
estimated bound
50n²log(n)

Figure 7: Relative errors of upper bounds for n = [2, 512].

We could clearly improve this bound, as we now considered all 2n slices to contain the same number
of polynomials as the largest slice. Furthermore monomials do cancel when the polynomials within a
slice are summed up. The real proof size as well as the estimated upper bound can be seen in Fig. 6.
We further added the function 50n2 log(n) in the plots, which also seems to be sufficient as an upper
bound. In Fig. 7 we show the relative errors of the upper bounds.

16

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

7 Conclusion

In this paper we presented our tool AMULET, a state-of-the-art tool to automatically verify and cer-
tify the correctness of large gate-level integer multipliers. We gave an introduction into the problem of
arithmetic circuit verification and discussed our state-of-the-art solving method which combines SAT
and computer algebra. Certain parts, more precisely complex final stage adders, of the multiplier are
detected and replaced by simple ripple-carry adders. The correctness of the replacement is checked by
SAT solvers and the rewritten multiplier is verified using computer algebra. We presented details of
the underlying algorithms to detect final stage adders and rewrite the multipliers, originally introduced
in [14]. Furthermore we reconsidered our incremental verification algorithm and discussed the proce-
dure of generating proof certificates. For one specific simple type of multipliers we showed that we
are able to generate proof certificates with length in O(n2) and size in O(n2 log(n)). In the future we
want to be able to extend our methods to synthesized multipliers where technology mapping is applied.
Investigating floating points and other word-level operators is interesting future work too.

References

[1] Paul Beame and Vincent Liew. Toward verifying nonlinear integer arithmetic. J. ACM, 66(3):22:1–22:30,
June 2019.

[2] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases. Springer, 1993.
[3] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem

nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.
[4] M. Ciesielski, T. Su, A. Yasin, and C. Yu. Understanding Algebraic Rewriting for Arithmetic Circuit Verifi-

cation: a Bit-Flow Model. IEEE TCAD, pages 1–1, 2019.
[5] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm to find proofs

of unsatisfiability. In STOC, pages 174–183. ACM, 1996.
[6] Luı́s Cruz-Filipe, João Marques-Silva, and Peter Schneider-Kamp. Formally verifying the solution to the

boolean pythagorean triples problem. J. Autom. Reasoning, 63(3):695–722, 2019.
[7] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann. SINGULAR 4-1-0. http:

//www.singular.uni-kl.de, 2016.
[8] Torbjörn Granlund et al. GNU MP: The GNU Multiple Precision Arithmetic Library, 2016. http://

gmplib.org/.
[9] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In ISAIM, 2008.

[10] Allen Van Gelder. Producing and verifying extremely large propositional refutations - have your cake and eat
it too. Ann. Math. Artif. Intell., 65(4):329–372, 2012.

[11] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In FMCAD
2013, pages 181–188. IEEE, 2013.

[12] Warren A. Hunt, Matt Kaufmann, J Strother Moore, and Anna Slobodova. Industrial hardware and software
verification with acl2. Philos. Trans. Royal Soc. A, 375:20150399, 10 2017.

[13] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Incremental Column-wise verification of arithmetic
circuits using computer algebra. Formal Methods in System Design, Feb 2019.

[14] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying Large Multipliers by Combining SAT and
Computer Algebra. In FMCAD 2019, To appear.

[15] Daniela Kaufmann, Manuel Kauers, Armin Biere, and David Cok. Arithmetic Verification Problems Submit-
ted to the SAT Race 2019. In Proc. of SAT Race 2019, 2019. Submitted.

[16] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay Ganai. Robust Boolean reasoning for equiv-
alence checking and functional property verification. IEEE TCAD, 21(12):1377–1394, 2002.

17

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://gmplib.org/
http://gmplib.org/

SAT, Computer Algebra, Multipliers Daniela Kaufmann, Armin Biere, Manuel Kauers

[17] Alireza Mahzoon, Daniel Große, and Rolf Drechsler. PolyCleaner: clean your polynomials before backward
rewriting to verify million-gate multipliers. In Iris Bahar, editor, ICCAD, page 129. ACM, 2018.

[18] Alireza Mahzoon, Daniel Große, and Rolf Drechsler. RevSCA: Using Reverse Engineering to Bring Light
into Backward Rewriting for Big and Dirty Multipliers. In Design Automation Conf., 2019. In press.

[19] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2 , BtorMC and Boolector 3.0. In
Computer Aided Verification, CAV, volume 10981 of LNCS, pages 587–595. Springer, 2018.

[20] Behrooz Parhami. Computer Arithmetic - Algorithms and Hardware designs. Oxford University Press, 2000.
[21] Daniela Ritirc, Armin Biere, and Manuel Kauers. A Practical Polynomial Calculus for Arithmetic Circuit

Verification. In SC-Square Workshop 2018, pages 61–76. CEUR-WS, 2018.
[22] Wolfram Research, Inc. Mathematica, 2016. Version 10.4.
[23] Cunxi Yu, Maciej J. Ciesielski, and Alan Mishchenko. Fast Algebraic Rewriting Based on And-Inverter

Graphs. IEEE TCAD, 37(9):1907–1911, 2018.

18

	Introduction
	Algebraic approach
	Incremental Verification

	SAT
	AMulet
	Adder Substitution
	Verification

	Proof Generation
	Proof Size
	Conclusion

