
EPiC Series in Computing

Volume 48, 2017, Pages 114–123

ARCH17. 4th International Workshop on Applied
Verification of Continuous and Hybrid Systems

Direct Verification of Linear Systems

with over 10000 Dimensions

(Experience Report)

Stanley Bak1 and Parasara Sridhar Duggirala2

1 Air Force Research Laboratory
2 University of Connecticut

Abstract

We evaluate a recently-proposed reachability method on a set of high-dimensional lin-
ear system benchmarks taken from model order reduction and presented in ARCH 2016.
The approach uses a state-set representation called a generalized star set and the principle
of superposition of linear systems to achieve scalability. The method was previously shown
to have promise in terms of scalability for direct analysis of large linear systems. For each
benchmark, we also compare computing the basis matrix, a core part of the reachabil-
ity method, using numerical simulations versus a matrix exponential formulation. The
approach successfully analyzes systems with hundreds of dimensions in minutes, and can
scale to systems that have over 10000 dimensions with a computation time ranging from
tens of minutes to tens of hours, depending on the desired time step.

1 Introduction

Reachability analysis attempts to compute, given a set of initial states, the set of states a system
can enter. Safety verification can then be done by performing intersections between the unsafe
states and reachable set. In this paper, we examine reachability for affine, time-invariant
systems, with system dynamics expressed as ẋ = Ax + c. We only consider the continuous
post operation, that is, we do not evaluate guards or other features of a hybrid automaton [3].
Nonetheless, continuous post is a core component of many hybrid systems reachability methods.

When faced with a high-dimensional safety verification problem, a powerful approach is
abstraction [5, 4, 10]. Abstraction methods try to simplify a complex system to a simpler one,
such that properties of interest, such as safety, are preserved. For example, abstraction methods
can reduce certain high-dimensional systems to ones with less dimensions [20]. The reason to do
this is because there are scalability limits to verification approaches, for example, the number
of dimensions that can be handled in a reasonable amount of time. The methods evaluated
here are orthogonal to these abstraction approaches, and deal with the direct verification prob-
lem. Nonetheless, note that abstraction is still typically followed up by direct verification on

DISTRIBUTION A: Approved for public release; distribution unlimited (#88ABW-2017-0429, 02 FEB 2017).

G. Frehse and M. Althoff (eds.), ARCH17 (EPiC Series in Computing, vol. 48), pp. 114–123

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

a simplified model. Finally, it is common to combine abstraction and direct verification in a
loop, using counter-examples from direct verification to guide the abstraction process [12]. To
enable such counter-example abstraction refinement (CEGAR), the direct verification method
must produce counter-example traces.

Reachable state set computation tools typically track states using data structures such as
polyhedra [15], zonotopes [17], support functions [18], Taylor models [11], or combinations of
these [2]. Recently, a data structure and associated reachability method was proposed which
stores states in a data structure called a generalized star set [14]. The reachability method we
evaluate is based on this technique, which essentially uses individual executions and superposi-
tion to compute the reachable states.

The implementation we used only reasons about the states reachable at discrete time steps.
It does not look at states between time steps. However, it is capable of generating counter-
example traces whenever the unsafe states are deemed reachable. We call this the simulation-
equivalent reachable set, since it consist of all the states visited by every fixed-step simulation.

Since the dynamics are time-invariant, however, if some external method is first used to
bound the states reachable at any time within first time step, then this larger set can be used
as the initial states with the unmodified technique to prove properties about the system at all
times [13]. For example, for small time steps the system’s Lipschitz constant may be used to
produce such a bound on all the states reached between the first two time steps. This aspect
of the reachability problem is not the focus of this paper.

We perform our evaluation using a benchmark suite consisting of nine large-scale linear
systems [19]. These benchmarks were taken from “diverse fields such as civil engineering and
robotics.” The difficulty of these benchmarks was rated by the benchmark authors as “low” to
“challenge”, and the models range from tens of dimensions to over ten thousand dimensions.
Using these benchmarks, we evaluate two approaches which can be used to compute a general-
ized star set’s basis matrix, which is a key component when computing its reachability. This is
discussed in the next section.

2 Computing a Star’s Basis Matrix

Here, we discuss the computation of the basis matrix of a generalized star set with linear
predicates (or simply star). We do not review the full reachability computation with this
approach, which is available in earlier work [14].

The generalized star set approach for reachability computation takes advantage of the su-
perposition principle of linear systems in order to compute the reachable set. At each instant
in time, if one knows how each orthonormal unit vector in the standard basis has evolved since
the initial time, one can reconstruct the state reachable from an arbitrary point. This is done
by taking linear combinations of the states reached by the trajectories which originated at each
unit vector.

For example, say in a 2-d space the initial point (1
0) after some time t evolves under the

linear differential equation ẋ = Ax and reaches point (ab). The reachable state of (2
0) then

could be easily computed by taking twice the state that (1
0) reached, which is (2a

2b). Knowing
how (1

0) and (0
1) evolve is sufficient to be able to reconstruct where any initial point has evolved

to at time t. If the dynamics are affine, ẋ = Ax+ c, then one more simulation is required from
the origin, in addition to the n simulations that are performed on the linear part of the system
ẋ = Ax.

115

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

Init

π/4

π/2

Figure 1: Plot of states reached by any fixed-step simulation (simulation-equivalent reachable
set) in the harmonic oscillator system, using a step size of π4 (left), and the star’s LP formulation
at time π

4 (right). The values circled in red are the star’s basis matrix at time π
4 , which gets

updated at each step.

If we are interested in where a set of states, rather than a single point, can evolve to at time
t, we can construct a linear program (LP) that encodes the constraints on the initial conditions
in addition to how each unit vector has evolved at time t. Linear conditions can also be added
to encode unsafe state conditions, and the LP will then be feasible if and only if an unsafe state
is reachable from some initial state.

At each time step, the value of t changes, and so “how each unit vector has evolved at time
t” will change. There are n initial unit vectors, and each one reaches an n-dimensional point,
so these can be combined to form what is called the star’s n× n basis matrix.

The computation of this basis matrix at each time step dominates the runtime of the safety
verification method. On the proposed benchmarks, we will evaluate two methods to compute
the basis matrix. First, however, we present an example of the star-based reachability approach.

Harmonic Oscillator Example. A 2-d harmonic oscillator has the dynamics ẋ = y,
ẏ = −x. Take the initial states to be x ∈ [−6,−5] and y ∈ [0, 1]. Simulations of this system
rotate clockwise around the origin. The simulation-equivalent reachable sets, and the associated
LP formulation at time step π

4 is shown in Figure 1. If there was a linear unsafe error condition,
it could be added to this LP. The LP would then be feasible if, and only if, unsafe states were
reachable. The values in the basis matrix at time π

4 are the red encircled values in the LP
formulation in the figure. The basis matrix gets updated at each time step, while the rest of the
constraints remain the same. The initial conditions are encoded in rows 3-6. The basis matrix
at time 0 is the identity matrix, (1 0

0 1). After π
4 time, the point which started at state (1

0) evolves
to

(
0.707
−0.707

)
and the point which started at (0

1) goes to (0.707
0.707) . The basis matrix at time π

4 is

therefore
(

0.707 0.707
−0.707 0.707

)
, as circled in red in the figure. At the next time step, time π

2 , the basis

matrix would be updated to
(

0 1
−1 0

)
. Error states could be encoded by adding additional rows

to the LP constraints imposing a linear condition on x and y. If an error state is reachable, the
LP solution would provide concrete assignments to x, y, α1, and α2. The corresponding error
trace, then, starts at the point (α1, α2), and, after evolving for t time, reaches the unsafe point
(x, y).

116

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

As mentioned before, computing the basis matrix for each time step dominates the runtime
of the safety verification method, and so it is important that its computation is optimized.
In the original work [14], the computation of this basis matrix was done using simulations.
However, notice that, since the solution to a linear system ẋ = Ax is x(t) = eAtx(0), the basis
matrix can also be computed using the matrix exponential. In particular the basis matrix at
time t is equal to eAt. For example, in the harmonic oscillator system above, the dynamics
matrix is A =

(
0 1
−1 0

)
, and the basis matrix at time π

4 evaluates to eA(π/4) =
(

0.707 0.707
−0.707 0.707

)
,

which is the same as the numerical simulation approach.

Further, rather than recomputing the basis matrix at each step, notice that eA2t = eAt ·eAt.
Thus, a single computation of the matrix exponential can be performed at the desired time
step, and then the resultant matrix can be multiplied using standard matrix multiplication to
get the basis matrix at the next time step. This can be repeated until the time horizon is
reached. In the next section, we compare these methods for computing the basis matrix on a
set of benchmark systems.

3 Benchmark Results

The simulation-equivalent reachability method has been shown to have promise in terms of
scalability [8, 9]. In this section, we evaluate the approach on a recently-proposed benchmark
suite for linear systems [19], which includes a system with over 10000 dimensions. For each
benchmark, we also considered a variant with a weakened or strengthened unsafe condition,
so that each system would have both a safe and an unsafe case. In order to evaluate the
accuracy of the method, when an unsafe state is reached, we output the initial state and final
states extracted from the LP which are deemed to be unsafe. Then, we perform a numerical
simulation with higher accuracy parameters from the exact initial state and check how close
the final point is to the expected final point. We report the relative error of these two points
(CE Error).

Both the speed and the accuracy of the overall verification approach depends on how accu-
rately the basis matrix is computed. For numerical simulation, we tried to choose absolute and
relative tolerances in the simulation engine so that the method is close to the accuracy of the
matrix exponential approach. In our case, we found that simulation tolerances of 10−12 yielded
errors close to the double-precision matrix exponential method.

In communications with the benchmark authors, we found out that the error conditions were
chosen based on a finite number of simulations of the models, while holding the inputs constant.
To model this, for each input ui we add a new variable to the model with the appropriate initial
range and differential equation with u̇i = 0. This model transformation was automated using
the Hyst model transformation tool [6]. Each model also includes a time variable with ṫ = 1.
Thus, for example, while the original benchmark for the Motor system had 8 variables, 2 inputs,
and a time variable, we report this as an 11-dimensional system.

For the benchmarks, we use the original time bound of 20. We consider different step sizes,
from 0.1 (200 steps) down to the step size suggested by the benchmark authors of 0.001 (20000
steps). We used the hypy library [7] in order to script the process of running all the benchmarks
with all the parameters.

117

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

Our evaluation uses a new tool, Hylaa1, which is written mostly in Python. Matrix expo-
nential is computed using scipy and the sparse.linalg.expm function, which uses a Padé
approximation optimized for sparse matrices, which we found was faster on the systems in this
benchmark set than the dense-matrix equivalent. Numerical simulations are done with scipy’s
odeint function, which can simulate both stiff and non-stiff systems with using lsoda from the
Fortran library odepack. Matrix multiplication was performed using the numpy library’s dot

function. The implementation parallelizes both the matrix multiplication (for matrices larger
than 150× 150, which was empirically derived), as well as the simulations, across all the cores
in the system. The measurements were performed on an Intel i7-3930K processor (6 cores, 12
threads) running at 3.5 GHz with 24 GB RAM.

For large matrices with a large number of time steps, it is infeasible to store the complete
simulation results in memory. For example, a single basis matrix for a 10000 dimensional model
takes about 800 megabytes of RAM (10000 × 10000 entries times 8 bytes per entry). With a
time step of 0.001 and the time bound of 20, storing all 20000 of these would require over
15 terabytes of memory. To reduce the memory requirement, the simulations are not always
performed for the full time-bound, and can be split into several parts. This does have the effect
of slightly slowing down the computation, since the internally variable-step simulations must be
reinitialized each time. The length of the simulations performed at one time is computed based
on the amount of memory made available for the computation. A positive side-effect of this
is that it allows for early termination when an unsafe state can be reached versus if the entire
simulation needed to be computed beforehand. The matrix exponential approach, in contrast,
computes one step at a time, and so will terminate on exactly the step where an unsafe state
is reached.

The results for each model, safety condition, basis matrix computation method, and for the
various step sizes, are shown in Table 1. The star-based reachability method is confirmed as
scalable, and is able to perform analysis on all of the benchmarks, often taking only minutes
for systems with hundreds of dimensions.

Notice that with the original error conditions (indicated by an asterisk next to the model
name in the table), the Beam model (350 dimensions) can actually reach the unsafe states. This
error condition was not known prior to analysis with Hylaa. Since the original error conditions
were derived based on simulations, such a situation is possible where the simulation which
demonstrates the error states was not tested. This shows the incompleteness of a sampled
simulation-based analysis, and motivates more rigorous approaches. If one wanted to exhaus-
tively simulate all the corners of the initial states, since 49 of the variables are initially intervals,
one would need to run 249 = 5.6 ·1014 simulations. For this system, our parallel implementation
averaged 1-2 simulations per second, depending on the time step. With this simulation rate,
exhaustive analysis would possible after 9 to 18 million years.

The effects of the time step are also apparent in the counter example time (CE Time column).
In the MNA1 model (588 dimensions), using a time-step of 0.1 results in a counter-example at
time 16.6, which is reduced to 16.56 for a time step of 0.01, and then finally a time 16.554
for a 0.001 time step. The counter-example time, however, is unaffected by the basis matrix
computation method on these models, which confirms that they are basically computing the
same thing.

In terms of correctness, both approaches, as well as all values of the time step are able to
correctly verify or find counter-examples traces to the unsafe error states for all the models, with
the exception of the Building (50 dimensions) model when using a time step of 0.1. Examining
the plot of the reachable states of this system, the reason becomes apparent. As shown in

1http://stanleybak.com/hylaa

118

http://stanleybak.com/hylaa

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

Table 1: Benchmark results. Stars (*) indicate each benchmark’s original specification.

Model Dims Unsafe Error Condition Method Step Size Runtime Safe? CE Error CE Time

Motor* 11 x1 ∈ [0.35, 0.4] ∧ x5 ∈ [0.45, 0.6] Simulation 0.1 0.5s X
0.01 0.8s X
0.001 2.6s X

Matrix Exp 0.1 0.4s X
0.01 0.7s X
0.001 3.9s X

Motor 11 x1 ∈ [0.3, 0.4] ∧ x5 ∈ [0.4, 0.6] Simulation 0.1 0.5s 1.6·10−11 0.1

0.01 0.6s 6.2·10−13 0.04

0.001 0.6s 2.2·10−12 0.037

Matrix Exp 0.1 0.5s 9.3·10−13 0.1

0.01 0.5s 9.9·10−13 0.04

0.001 0.6s 1.4·10−12 0.037

Building* 50 x25 ≥ 0.006 Simulation 0.1 2.1s X
0.01 2.5s X
0.001 7.6s X

Matrix Exp 0.1 0.6s X
0.01 1.4s X
0.001 8.9s X

Building 50 x25 ≥ 0.004 Simulation 0.1 1.9s X
0.01 2.0s 1.2·10−9 0.07

0.001 2.8s 2.2·10−9 0.07
Matrix Exp 0.1 0.5s X

0.01 0.5s 1.1·10−9 0.07

0.001 0.4s 1.1·10−9 0.07

PDE* 86 y1 ≥ 12 Simulation 0.1 0.7s X
0.01 1.9s X
0.001 13.4s X

Matrix Exp 0.1 0.7s X
0.01 2.2s X
0.001 17.9s X

PDE 86 y1 ≥ 10.75 Simulation 0.1 0.6s 1.2·10−12 0.1

0.01 0.8s 3.2·10−12 0.03

0.001 4.0s 1.3·10−11 0.021

Matrix Exp 0.1 0.4s 1.3·10−12 0.1

0.01 0.6s 1.3·10−12 0.03

0.001 0.5s 1.2·10−12 0.021

Heat* 202 x133 ≥ 0.1 Simulation 0.1 4.1s X
0.01 7.7s X
0.001 56.6s X

Matrix Exp 0.1 2.1s X
0.01 12.0s X
0.001 1m57s X

Heat 202 x133 ≥ 0.02 Simulation 0.1 4.1s 3.9·10−11 15.7

0.01 6.9s 6.7·10−12 15.67

0.001 47.7s 8.9·10−12 15.67

Matrix Exp 0.1 1.6s 2.4·10−11 15.7

0.01 9.8s 2.5·10−11 15.67

0.001 1m30s 2.5·10−11 15.67

ISS* 274 y3 /∈ [−0.0005, 0.0005] Simulation 0.1 7m23s X
0.01 7m14s X
0.001 7m44s X

Matrix Exp 0.1 2.9s X
0.01 11.5s X
0.001 1m39s X

ISS 274 y3 /∈ [−0.00017, 0.00017] Simulation 0.1 7m11s 1.1·10−6 0.5

0.01 7m8s 7.9·10−7 0.5

0.001 4m10s 6.3·10−7 0.498

Matrix Exp 0.1 0.7s 1.1·10−6 0.5

0.01 1.2s 7.9·10−7 0.5

119

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

0.001 3.2s 6.3·10−7 0.498

Beam 350 x89 ≥ 2100 Simulation 0.1 4m38s X
0.01 4m47s X
0.001 7m0s X

Matrix Exp 0.1 5.2s X
0.01 28.7s X
0.001 4m24s X

Beam* 350 x89 ≥ 1000 Simulation 0.1 4m28s 1.4·10−12 16.1

0.01 4m39s 1.5·10−12 16.05

0.001 6m30s 8.8·10−13 16.041

Matrix Exp 0.1 5.1s 1.3·10−11 16.1

0.01 23.7s 2.2·10−11 16.05

0.001 3m28s 2.1·10−12 16.041

MNA1* 588 x1 ≥ 0.5 Simulation 0.1 9m49s X
0.01 10m22s X
0.001 20m41s X

Matrix Exp 0.1 22.6s X
0.01 3m0s X
0.001 30m8s X

MNA1 588 x1 ≥ 0.2 Simulation 0.1 9m45s 1.2·10−10 16.6

0.01 10m19s 1.2·10−10 16.56

0.001 18m20s 1.2·10−10 16.554

Matrix Exp 0.1 20.2s 7.4·10−11 16.6

0.01 2m31s 7.4·10−11 16.56

0.001 24m58s 7.0·10−11 16.554

FOM* 1008 y1 ≥ 45 Simulation 0.1 7m3s X
0.01 9m39s X
0.001 45m15s X

Matrix Exp 0.1 30.3s X
0.01 4m51s X
0.001 48m49s X

FOM 1008 y1 ≥ 7 Simulation 0.1 7m4s 3.3·10−10 0.2

0.01 4m27s 1.7·10−10 0.07

0.001 2m39s 1.7·10−10 0.069

Matrix Exp 0.1 2.5s 7.5·10−12 0.2

0.01 3.3s 4.4·10−12 0.07

0.001 12.5s 4.6·10−12 0.069

MNA5* 10923 x1 ≥ 0.2 ∨ x2 ≥ 0.15 Simulation 0.1 41m28s X
0.01 3h51m X
0.001 24h2m X

Matrix Exp 0.1 14h3m X
0.01 (>5d)
0.001 (>53d)

MNA5 10923 x1 ≥ 0.1 ∨ x2 ≥ 0.15 Simulation 0.1 5m57s 9.2·10−8 2.0

0.01 21m40s 2.0·10−7 1.92

0.001 2h11m 2.0·10−7 1.919

Matrix Exp 0.1 1h25m 9.2·10−8 2.0

0.01 13h29m 2.0·10−7 1.92
0.001 (>5d)

Figure 2, a fixed-step simulation with a large time step, in fact, does not reach error states,
which only happens around time 0.07. Traditional reachability analysis methods, such as those
implemented in SpaceEx [16], Flow* [11], or CORA [1], do reason in between time steps and
would not mark such systems as safe. Nonetheless, due to the scalability and generation of
counter-examples, we believe there is a place for simulation-equivalent reachability.

120

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

x25

Time

Unsafe Boundary

T
im

e 0.1

Figure 2: Plot of x25 over time of the first 0.25 seconds for the Building (50 dimensions) model
produced in SpaceEx. Notice that fixed-time simulations with a time step of 0.1 do not enter
the unsafe states (x25 ≥ 0.004).

In terms of the computation time of the basis matrix, both approaches are viable for most
of the systems. The runtime of the simulation method is sensitive to the internal variable time-
steps the simulation engine can use, which in turn depends on the system’s dynamics. This
effect can be seen with the ISS model (274 dimensions), which is completed much faster using
the matrix exponential approach. For the largest, MNA5 system (10923 dimensions), however,
the matrix exponential method becomes extremely slow when there are a large number of steps.
This is because matrix multiplication, which is done at each step to compute the basis matrix,
takes about 230 seconds with our parallel implementation. The estimated times in parenthesis
in the table are based on this value, multiplied by the number of steps required. With this
estimation method, the 0.1 time step variant (200 steps) should take about 200 · 230 seconds,
which equals 12.8 hours, which is close to the measured value of about 14 hours.

One rough intuition as to why the simulation approach may outperform the matrix expo-
nential method on the largest systems with many steps is that the matrix exponential approach
requires a matrix multiplication at each step, which takes O(n3), or slightly better. Performing a
single step of an Euler method simulation2 involves computing the update equation x′ := x+Ax.
If A is sparse (which it is for the larger benchmarks), this operation may be computed in less
than O(n2), and so n of these updates (one for each unit vector) may be possible faster than
O(n3). Essentially, the simulation approach can take advantage of the sparsity of the A matrix,
whereas the matrix exponential method requires multiplying by eAt, which is a dense matrix.

While a simulation method is expected to take slightly longer with more intermediate steps,
we expect the number of time steps to have more impact on the matrix exponential approaches,
where the number of matrix multiplications is exactly equal to the number of time steps. This
trend is apparent for the larger systems, such as the safe variant of the MNA1 model (588
dimensions). Here, the matrix exponential approach increases from 20 seconds with a time step
of 0.1, to 151 seconds (2m31s) with a time step of 0.01, to 1498 seconds (18m20s) with a time

2The actual numerical simulation method performed by odeint uses a more complicated update, and may
require multiple internal steps per desired time step. These, however, are constant factors.

121

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

step of 0.001. This is close to a factor of ten increase in runtime each time the number of steps
increases by a factor of ten. The simulation method does take longer with more intermediate
steps on this system, but the relationship is less than linear, increasing from 589 seconds (9m49s)
to 622 seconds (10m22s) to 1241 seconds (20m41s) as the time step is reduced.

The counter-example accuracy is not too affected by the time step. This is because the
simulation engine will adjust its internal step size based on the (fixed) accuracy parameter. It
is possible in the matrix exponential method that numerical errors could accumulate during
repeated matrix multiplications when there are a large number of time steps, but for these
systems, we did not observe this making a difference on the counter-example accuracy. Note
that the counter-example reported in the CE Error column is relative error, and it is small in all
cases. Additionally, some of the input models are provided with less than 5 digits of precision,
which may lead to errors in the analysis result even if the reachability was exact.

In terms of models which do reach unsafe states, the matrix exponential approach usually
takes less time to find a counter-example. This is because, as an optimization, simulations are
run in batches over many steps rather than a single step at a time. The matrix exponential
methods, however, perform one step at a time. For larger systems, where the simulation length
is limited for memory reasons as described earlier, we do observe that the analysis time is
reduced for the simulation approach when compared with the case where no unsafe states are
reachable. This is why the unsafe variant of the FOM model (1008 dimensions) takes less time
to compute as the time step is reduced (the simulation lengths are reduced since there are more
intermediate time steps).

Finally, since the runtime is dominated by the computation of the basis matrix, and this
computation is independent of the initial states or error states, its result could be reused. This
would allow the user to make arbitrary changes to the initial states and unsafe conditions, and
then quickly compute simulation-equivalent reachability without having to do the expensive
basis matrix computation. This was useful in order to find the strengthened error conditions
where there are reachable unsafe states for each of the models, since it allowed us to perform
many runs of the tool in a short amount of time. For the measurements, however, we ran all
the computations from scratch.

4 Conclusion

We analyzed nine high-dimensional benchmark systems using simulation-equivalent reachability
analysis. Our main result confirms that the recently proposed technique for generalized star-
based analysis of linear systems is capable of scaling to extremely large systems. Further, the
counter-example error traces constructed are of high accuracy, as measured by post-analysis,
high-accuracy simulations. We also evaluated two methods for the computation of the basis
matrix, which dominates the runtime of the approach. We compared using a matrix exponential
approach versus numerical simulations. Generally, both can be used, although for the largest
systems with many steps, numerical simulations were faster.

There are other aspects that may be a factor when choosing the basis matrix computation
method. From an interface perspective, using simulations allows more fine-grained control of the
error than the matrix exponential. However, the matrix exponential method may be superior if
a quick safety check is desired at a known specific time instant, rather than at all multiples of
the time step. A hybrid approach is also possible, where simulations are used to compute the
first step’s basis matrix, and then matrix multiplication is used for the remaining steps. The
runtime of this method is likely similar to the matrix exponential methods, since the runtime
is dominated by matrix multiplication, especially when there are a large number of steps.

122

Direct Verification of Linear Systems with over 10000 Dimensions Bak, and Duggirala

References

[1] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems, 2015.

[2] M. Althoff and G. Frehse. Combining zonotopes and support functions for efficient reachability
analysis of linear systems. In Proc. of the 55th IEEE Conference on Decision and Control, 2016.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3–34, 1995.

[4] R. Alur, T. Dang, and F. Ivančić. Progress on reachability analysis of hybrid systems using
predicate abstraction. In Hybrid Systems: Computation and Control, pages 4–19. Springer, 2003.

[5] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions of hybrid systems.
Proceedings of the IEEE, 88(7):971–984, 2000.

[6] S. Bak, S. Bogomolov, and T. T. Johnson. HyST: A source transformation and translation tool
for hybrid automaton models. In Hybrid Systems: Computation and Control, Seattle, Washington,
Apr. 2015. ACM.

[7] S. Bak, S. Bogomolov, and C. Schilling. High-level hybrid systems analysis with hypy. In ARCH16:
Proc. of the 3rd Workshop on Applied Verification for Continuous and Hybrid Systems, 2016.

[8] S. Bak and P. S. Duggirala. Hylaa: A tool for computing simulation-equivalent reachability for lin-
ear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation
and Control, 2017.

[9] S. Bak and P. S. Duggirala. Rigorous simulation-based analysis of linear hybrid systems. In Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2017.

[10] S. Bak, A. Greer, and S. Mitra. Hybrid cyberphysical system verification with simplex using
discrete abstractions. In IEEE Real-Time and Embedded Technology and Applications Symposium,
RTAS ’10, pages 143–152, Washington, DC, USA, 2010. IEEE Computer Society.

[11] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe construction for non-
linear hybrid systems. In Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium, RTSS
’12, pages 183–192, Washington, DC, USA, 2012. IEEE Computer Society.

[12] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald. Abstraction
and counterexample-guided refinement in model checking of hybrid systems. International journal
of foundations of computer science, 14(04):583–604, 2003.

[13] T. Dang. Verification et synthese des systemes hybrides. PhD thesis, INPG, Oct 2000.

[14] P. S. Duggirala and M. Viswanathan. Parsimonious, simulation based verification of linear systems.
In International Conference on Computer Aided Verification, pages 477–494. Springer, 2016.

[15] G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In International
workshop on hybrid systems: computation and control. Springer, 2005.

[16] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. Spaceex: Scalable verification of hybrid systems. In Computer Aided Verification,
pages 379–395. Springer, 2011.

[17] A. Girard. Reachability of uncertain linear systems using zonotopes. In M. Morari and L. Thiele,
editors, Hybrid Systems: Computation and Control, LNCS. Springer, 2005.

[18] A. Girard and C. Le Guernic. Efficient reachability analysis for linear systems using support
functions. In IFAC Proceedings Volumes, volume 41, pages 8966–8971. Elsevier, 2008.

[19] H.-D. Tran, L. V. Nguyen, and T. T. Johnson. Large-scale linear systems from order-reduction
(benchmark proposal). In 3rd Applied Verification for Continuous and Hybrid Systems Workshop
(ARCH), Vienna, Austria, 2016.

[20] H.-D. Tran, L. V. Nguyen, W. Xiang, and T. T. Johnson. Order-reduction abstractions for safety
verification of high-dimensional linear systems. arXiv preprint arXiv:1602.06417, 2016.

123

	Introduction
	Computing a Star's Basis Matrix
	Benchmark Results
	Conclusion

