
EPiC Series in Computing

Volume 57, 2018, Pages 76–94

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Matching in the Description Logic FL0 with respect to

General TBoxes∗

Franz Baader, Oliver Fernández Gil, and Pavlos Marantidis

Theoretical Computer Science, TU Dresden
01062 Dresden, Germany

firstname.lastname@tu-dresden.de

Abstract

Matching concept descriptions against concept patterns was introduced as a new infer-
ence task in Description Logics two decades ago, motivated by applications in the Classic
system. Shortly afterwards, a polynomial-time matching algorithm was developed for the
DL FL0. However, this algorithm cannot deal with general TBoxes (i.e., finite sets of
general concept inclusions). Here we show that matching in FL0 w.r.t. general TBoxes is
in ExpTime, which is the best possible complexity for this problem since already subsump-
tion w.r.t. general TBoxes is ExpTime-hard in FL0. We also show that, w.r.t. a restricted
form of TBoxes, the complexity of matching in FL0 can be lowered to PSpace.

1 Introduction

Matching is the special case of unification where one of the expressions to be unified has no
variables and thus remains unchanged under substitutions. In Description Logic (DL), matching
of concept descriptions against concept patterns was originally introduced in [11] as a non-
standard inference task that can be used to filter out the unimportant aspects of large concept
descriptions appearing in knowledge bases of the system Classic [9]. Subsequently, matching
(as well as the more general problem of unification) was also proposed as a tool for detecting
redundancies in knowledge bases [8] and to support the integration of knowledge bases by
prompting interschema assertions to the integrator [10].

All three applications have in common that one wants to search the knowledge base for
concepts having a certain (not completely specified) form. This “form” can be expressed with
the help of so-called concept patterns, i.e., concept descriptions containing variables (which stand
for concept descriptions). For example, assume that we want to find concepts that are concerned
with humans that share some characteristic with all their children. This can be expressed by
the pattern D := Human u X u ∀has-child.X where X is a variable standing for the common
characteristic. The concept description C := HumanuTallu∀has-child.Tall matches this pattern
in the sense that, if we replace the variable X by the concept description Tall, the pattern

∗Supported by the DFG Research Training Group 1763 (QuantLA) and the DFG grant BA 1122/20-1.

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 76–94

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

becomes equivalent to the concept description C. Thus, the substitution σ := {X 7→ Tall} is a
matcher of the matching problem C ≡? D since C ≡ σ(D).

Both matching and unification have been investigated in detail for the inexpressive DLs
FL0 (with concept constructors top >, conjunction C u D, value restriction ∀r.C) and EL
(with concept constructors >, C uD, existential restriction ∃r.C). Whereas in EL both match-
ing [4] and unification [6] are NP-complete problems, the complexity of these problems differs
significantly for FL0: matching is polynomial, but unification is ExpTime-complete [8]. These
results were shown for the case without a background TBox, i.e., where equivalence ≡ between
concept descriptions must be achieved, rather than equivalence ≡T w.r.t. a TBox T consisting
of general concept inclusions (GCI). For the DL EL it was proved in [7] that the presence of
TBoxes does not change the complexity of the matching problem: it stays in NP. For unification
in EL w.r.t. TBoxes an NP upper bound could until now only be shown for a restricted form
of TBoxes [1].

Matching in FL0 in the presence of TBoxes has not been investigated until now. In this
paper, we close this gap by showing that it is an ExpTime-complete problem. Since already
subsumption in FL0 w.r.t. TBoxes is ExpTime-complete [2], ExpTime-hardness of this prob-
lem is clear. The first main contribution of this paper is thus to show the ExpTime upper
bound. We do this by first showing an ExpTime upper bound for the problem of testing
whether an FL0 matching problem has a matcher in the extended logic FLreg. Basically, in
FLreg one can use regular languages to express infinite conjunctions of value restrictions. Our
proof of the ExpTime upper bound depends on a fine-grained analysis of the complexity of
subsumption of FLreg concept descriptions w.r.t. an FL0 TBox, which uses automata on words
and trees. The second step is then to show that an FL0 matching problem has an FL0 matcher
iff it has an FLreg matcher. The second main contribution of this paper is to show that the
complexity of the matching problem can be lowered from ExpTime to PSpace if one considers
TBoxes of a restricted form where the role depth on the left-hand side of a GCI is not larger
than the role depth on the right-hand side.

2 Preliminaries

We start by introducing the DLs FL0 and FLreg, and then we will consider the matching
problem. While we are mainly interested in matching in FL0, we will use FLreg matchers as
intermediate solutions.

The DLs FL0 and FLreg
Concept descriptions of the DL FL0 are built from concept and role names using the concept
constructors conjunction (u), value restriction (∀r.C) and the top concept (>). To be more
precise, FL0 concept descriptions are obtained from disjoint sets NC and NR of concept and
role names, respectively, using the following syntax rules:

C ::= > | A | C u C | ∀r.C,

where A ∈ NC, r ∈ NR, and C is an FL0 concept description. An FL0 TBox is a finite set of
general concept inclusions (GCIs), which are expressions of the form C v D where C,D are
FL0 concept descriptions.

The DL FLreg extends FL0 by allowing the use of regular languages L over the alphabet
of all role names NR to express infinite conjunctions of value restrictions. Basically, the value
restriction ∀L.C stands for the (possibly infinite) conjunction

d
w∈L ∀w.C, where (for w =

77

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

r1 . . . rk ∈ NR
∗) the expression ∀w.C is an abbreviation for ∀r1. · · · ∀rk.C. To be more precise,

FLreg concept descriptions are obtained from disjoint sets NC and NR of concept and role
names, respectively, using the following syntax rules:

C ::= > | A | C u C | ∀L.C,

where A ∈ NC, L is a regular language over NR, and C is an FLreg concept description. Here
we assume that the regular language L is given by a regular expression or a non-deterministic
finite automaton (NFA). Since the singleton language {r} for r ∈ NR is regular, every FL0

concept description is also an FLreg concept description.
The semantics of FL0 and FLreg is defined using interpretations as in first-order logic. An

interpretation I = (∆I , .I) consists of a non-empty domain ∆I and an interpretation function
.I , which assigns subsets AI ⊆ ∆I to concept names A ∈ NC and binary relations rI ⊆ ∆I×∆I

to role names r ∈ NR. The function .I is inductively extended to arbitrary FL0 and FLreg
concept descriptions as follows:

>I := ∆I , (C uD)I := CI ∩DI , (∀r.C)I := {x ∈ ∆I | ∀y.((x, y) ∈ rI =⇒ y ∈ CI)},
(∀ε.C)I := CI , (∀w.C)I := (∀r1. · · · ∀rk.C)I where w = r1 . . . rk ∈ NR

+,

(∀L.C)I :=
⋂
w∈L(∀w.C)I and in particular (∀∅.C)I = ∆I .

The interpretation I is a model of the FL0 TBox T if CI ⊆ DI for all C v D ∈ T . Given an
FL0 TBox T and two FLreg concept descriptions C,D, we say that C is subsumed by D w.r.t.
T (denoted as C vT D) if CI ⊆ DI for all models I of T . These two concept descriptions are
equivalent w.r.t. T (written C ≡T D) if C vT D and D vT C. If T is the empty TBox, we
simply write C v D and C ≡ D instead of C v∅ D and C ≡∅ D.

Subsumption between FLreg concept descriptions w.r.t. an FL0 TBox is an ExpTime-
complete problem. The ExpTime upper bound follows from the known ExpTime upper bound
for propositional dynamic logic (PDL) [15, 12] since FLreg concept descriptions can be trans-
lated into PDL and GCIs can be internalized [16]. The corresponding ExpTime lower bound
already holds for subsumption between FL0 concept descriptions w.r.t. an FL0 TBox [2].

In case the TBox is empty, subsumption between FL0 concept descriptions is polynomial [13]
and between FLreg concept descriptions it is PSpace-complete [5]. The upper bounds can,
for example, be shown using an appropriate normal form. For FLreg concept descriptions, this
normal form can be obtained by applying the following equivalences as rewrite rules from left
to right:

∀L.(E u F) ≡ ∀L.E u ∀L.F, ∀L.A u ∀L′.A ≡ ∀(L ∪ L′).A,
∀L1.∀L2. . . .∀Ln.E ≡ ∀(L1·L2· . . . ·Ln).E,

where E,F are FLreg concept descriptions, A ∈ NC, and L,L1, . . . , Ln are regular languages
given as NFAs or regular expressions. In the case of NFAs, one needs to use their closure under
union and concatenation to obtain the new automata.

Using these rules, given FLreg concept descriptions C,D can be transformed in polynomial
time into the following normal form:

C ≡ ∀K1.A1 u . . . u ∀Kk.Ak, D ≡ ∀L1.A1 u . . . u ∀Lk.Ak, (1)

where A1, . . . , Ak are the concept names occurring in C and D, and K1, . . . ,Kk, L1, . . . , Lk are
regular languages (given as regular expressions or NFAs). In case the concept name Ai occurs
in C, but not in D, then Li = ∅, and thus ∀Li.Ai ≡ >. Concept names occurring in D, but
not in C, are treated analogously.

78

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Using these normal forms, subsumption between the FLreg concept descriptions C,D can
now be characterized as follows [5]:

C v D iff Li ⊆ Ki holds for all i, 1 ≤ i ≤ k.

Since the inclusion problem for regular languages (given as regular expressions or NFAs) is
PSpace-complete, this yields both the PSpace upper and the PSpace lower bound for sub-
sumption of FLreg concept descriptions. In the special case of FL0 concept descriptions, the
languages are finite and have a very simple representation (basically, the enumeration of the
words contained in them), which allows for checking inclusion in polynomial time [8].

Later on, we will need to consider such normal forms, but where the regular languages are
given as deterministic finite automata (DFAs). We call this normal form then deterministic
normal form (DNF). A DNF of an FLreg concept description can obviously be obtained from its
normal form by constructing DFAs from the regular expressions or NFAs, which may however
result in DFAs that are exponentially larger than the original regular expressions or NFAs. In
general, this normal form is not unique since different DFAs may accept the same language.
One can make it unique (up to isomorphism of automata) by using minimal DFAs.

For the case of subsumption between FL0 concept descriptions w.r.t. a non-empty FL0

TBox, a language-based characterization was developed that is similar to the one given above [3].
Here, we extend it to FLreg concept descriptions. Given an FLreg concept description C and
an FL0 TBox T , the value restriction set of C w.r.t. T is defined as:

LT (C) := {(w,A) ∈ NR
∗ × NC | C vT ∀w.A}.

We denote as LT (C,A) the language {w | (w,A) ∈ LT (C)}. In the same way as for FL0 [14],
these value restriction sets can be used to characterize subsumption.

Lemma 1. Let T be an FL0 TBox and C,D two FLreg concept descriptions. Then, C vT D
iff LT (D) ⊆ LT (C).

Matching

To define the matching problem w.r.t. an FL0 TBox, we first need to introduce the notions of
concept patterns and substitutions. We consider a set of concept variables NX disjoint from NC

and NR. An FL0 concept pattern is an FL0 concept description defined over the set of concept
names NC ∪ NX and the set of role names NR.

Informally, a matching problem in FL0 asks, given an FL0 concept description C and
an FL0 concept pattern D, whether the variables occurring in D can be replaced by concept
descriptions such that the resulting expression is equivalent to C. The meaning of “replacing” in
the previous sentence is formalized using the notion of a substitution. An FLreg substitution σ
is a mapping assigning FLreg concept descriptions σ(X) to variables X ∈ NX. The application
of such a substitution σ to concept patterns is inductively defined as follows:

σ(>) := >, σ(A) := A for all A ∈ NC,

σ(C uD) := σ(C) u σ(D), σ(∀r.C) := ∀r.σ(C).

We say that σ is an FL0 substitution if σ(X) is an FL0 concept description for all X ∈ NX.

Definition 2. Let T be an FL0 TBox. An FL0 matching problem w.r.t. T is an equation of
the form C ≡?

T D, where C is an FL0 concept description and D an FL0 concept pattern. The
FLreg substitution σ is an FLreg matcher of this problem if C ≡T σ(D). If this matcher is an
FL0 substitution, then we call it an FL0 matcher.

79

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Given a matching problem C ≡?
T D, only the σ-images of variables occurring in D are

relevant. For this reason, we will assume in the following that NX consists of exactly these
variables.

Example 3. Let C and D respectively be the following FL0 concept description and FL0

concept pattern (in normal form):

C := ∀{r, s}.A u ∀{s}.B, D := ∀{rr}.A u ∀{r, s}.X1 u ∀{s}.X2.

It is easy to see that L∅(C,A) = {r, s}. Since D has the conjunct ∀{rr}.A, we know that the
word rr belongs to L∅(σ(D), A) for all substitutions σ. By the characterization of subsumption
given in Lemma 1, this implies that the matching problem C ≡? D has no matcher w.r.t. the
empty TBox.

However, if we consider C ≡? D w.r.t. TBox T := {A v ∀r.A, ∀s.B v A}, there actually
exists an FL0 matcher for this problem. Notice that the GCI ∀s.B v A implies that C vT
A. Moreover, A v ∀r.A yields that A vT ∀w.A for all w ∈ {r}∗. Hence, it follows that
LT (C,A) = {s} ∪ {r}∗ and LT (C,B) = {s}. By setting σ(X1) := A and σ(X2) := B, we have
that LT (C,A) = LT (σ(D), A) and LT (C,B) = LT (σ(D), B). Thus, Lemma 1 implies that σ
is a matcher for C ≡?

T D.

The polynomial-time algorithm for deciding whether an FL0 matching problem has an
FL0 matcher w.r.t. the empty TBox introduced in [8] is based on the observation that such a
problem has a matcher iff a certain candidate substitution is a matcher. The algorithm thus
computes this candidate substitution and checks whether it is indeed a matcher. Basically, our
matching algorithm proceeds in the same way, but we need to overcome two problems. First,
the candidate substitution is an FLreg substitution rather than an FL0 substitution. Thus,
we actually check whether the problem has an FLreg matcher. However, we then show that
the existence of an FLreg matcher also implies the existence of an FL0 matcher. Second, the
candidate matcher may already be of exponential size. Thus, if we just use the result that
subsumption in FLreg w.r.t. an FL0 TBox is in ExpTime, we obtain a doubly-exponential
upper bound for the overall complexity of checking whether the candidate substitution really is
a matcher. In order to bring this upper bound down to ExpTime, we need a more fine-grained
analysis of the complexity of the subsumption problem, which we provide in the next section.

3 Subsumption in FLreg w.r.t. an FL0 TBox

Given FLreg concept descriptions C,D and an FL0 TBox T , we are interested in the complexity
of deciding whether C vT D holds or not. Basically, we will use the characterization of
subsumption given in Lemma 1 to obtain a subsumption algorithm. However, it turns out
that a model-theoretic variant of this characterization is more appropriate to achieve a fine-
grained complexity analysis that distinguishes between the size of C,D and the size of T .
For subsumption between FL0 concept descriptions w.r.t. an FL0 TBox T , such a semantic
characterization has been introduced in [14, 3].

Definition 4. Let T be an FL0 TBox and C an FLreg concept description. An interpretation
I = (∆I , .I) is called a functional interpretation if ∆I = NR

∗ and rI := {(u, ur) | u ∈ NR
∗} for

all r ∈ NR. The functional interpretation I is called a

• functional model of C if ε ∈ CI ,

• functional model of T if I is a model of T ,

80

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

• functional model of C w.r.t. T if ε ∈ CI and I is a model of T .

Calling such interpretations functional is justified by the fact that they interpret roles as
(total) functions: for every u ∈ NR

∗ and every r ∈ NR, the word ur is the unique r-successor
of u. As an immediate consequence of this functional interpretation of roles, we have for all
A ∈ NC and u,w ∈ NR

∗:
w ∈ (∀u.A)I iff wu ∈ AI .

We define inclusion and intersection of functional interpretations as follows:

• I ⊆ J if AI ⊆ AJ for all A ∈ NC;

• I∩J is the unique functional interpretation that satisfies AI∩J = AI∩AJ for all A ∈ NC.

It is easy to see that the above classes of functional models are closed under intersection, i.e.,
if I and J are both functional models of C w.r.t. T (and likewise of C, or of T), then so
is their intersection I ∩ J . This actually not only holds for binary intersection, but also for
arbitrary intersection of functional models. In particular, this implies that there must exist a
least functional model of C w.r.t. T , i.e., a functional model J of C w.r.t. T such that J ⊆ I
holds for all functional models I of C w.r.t. T . There is a close connection between the least
functional models and the value restriction sets introduced in the previous section.

Proposition 5. Given an FLreg concept description C and an FL0 TBox T , let IC,T =
(NR

∗, ·IC,T) be the functional interpretation satisfying AIC,T = {w ∈ NR
∗ | (w,A) ∈

LT (C)} for all A ∈ NC. Then, IC,T is the least functional model of C w.r.t. T .

The proof of this proposition is identical to the one given in [3] for the case where C is an
FL0 concept description. Combining this result with Lemma 1 we can immediately conclude
the following.

Corollary 6. Let T be an FL0 TBox and C, D FLreg concept descriptions. Then C vT D
iff ID,T ⊆ IC,T .

In order to test the condition ID,T ⊆ IC,T , we want to represent these least functional
models using tree automata. To do this, we first need to introduce labeled trees and looping
automata recognizing such trees. Let L be a finite set of labels and Σ = {σ1, . . . , σn} a finite set
of symbols. An infinite L-labeled Σ-tree t is a mapping t : Σ∗ → L that assigns a label t(w) ∈ L
to each node w ∈ Σ∗. Intuitively, the nodes of a Σ-tree t correspond to finite words in Σ∗,
where the empty word ε represents the root of t and every node w has n children corresponding
to the words wσ1, . . . , wσn. The set of all infinite L-labeled Σ-trees is denoted as TωΣ,L.

Functional interpretations can be represented as NR-trees with labels from the set 2NC . More
precisely, given a functional interpretation I, the 2NC -labeled NR-tree tI corresponding to I is
defined as tI(w) := {A ∈ NC | w ∈ AI}. Conversely, any tree t ∈ Tω

NR,2
NC

induces a functional

interpretation It where AIt := {w ∈ NR
∗ | A ∈ t(w)} for every A ∈ NC. These two mappings

are bijections that are inverse to each other. In the following, we will not always distinguish
between a functional interpretation and its tree representation. For example, we will say that an
automaton recognizes a functional interpretation I rather than use the (more exact) expression
that it recognizes the tree representation tI of I.

Definition 7. A looping tree automaton (LTA) is a tuple A = (Σ, Q, L,∆, I) where Σ =
{σ1, . . . , σn} is a finite set of symbols, Q is a finite set of states, L is a finite set of labels, ∆ ⊆ Q×
L×Qn is the transition relation and I ⊆ Q the set of initial states. A run of A on a tree t ∈ TωΣ,L

81

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

is a Q-labeled Σ-tree ρ : Σ∗ → Q such that ρ(ε) ∈ I and (ρ(w), t(w), ρ(wσ1), . . . , ρ(wσn)) ∈ ∆
for all w ∈ NR

∗. The tree language L(A) recognized by A is the set of all trees t such that A
has a run on t.

In [3] it is shown how to construct an LTA AC,T that recognizes the functional models of
an FL0 concept description C w.r.t. an FL0 TBox T . If we set C = >, then this automaton
actually recognizes the functional models of T . Thus, the construction and the results in [3]
(in particular, Definition 8 and Lemma 9 of [3]) provide us with the following results.

Proposition 8. Given an FL0 TBox T , we can construct an LTA AT such that L(AT) =
{tI | I is a functional model of T }. The size of AT is exponential in the size of T , and it can
be constructed in exponential time.

Now, consider an FLreg concept description C = ∀L1.A1 u · · · u ∀Lk.Ak in deterministic
normal form, and let A1, . . . ,Ak be the DFAs recognizing the languages L1, . . . , Lk. In the
following, we assume that these DFAs are of the form Ai = (Qi,NR, q

0
i , δi, Fi) where Qi is the

set of states, NR the alphabet, q0
i the initial state, δi : Qi × NR → Qi the transition function,

and Fi ⊆ Qi the set of final states. We can use these DFAs to construct an LTA AC that
recognizes the functional models of C. To be more precise, we define AC := (P,Σ, L,∆, {p0}),
where P := Q1 × · · · ×Qk, Σ := NR = {r1, . . . , rn}, L := 2{A1,...,Ak}, p0 := (q0

1 , . . . , q
0
k), and

∆ := {(p, `, p1, . . . , pn) | p = (q1, . . . , qk) ∈ P, {Ai | 1 ≤ i ≤ k, qi ∈ Fi} ⊆ `,
pi = (δ1(q1, ri), . . . , δk(qk, ri)) for i = 1, . . . , n }

Lemma 9. L(AC) = {tI | I is a functional model of C}.

Proof. Since the automata Ai are deterministic, the automaton AC has at most one run ρ,
where ρ(w) = (δ1(q0

1 , w), . . . , δn(q0
k, w)) for all w ∈ Σ∗. For a given tree t, ρ is indeed a run

on the tree t iff the following holds for all w ∈ NR
∗: t(w) contains all concept names Ai with

δi(q
0
i , w) ∈ Fi, i.e., it contains all Ai with w ∈ Li. Consequently, the tree t is accepted by AC

iff w ∈ AIti holds for all w ∈ Li. Since w ∈ AIti is equivalent to ε ∈ (∀w.Ai)It , this shows that
AC accepts exactly the tree-representations of functional models of C.

Note that the size of AC is bounded by h(mk), where m is the maximal size of the automata
A1, . . . ,Ak, k is the number of concept names occurring in C, and h is a polynomial. In order
to obtain an automaton that recognizes all functional models of C w.r.t. T , we can apply the
standard product construction to obtain an automaton recognizing L(AC) ∩ L(AT) = {tI |
I is a functional model of C w.r.t. T }.

Proposition 10. Given an FLreg concept description C in DNF and an FL0 TBox T , we
can construct an LTA AC,T such that L(AC,T) = {tI | I is a functional model of C w.r.t. T }.
If m is the maximal size of the DFAs used to represent regular languages in C, k is the number
of concept names occurring in C or T , and τ is the size of T , then the size of AC,T is bounded
by 2h1(τ)·h2(mk) for polynomials h1, h2.

Just as in the case of an FL0 concept description C, the automatonAC,T can be transformed
into an LTA that accepts exactly the least functional model of C w.r.t. T . This transformation
removes states and transitions (see Definition 10 and Theorem 11 in [3]).

Proposition 11. Given an FLreg concept description C in DNF and an FL0 TBox T , we

can construct an LTA ÂC,T such that L(ÂC,T) = {tIC,T }. The size of ÂC,T is bounded by the
size of AC,T .

82

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Now, let T be an FL0 TBox and C,D FLreg concept descriptions in DNF. According to
Corollary 6, we have C vT D iff ID,T ⊆ IC,T . As shown in [3], the latter condition can be
reduced to the emptiness problem for an LTA that is obtained from AC,T and AD,T using an
appropriate product construction (see the construction above Corollary 12 in [3]). Since the
emptiness problem for LTAs can be decided in linear time, this yields the following fine-grained
complexity result for subsumption.

Theorem 12. There are polynomials h1, h2 such that subsumption between FLreg concept
descriptions C,D in DNF w.r.t. an FL0 TBox T can be decided in time at most 2h1(τ)·h2(mk)
where m is the maximal size of the DFAs used to represent regular languages in C,D, k is the
number of concept names occurring in C,D or T , and τ is the size of T .

If we start with arbitrary FLreg concept descriptions C,D, then we can construct equivalent
normal forms in polynomial time without changing the set of concept names occurring in
these concept descriptions. Transforming the regular expressions or NFAs representing the
regular languages in these normal forms into equivalent deterministic automata may produce
DFAs whose size is exponential in the size of C,D. Thus, the maximal size m of the DFAs
occurring in the DNFs of C,D is bounded by 2s where s is the combined size of C,D. Thus,
h2(mk) = h2((2s)k) = h2(2s·k) is still single-exponential in the size of C,D.

Corollary 13. Let C,D be FLreg concept descriptions, and T an FL0 TBox. Then subsump-
tion between C and D w.r.t. T can be decided in time exponential in the combined size of C,D,
and T .

4 The complexity of matching in FL0 w.r.t. TBoxes

Since subsumption in FL0 w.r.t. a TBox is ExpTime-complete [2], matching w.r.t. a TBox is
ExpTime-hard. In fact, we have E vT F iff the matching problem C ≡? D has a matcher w.r.t.
T , where C = E u F and D = E is a variable-free pattern. This hardness result is, of course,
independent of whether we are looking for a matcher in FLreg or in FL0. In this section, we
will show the corresponding upper bounds, first for the existence of an FLreg matcher, and
then for FL0 matchers.

Deciding the existence of an FLreg-matcher

By applying the normalization rules described above to the FL0 concept pattern D, a given
FL0 matching problem C ≡?

T D can be equivalently stated as an equation of the form:

C ≡?
T E u ∀L1.X1 u . . . u ∀Lm.Xm (2)

where E is an FL0 concept description, L1, . . . , Lm are finite languages over NR (given by
the enumeration of their elements), and X1, . . . , Xm are the concept variables occurring in
D. Generalizing the approach for matching in FL0 without a TBox [8], we now show that an
equation of the form (2) has an FLreg matcher iff a certain candidate substitution is a matcher.
For this, we need to introduce the following notation: given a language L and a word u, we
define the left-quotient of L w.r.t. u as u−1L := {v | uv ∈ L}.

Let σ be an FLreg matcher of (2) such that σ(Xi) is in normal form, and assume that
∀Li,j .Aj is the conjunct for the concept name Aj in σ(Xi). Then, after applying the substitution
σ to the right-hand side of the equation (2), the value restriction ∀Li·Li,j .Aj is a conjunct on
the right-hand side, and thus subsumes C. Lemma 1 thus implies that Li·Li,j ⊆ LT (C,Aj).

83

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Now, assume that v ∈ Li,j . Then we know that uv ∈ LT (C,Aj) must hold for every u ∈ Li, i.e.,
v ∈ u−1LT (C,Aj) for all u ∈ Li. This shows that Li,j ⊆

⋂
u∈Li

u−1LT (C,Aj). At first sight,
this does not help us in our search for matchers since the languages LT (C,Aj) are infinite, and
there are thus possibly infinitely many choices for such subsets to consider. However, we can
show that we can restrict our attention to the maximal such sets. To be more precise, we define
for i = 1, . . . ,m and j = 1, . . . , k the languages

L̂i,j :=
⋂
u∈Li

u−1LT (C,Aj).

Since the class of regular languages is closed under building left-quotients and finite intersec-
tions, and the languages LT (C,Aj) are regular [14, Theorem 5.21], the languages L̂i,j are also
regular. Thus, we can use them within FLreg concept descriptions. Consequently, if we define
the candidate substitution σ̂ as

σ̂(Xi) := ∀L̂i,1.A1 u . . . u ∀L̂i,k.Ak for i = 1, . . . ,m,

then σ̂ is a well-defined FLreg substitution.

Lemma 14. The equation (2) has an FLreg matcher iff the candidate substitution σ̂ is a
matcher of (2).

Proof. Since σ̂ is an FLreg substitution, the if-direction of the proof is trivial. To show the other
direction, assume that equation (2) has an FLreg matcher σ, i.e., σ is an FLreg substitution
such that C ≡T E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm). This implies that C vT E. Moreover, the

construction of σ̂ implies that C vT ∀Li.σ̂(Xi) for all i, 1 ≤ i ≤ m since Li·L̂i,j ⊆ LT (C,Aj)
holds for all j, 1 ≤ j ≤ k. Consequently, we have C vT E u ∀L1.σ̂(X1) u . . . u ∀Lm.σ̂(Xm).

To see the opposite direction, assume that σ(Xi) = ∀Li,1.A1u. . .u∀Li,k.Ak for i = 1, . . . ,m.

As argued above, the fact that σ is an FLreg matcher of (2) implies that Li,j ⊆ L̂i,j holds for
all i, 1 ≤ i ≤ m and j, 1 ≤ j ≤ k. Consequently, we have σ̂(Xi) v σ(Xi) for all i, 1 ≤ i ≤ m,
which yields E u ∀L1.σ̂(X1) u . . . u ∀Lm.σ̂(Xm) vT E u ∀L1.σ(X1) u . . . u ∀Lk.σ(Xm) ≡T C.
Thus, we can conclude that σ̂ is a matcher of (2).

This lemma reduces deciding whether (2) has an FLreg matcher to deciding whether σ̂ is a
matcher of (2). The latter can be checked as follows.

Lemma 15. The candidate substitution σ̂ is a matcher of (2) iff

1. C vT E, and 2. E u ∀L1.σ̂(X1) u . . . u ∀Lm.σ̂(Xm) vT C.

The first condition requires testing subsumption of FL0 concept descriptions w.r.t. an FL0

TBox, which can be performed in exponential time. The second condition requires testing
subsumption of FLreg concept descriptions w.r.t. an FL0 TBox. However, we cannot directly
apply Corollary 13 since the size of these concept descriptions need not be polynomial in the
combined size of C,D, and T . To show that this test can also be performed in exponential
time, we must use the more fine-grained complexity result for subsumption of FLreg concept
descriptions in DNF w.r.t. an FL0 TBox of Theorem 12. To obtain the desired ExpTime
upper bound, we thus need to show that there are DFAs recognizing the regular languages in
the normal form of E u ∀L1.σ̂(X1) u . . . u ∀Lm.σ̂(Xm) that are of size at most exponential in
the combined size of C,D, and T . Assume the normal form of E is ∀K1.A1 u . . . u ∀Kk.Ak,
for finite languages K1, . . . ,Kk. Then the normal form of E u ∀L1.σ̂(X1)u . . .u ∀Lm.σ̂(Xm) is
∀M1.A1 u . . . u ∀Mk.Ak, where

Mj = Kj ∪ L1·L̂1,j ∪ . . . ∪ Lm·L̂m,j for j = 1, . . . , k.

84

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Lemma 16. For all j, 1 ≤ j ≤ k, there is a DFA recognizing Mj whose size is at most
exponential in the combined size of C,D, and T .

Proof. We start the proof by constructing DFAs of appropriate size for the languages L̂i,j =⋂
u∈Li

u−1LT (C,Aj). As shown in [14], the languages LT (C,Aj) are recognized by DFAs Aj
whose sizes are at most exponential in the combined size of C and T . For every j, 1 ≤ j ≤ k
and u ∈ Li, a DFA Aj,u for u−1LT (C,Aj) is obtained from Aj by taking as new initial state
the state reached with u from the initial state of Aj . The intersection

⋂
u∈Li

u−1LT (C,Aj) can
then be realized by building the product automaton Pi,j of the automata Aj,u for all u ∈ Li.
The size of Pi,j is exponential in |Li| times the combined size of C and T , and thus exponential
in the combined size of C,D, and T .

Second, let us consider the concatenation Li·L̂i,j . For every u ∈ Li we can construct a DFA

Pui,j for {u}·L̂i,j by adding |u| many states “before” the initial state of Pi,j . A DFA P̂i,j for

the union
⋃
u∈Li
{u}·L̂i,j = Li·L̂i,j can then again be obtained by a product construction. The

exponent |Li| in the size of P̂i,j caused by this product construction becomes a factor in the
overall exponent and it is bounded by the size of the pattern D. Consequently, the sizes of the
DFAs P̂i,j recognizing Li·L̂i,j are again exponential in the combined size of C,D, and T .

Finally, the union Kj ∪ L1·L̂1,j ∪ . . . ∪ Lm·L̂m,j can again be realized by a product con-
struction, where the exponent m+ 1 caused by this construction again becomes a factor in the
overall exponent and is bounded by the size of the pattern D.

Together with Theorem 12, this lemma yields the desired ExpTime upper bound.

Theorem 17. The problem of deciding whether an FL0 matching problem w.r.t. an FL0 TBox
has an FLreg matcher or not is ExpTime-complete.

We illustrate our ExpTime decision procedure using the matching problem of Example 3.

Example 18. Consider the matching problem C ≡T D, where

C := ∀{r, s}.A u ∀{s}.B, D := ∀{rr}.A u ∀{r, s}.X1 u ∀{s}.X2, T := {A v ∀r.A, ∀s.B v A}.

We have seen in Example 3 that LT (C,A) = {s} ∪ {r}∗ and LT (C,B) = {s}. Since
r−1LT (C,A)∩s−1LT (C,A) = {r}∗∩{ε} = {ε} and r−1LT (C,B)∩s−1LT (C,B) = ∅∩{ε} = ∅,
the value of the candidate substitution for X1 is σ̂(X1) := A. Regarding X2, we have
s−1LT (C,A) = {ε} and s−1LT (C,B) = {ε}, which yields σ̂(X2) := A u B. It is easy to see
that σ̂ is in fact a matcher. Here the candidate substitution is actually an FL0 substitution,
and thus also shows that there is an FL0 matcher.

In general, this need not be the case. For example, consider the matching problem C ′ ≡T ′

D′, where C ′ := A, D′ := A u ∀r.X, and T ′ := {A v ∀r.A}. We have LT (C ′, A) = {r}∗
and r−1LT (C ′, A) = {r}∗. Thus, the candidate substitution is defined as σ̂′(X) := ∀{r}∗.A.
This substitution is an FLreg matcher, but it is not an FL0 substitution. Nevertheless, the
matching problem has FL0 matchers. For example, for all n ≥ 0, the subsitution σn with
σn(X) := ∀rn.A is an FL0 matcher.

Deciding the existence of an FL0-matcher

We will show that a matching problem of the form (2) has an FL0 matcher iff it has an FLreg
matcher. We have shown that any matcher σ of (2) with normal form

σ(Xi) := ∀Li,1.A1 u . . . u ∀Li,k.Ak for i = 1, . . . ,m, (3)

85

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

satisfies Li,j ⊆ L̂i,j for i = 1, . . . ,m and j = 1, . . . , k. Obviously, this substitution is an FL0

substitution iff the languages Li,j are finite.
Analogously to Lemma 15 we can thus show the following lemma characterizing the existence

of FL0 matchers.

Lemma 19. Equation (2) has an FL0 matcher iff

1. C vT E, and

2. there are finite languages Li,j ⊆ L̂i,j such that E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) vT C,
where σ is defined as in (3).

The second condition is satisfied if the candidate substitution σ̂ satisfies the corresponding
condition. Before we can prove this implication, we need to introduce some more notation.
A possibly negated FL0 concept assertion is of the form C(a) or ¬C(a) where C is an FL0

concept description and a is an individual name from a set NI of such names. We extend the
semantics of FL0 such that interpretations I assign elements aI ∈ ∆I to individual names
a ∈ NI. Given a (finite or infinite) set M of such assertions, we say that M is consistent w.r.t.
the FL0 TBox T if there is a model I of T such that aI ∈ CI holds for all positive concept
assertions C(a) in M and aI 6∈ CI holds for all negative concept assertions ¬C(a) in M .

Lemma 20. If E u ∀L1.σ̂(X1) u . . . u ∀Lm.σ̂(Xm) vT C, then Condition 2 in Lemma 19 is
satisfied.

Proof. It is easy to see that E u ∀L1.σ̂(X1) u . . . u ∀Lm.σ̂(Xm) vT C holds in FLreg iff the
following (possibly infinite) set of assertions is inconsistent w.r.t. the FL0 TBox T :

{E(a),¬C(a)} ∪
m⋃
i=1

k⋃
j=1

{(∀uv.Aj)(a) | u ∈ Li ∧ v ∈ L̂i,j}.

Since FL0 TBoxes and possibly negated FL0 concept assertions can clearly be translated into
sentences of first-order logic (FOL), compactness of FOL implies that there is a finite set

Γ ⊆
⋃m
i=1

⋃k
j=1{(∀uv.Aj)(a) | u ∈ Li ∧ v ∈ L̂i,j} such that {E(a),¬C(a)} ∪ Γ is inconsistent

w.r.t. T . We use Γ to define finite subsets Li,j of L̂i,j :

Li,j := {v ∈ L̂i,j | there is u ∈ Li such that (∀uv.Aj)(a) ∈ Γ}.

Then Γ is a subset of the set Γ′ :=
⋃m
i=1

⋃k
j=1{∀uv.A(a) | u ∈ Li, v ∈ Li,j}, which implies that

{E(a),¬C(a)} ∪ Γ′ is also inconsistent w.r.t. T . This in turn implies E u ∀L1.σ(X1) u . . . u
∀Lm.σ(Xm) vT C, where σ is defined as in (3).

We are now ready to show the following equivalence.

Theorem 21. An FL0 matching problem has an FLreg matcher iff it has an FL0 matcher.

Proof. Clearly, an FL0 matcher is also an FLreg matcher. Conversely, assume that the match-
ing problem is of the form (2) and that it has an FLreg matcher. Then the two conditions
in Lemma 15 are satisfied. The first condition coincides with the first condition in Lemma 19
and, according to Lemma 20, the second condition implies the second condition in Lemma 19.
Thus, Lemma 19 yields the existence of an FL0 matcher.

As an immediate consequence of Theorem 17, we thus obtain the following complexity result.

Corollary 22. The problem of deciding whether an FL0 matching problem w.r.t. an FL0 TBox
has an FL0 matcher or not is ExpTime-complete.

86

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

5 Subsumption and matching w.r.t. forward TBoxes

Let T be an FL0 TBox. We assume in the following that the GCIs in T are of the form

∀v1.A1 u · · · u ∀vs.As v ∀v.A, (4)

where v1, . . . , vs, v ∈ NR
∗ and A1, . . . , As, A ∈ NC. This is without loss of generality since (i) any

FL0 concept description is equivalent to a conjunction of value restrictions of the form ∀w.B,
and (ii) C v D u E iff C v D and C v E.

Definition 23. Let T be an FL0 TBox. Then T is called a forward TBox if all its GCIs are
of the form (4) where |vi| ≤ |v| for all i, 1 ≤ i ≤ s.

For example, the GCI A v ∀r.A can be an element of a forward TBox, but the GCI ∀r.B v A
cannot. We show in the following that restricting to forward TBoxes lowers the complexity of
subsumption and matching from ExpTime to PSpace. Actually, the main contribution of this
section is developing the PSpace subsumption algorithm. The PSpace matching algorithm
can then be obtained from it by a simple modification.

Subsumption in FL0 w.r.t. forward TBoxes

We assume in the following that all FL0 concept descriptions are conjunctions of value restric-
tions of the form ∀w.B for w ∈ NR

∗ and B ∈ NC. Given such a concept description D, we
denote with D̂ the set of these value restrictions. For example, if D = ∀rr.A u ∀s.A u ∀s.B,
then D̂ = {∀rr.A,∀s.A,∀s.B}.

For the same reason that GCIs can be restricted without loss of generality to being of the
form (4), we can also restrict the attention to subsumption problems of the form C vT ∀w.A.

The main idea underlying the PSpace subsumption algorithm presented below is the follow-
ing: if C vT ∀w0.A0 then either ∀w0.A0 ∈ Ĉ, or there is some GCI ∀v1.A1u· · ·u∀vs.As v ∀v.A0

with w0 = pv for some p ∈ NR
∗ and C vT ∀pvi.Ai for i = 1, . . . , s. This idea is formalized

using the notion of a derivation tree.

Definition 24. Let T be an FL0 TBox, C an FL0 concept description, and ∀w0.A0 a value
restriction. A derivation tree for ∀w0.A0 w.r.t. T is a finite tree T satisfying the following
properties:

1. The nodes of T are labeled with value restrictions, where the root is labeled with ∀w0.A0.

2. If ∀w.A labels a node k of T and ∀w1.A1, . . . ,∀ws.As are the labels of its children
k1, . . . , ks, then there is a GCI g in T of the form g : ∀v1.A1 u . . . u ∀vs.As v ∀v.A
and a word p ∈ NR

∗ such that w = pv and wi = pvi for all i = 1, . . . , s. Each child node ki
with label ∀wi.Ai is assigned the following two additional labels: the GCI-used g(ki) = g
and the prefix d(ki) = p. For the root k0 we set g(k0) = ⊥ (standing for “no GCI”) and
d(k0) = w0.

We denote as TT (∀w0.A0) the set of all derivation trees for ∀w0.A0 w.r.t. T . The set of value
restrictions labeling the leaves of such a tree T is denoted as L(T). We say that T is a derivation

tree for C v ∀w0.A0 w.r.t. T if L(T) ⊆ Ĉ, and denote the set of such trees with TT ,C(∀w0.A0).
Finally, VT ,C consists of the value restrictions ∀w0.A0 such that TT ,C(∀w0.A0) 6= ∅.

Derivation trees can be used to obtain the following characterization of subsumption in FL0

w.r.t. TBoxes.

87

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Lemma 25. Let T be an FL0 TBox, C an FL0 concept description, and ∀w0.A0 a value
restriction. Then, C vT ∀w0.A0 iff there exists a derivation tree for C v ∀w0.A0 w.r.t. T .

Proof. The if-direction can be shown by a simple induction over the size of the derivation tree.
To prove the only-if direction, we use the set VT ,C to construct a functional interpretation

as follows: let JT ,C be the functional interpretation such that

AJT ,C := {w | ∀w.A ∈ VT ,C} for all A ∈ NC.

We show that JT ,C is a model of T . Let E v F ∈ T and w ∈ ∆JT ,C be such that w ∈ EIT ,C .
We can assume that E v F is of the form (4). Since w ∈ EJT ,C , this means that wvi ∈
(Ai)

JT ,C for all i, 1 ≤ i ≤ s. Hence, by the definition of JT ,C , we have that ∀wvi.Ai ∈ VT ,C
for all i, 1 ≤ i ≤ s. By definition of VT ,C we thus know that there exist derivation trees
T1 ∈ TT ,C(∀wv1.A1), . . . , Ts ∈ TT ,C(∀wvs.As). From this, it is clear that one can build a
derivation tree T ∈ TT ,C(∀wv.A). This implies that wv ∈ AIT ,C and thus w ∈ (∀v.A)JT ,C .
This shows that JT ,C is a model of T .

Finally, notice that ∀w.A ∈ VT ,C for all ∀w.A ∈ Ĉ. Hence, by the definition of JT ,C ,
we have that ε ∈ CJT ,C . Since C vT ∀w0.A0, this implies that ε ∈ (∀w0.A0)JT ,C , and thus

w0 ∈ A
JT ,C

0 . This yields ∀w0.A0 ∈ VT ,C , which shows TT ,C(∀w0.A0) 6= ∅ as required.

Using this lemma, we can try to decide whether C vT ∀w0.A0 as follows. Start with the
tree that has just one node k0 labeled with ∀w0.A0. If this label belongs to Ĉ, then stop with
success. Otherwise, try to find a GCI that allows to expand the node k0 by adding children
with appropriate labels (see 2. in Definition 24). If the subsumption C vT ∀w0.A0 holds, then
there must be such a GCI. Thus, if there is none, we can stop with failure. Now assume that
we have already generated a derivation tree T for ∀w0.A0. If L(T) ⊆ Ĉ, then we can stop with

success. Otherwise, we pick a leaf whose label does not belong to Ĉ and try to expand it using
an appropriate GCI. If no such GCI exists, we stop with failure. Otherwise, we continue the
expansion process until a failure case occurs or the labels of all leaves belong to Ĉ.

This approach, as described until now, does not yield a PSpace algorithm for subsumption
for two reasons. First, the generated derivation trees may grow to having exponential size.
Second, expansion need not terminate unless we install an appropriate cycle check, but then
keeping the information necessary to detect cycles may require exponential space.

The main idea to solve the first problem is that we actually need not store the whole
derivation tree T . It is sufficient to know the value restrictions in L(T) \ Ĉ (together with the

prefix label of the corresponding leaf). In fact, the value restrictions in L(T) \ Ĉ are the ones
that require further expansion. In order to ensure that this information can be represented
using only polynomial space, we restrict the choice of which leaf is expanded next.

Definition 26. Let T, T ′ be derivation trees for ∀w0.A0 w.r.t. T . We write T → T ′ if T ′ is
obtained from T by expanding a leaf whose label belongs to L(T)\ Ĉ, where among the eligible
such leaves we choose one whose prefix label has maximal length.

The following proposition is an easy consequence of Lemma 25 and the fact that the order
of leaf expansion is irrelevant.

Proposition 27. Let T be an FL0 TBox, C an FL0 concept description, and ∀w0.A0 a
value restriction. Then, C vT ∀w0.A0 iff there exists a sequence T0 → T1 → . . . → Tn of
derivation trees for ∀w0.A0 w.r.t. T such that T0 has just one node k0 labeled with ∀w0.A0 and
Tn ∈ TT ,C(∀w0.A0).

88

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

When checking for the existence of such a sequence T0 → T1 → . . .→ Tn, it is sufficient to
keep only L(Ti) \ Ĉ as well as the prefix labels of the leaves that yield these value restrictions
in memory.1 Thus, our algorithm works with sets consisting of elements of the form (∀w.A, p)
where ∀w.A is the value restriction label and p is the prefix label of a leaf. We now show
that the cardinality of these sets is polynomial in the size of T , C, and ∀w0.A0, and that their
elements come from an at most exponentially large base set. In fact, this then implies that
there are only exponentially many such sets.

Given a derivation tree T , we denote the set of prefixes of nodes whose value restrictions
belong to L(T) \ Ĉ with P(T). In addition, we denote the prefix order on words with �.

Lemma 28. Let T be a forward TBox, and T0 → T1 → . . . → Tn be a sequence of derivation
trees for ∀w0.A0 w.r.t. T where T0 is as described in Proposition 27. Then, for each i, 0 ≤ i ≤ n,

1. the elements of P(Ti) are linearly ordered by the prefix order �;

2. the set L(Ti)\ Ĉ contains at most |w0| · t distinct value restrictions, where t is the number
of distinct value restrictions occurring in the left-hand sides of the GCIs in T .

Proof. 1. Since T0 has only one leaf, it trivially satisfies the property required by the lemma.
Now assume that (P(Ti),�) is a totally ordered set. Let ` be the leaf of Ti that is expanded
when going from Ti to Ti+1, ∀w.A its value restriction label and p its prefix label, k1, . . . , ks
the children of ` in Ti+1, and p′ the prefix label of these children. It is easy to see that
P(Ti+1) ⊆ P(Ti) ∪ {p′}. In addition, by the definition of node expansion, both p and p′ are
prefixes of w, and thus p � p′ or p′ ≺ p. Since p is of maximal length in P(Ti) and P(Ti) is
linearly ordered w.r.t. �, all the elements of P(Ti) are prefixes of p. Thus, independently of
whether p � p′ or p′ ≺ p, the set P(Ti) ∪ {p′} is also linearly ordered w.r.t. �.

2. The restriction to forward TBoxes implies that each value restriction ∀w.A occurring in
a derivation tree of ∀w0.A0 satisfies |w| ≤ |w0|. Since each prefix is a prefix of such a word w,
this length restriction also holds for the prefixes. A linearly ordered set of prefixes of length at
most |w0| can clearly have at most |w0| elements. Finally, if ∀w.A is the value restriction label
of a leaf ` with prefix label u, then w = uvi where ∀vi.Ai occurs on the left-hand sides of some
GCI in T .

The second part of this lemma shows that representing such a value restriction set L(Ti)\ Ĉ
requires only polynomial space. In addition, there can be only exponentially many different
such sets. In fact, we have seen that the value restrictions ∀w.A occurring in these sets satisfy
|w| ≤ |w0|. In addition, these words w contain only role names occurring in the input. Thus,
there are only exponentially many value restrictions that can potentially occur in these sets,
and consequently there are only exponentially many possibilities for choosing a polynomial
number of them. Our NPSpace algorithm thus non-deterministically generates a sequence
S0, S1, S2, . . . of such sets reflecting a sequence T0 → T1 → T2 → . . . of derivation trees, and
keeps only the most recent such set in memory. To solve the termination issue, we do not
test for cycles (since this would require keeping all the generated sets in memory), but in each
step increment an appropriate exponential counter (which needs only polynomial space), which
stops the algorithm with failure when it overflows. In fact, such an overflow indicates that there
must be a repetition in the sequence (i.e., i < j such that Si = Sj), and thus a shorter sequence
would yield the same result.

1Strictly speaking, different leaves could be labeled with the same value restriction ∀w.A, but clearly we
need to expand only one of them into a derivation tree for C v ∀w.A.

89

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Below we formally present this NPSpace algorithm for deciding subsumption w.r.t. forward
FL0 TBoxes, and prove its correctness. Recall that t denotes the number of distinct value
restrictions occurring in the left-hand sides of the GCIs in T .

Algorithm 1: Subsumption in FL0 with respect to forward TBoxes

Input: Forward FL0 TBox T , FL0 concept description C, and value restriction ∀w0.A0.
Output: “yes” if C vT ∀w0.A0, and “fail” otherwise.

1 if ∀w0.A0 ∈ Ĉ then
2 return yes
3 end
4 S := {(∀w0.A0, w0)};
5 c := 0 (c is stored in binary);

6 k := ((|NR|+ 1) · t)|w0|2·t (k is stored in binary);
7 while S 6= ∅ and c ≤ k do
8 non-deterministically choose (∀w.A, p) ∈ S with longest p;
9 non-deterministically choose a GCI g : ∀v1.A1 u · · · u ∀vs.As v ∀v.A

such that w = p′v for some p′ ∈ NR
∗;

10 (fail if there is no such GCI);

11 S := (S \ {(∀w.A, p)}) ∪ {(∀p′vi.Ai, p
′) | i = 1, . . . , s and ∀p′vi.Ai /∈ Ĉ};

12 c := c + 1;

13 end
14 return yes if S = ∅ and fail otherwise

Termination of the procedure is guaranteed due to the use of the counter c. By Lemma 28,
the algorithm only needs polynomial space to store the set S. This shows that Algorithm 1 is a
terminating non-deterministic PSpace procedure. We now proceed to show that this procedure
is sound and complete.

Lemma 29 (Soundness). If Algorithm 1 answers yes, then C vT ∀w0.A0 holds.

Proof. Assume that the algorithm has a successful run performing n ≥ 0 iterations of the
while loop. Let S0 = {(∀w0.A0, w0)} and S1, . . . , Sn be the sets corresponding to S after the
ith-iteration of the while loop. The following claim can easily be proved by induction on n− i:

For all 0 ≤ i ≤ n and all (∀w.A, p) ∈ Si we have C vT ∀w.A.

Since the algorithm answers yes, we have Sn = ∅, and thus the base case is trivially true. The
induction step is an easy consequence of the way the sets Si are iteratively constructed. Thus,
since S0 = {(∀w0.A0, w0)}, we obtain that C vT ∀w0.A0.

In principle, our proof of completeness considers a sequence T0 → T1 → . . . → Tn of
derivation trees for ∀w0.A0 w.r.t. T such that T0 has just one node labeled with ∀w0.A0 and
Tn ∈ TT ,C(∀w0.A0). It then transforms this sequence into a sequence of sets S0, S1, . . . , Sn by

considering the value restrictions not in Ĉ labelling the leaves of the trees Ti (together with
the prefix label of the respective leaf). Unfortunately, this sequence of sets need not always be
a sequence of sets that can be produced by our algorithm. In fact, it may be the case that Ti
contains several leaves with label ∀w.A and maximal prefix u. If one of these leaves is expanded
in the transition Ti → Ti+1, then the others remain in Ti+1, and thus their label ∀w.A and
prefix u remains in Si+1. However, one can assume without loss of generality that all such
leaves are expanded simultaneously in the same way. Let us denote the transition relation on
derivation trees obtained this way by →s. It is easy to see that Proposition 27 and Lemma 28
also hold with →s in place of →.

90

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Lemma 30 (Completeness). If C vT ∀w0.A0, then Algorithm 1 answers yes.

Proof. Assume that C vT ∀w0.A0. If ∀w0.A0 ∈ Ĉ, then Algorithm 1 immediately answers
yes. Otherwise, by (the →s-variant of) Proposition 27, there exists a sequence T0 →s T1 →s

. . . →s Tn of derivation trees for ∀w0.A0 w.r.t. T such that T0 has just one node labeled with
∀w0.A0 and Tn ∈ TT ,C(∀w0.A0). We will now show how T0 →s T1 →s . . . →s Tn can be used
to produce a successful run of the algorithm. Let us start by constructing a sequence of sets
S0, S1, . . . , Sn as follows:

• S0 = {(∀w0.A0, w0)}.

• For all 0 ≤ i < n, the set Si+1 is constructed from Si as follows. Since Ti →s Ti+1, the
derivation tree Ti+1 is obtained from Ti by expanding one leaf `i of Ti with label ∀wi.Ai
(or several such leaves) such that:

– ∀wi.Ai ∈ L(Ti) \ Ĉ and d(`i) = pi is of maximal length,

– there exists a GCI gi of the form ∀v1.A1 u . . . u ∀vs.As v ∀v.Ai such that p′v = wi

for some p′ ∈ NR
∗ and ∀p′vj .Aj ∈ L(Ti+1) for all j, 1 ≤ j ≤ s.

Then Si+1 := (Si \ {(∀wi.Ai, pi)}) ∪ {(∀p′vi.Ai, p′) | i = 1, . . . , s and ∀p′vi.Ai /∈ Ĉ}.

Using induction on i, we can show the following for all i, 0 ≤ i ≤ n:

(∀w.A, p) ∈ Si only if there is a leaf ` in Ti with label ∀w.A ∈ L(Ti) \ Ĉ and d(`) = p.

Consequently, L(Tn) ⊆ Ĉ implies Sn = ∅. Furthermore, notice that starting with S = Si,
an iteration of the while loop resulting in S = Si+1 can be achieved by choosing (∀wi.Ai, pi)
from S and gi from T . Hence, if n ≤ k, the sequence S0, . . . , Sn yields a successful run of the
algorithm on input T , C and ∀w0.A0.

In case n > k, the counter c would overflow leading to a failing run of the algorithm. How-
ever, S0, . . . , Sn can be transformed into a sufficiently short sequence S0, Sj1 , . . . , Sjm inducing a
successful run. This is an easy consequence of the following argument. Assuming there are two
indices 0 ≤ i1 < i2 ≤ n such that Si1 = Si2 , we can transform S0, . . . , Sn into a shorter sequence
S0, . . . , Si1 , Si2+1, . . . , Sn satisfying the same properties described above for S0, . . . , Sn. Itera-
tively applying this argument will result in a sequence S0, Sj1 , . . . , Sjm , where 1 ≤ ji ≤ n for all
1 ≤ i ≤ m and Sji1 6= Sji2 for all 0 ≤ i1 < i2 ≤ m. As seen in Lemma 28, each set Si contains at

most |w0|·t elements. In addition, there are at most (|NR|+1)|w0| ·t many different elements a set

Si can contain.2 This means that there are at most ((|NR|+1)|w0| · t)|w0|·t ≤ ((|NR|+1) · t)|w0|2·t

different such sets. Hence, m ≤ k and thus S0, Sj1 , . . . , Sjm corresponds to a successful run of
Algorithm 1 on input T , C and ∀w0.A0.

Using the fact that PSpace = NPSpace, we thus have shown the desired PSpace upper
bound for subsumption.

Basically the same algorithm can also be used to handle backward TBoxes, which consist of
GCIs of the form (4) where |vi| ≥ |v| for all i, 1 ≤ i ≤ s. While for such TBoxes expansion of
leaves may increase the length of value restrictions, one can stop with failure whenever a value
restriction is generated that is longer than the longest value restriction in Ĉ.

Theorem 31. Subsumption in FL0 w.r.t. forward (backward) TBoxes is in PSpace.

2Note that (|NR| + 1)|w0| is an over-approximation of the number of words of length at most |w0| over the
alphabet NR.

91

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Matching in FL0 w.r.t. forward TBoxes

We now adapt the NPSpace subsumption algorithm for forward TBoxes introduced above to
the problem of deciding whether a matching problem has an FL0 matcher. Consider a matching
problem of the form (2). According to Lemma 19, we need to check the two conditions stated in
this lemma. The first condition is a subsumption test w.r.t. the forward TBox T , and can thus
be performed in PSpace. Regarding the second test, we add elements to the finite language
Li,j on the fly while performing the subsumption test E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm) vT C.

Basically, we run the NPSpace subsumption algorithm on E v ∀w0.A0 for every value
restriction ∀w0.A0 in Ĉ. But we now have two conditions under which a leaf with label ∀w.Aj
need not be expanded: either ∀w.Aj ∈ Ê, or there exists i, 1 ≤ i ≤ m, w1 ∈ Li, and w2 ∈ L̂i,j =⋂
u∈Li

u−1LT (C,Aj) with w = w1w2. Checking the second condition requires only polynomial
space. In fact, there are only polynomially many pairs w1, w2 to be considered. For each of
them, we need to check for all u ∈ Li whether uw2 ∈ LT (C,Aj). Each of these tests is a
subsumption test C vT ∀uw2.Aj , which needs only polynomial space. Note that for backward
TBoxes T , the languages LT (C,Aj) are actually finite and contain only words not longer than

the longest value restriction in Ĉ.
Algorithm 2 below formally describes the decision procedure sketched above to solve the

matching problem w.r.t. forward TBoxes.

Algorithm 2: Matching in FL0 with respect to forward TBoxes

Input: A forward FL0 TBox T and a matching problem of the form (2).
Output: “yes” if C ≡?

T E u ∀L1.X1 u . . . u ∀Lm.Xm has an FL0 matcher, and “fail” otherwise.
1 if C 6vT E then
2 fail
3 end

4 foreach ∀w0.A0 ∈ Ĉ \ Ê do
5 S := {(∀w0.A0, w0)};
6 c := 0 (c is stored in binary);

7 k := ((|NR|+ 1) · t)|w0|2·t (k is stored in binary);
8 while S 6= ∅ and c ≤ k do
9 non-deterministically choose (∀w.Aj , p) ∈ S with longest p;

10 if there exists i, 1 ≤ i ≤ m, w1 ∈ Li, w2 ∈ L̂i,j =
⋂

u∈Li
u−1LT (C,Aj) with w = w1w2 then

11 S := S \ {(∀w.Aj , p)}
12 else
13 non-deterministically choose a GCI g : ∀v1.A1 u · · · u ∀vs.As v ∀v.A

such that w = p′v for some p′ ∈ NR
∗;

14 (fail if there is no such GCI);

15 S := (S \ {(∀w.A, p)}) ∪ {(∀p′vi.Ai, p
′) | i = 1, . . . , s and ∀p′vi.Ai /∈ Ê};

16 end

17 end
18 fail if S 6= ∅
19 end
20 return yes

Termination of the procedure is guaranteed because of the counter c and the fact that there
are finitely many value restrictions in Ĉ. As argued above, only polynomial space is required to
perform all the checks involved. Hence, Algorithm 2 is a terminating non-deterministic PSpace
procedure.

Lemma 32 (Soundness). If Algorithm 2 answers yes, then C ≡?
T E u∀L1.X1 u . . .u∀Lm.Xm

has an FL0 matcher.

92

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

Proof. For all 1 ≤ i ≤ m and 1 ≤ j ≤ k we define the set Li,j ⊆ NR
∗ as follows:

Li,j := {w2 | the check in line 10 was invoked for w2 and succeeded}.

Clearly, Li,j ⊆ L̂i,j and the sets Li,j are finite since line 10 is reached only finitely often
during a successful run of the procedure. Using these sets, we define the substitution σ(Xi) =dk
j=1 ∀Li,j .Aj , 1 ≤ i ≤ m. We use Lemma 19 to show that σ is a solution of the matching

problem. Since the algorithm did not fail, we know that C vT E. Hence, it remains to show
that Eu∀L1.σ(X1)u . . .u∀Lm.σ(Xm) vT C, i.e., Eu∀L1.σ(X1)u . . .u∀Lm.σ(Xm) vT ∀w0.A0

for each ∀w0.A0 ∈ Ĉ. If ∀w0.A0 ∈ Ê, then this subsumption holds trivially.
If ∀w0.A0 ∈ Ĉ \ Ê, then let S0, . . . , Sn be the sequence of sets S computed by the corre-

sponding iteration of the while loop. Similarly to the proof of Lemma 29, induction can be
used to show that (∀w.A, p) ∈ Si implies E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) vT ∀w.A. Since
S0 = {(∀w0.A0, w0)}, this implies E u∀L1.σ(X1)u . . .u∀Lm.σ(Xm) vT ∀w0.A0. Thus, we can
conclude that E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) vT C.

Lemma 33 (Completeness). If C ≡?
T E u ∀L1.X1 u . . . u ∀Lm.Xm has an FL0 matcher, then

Algorithm 2 answers yes.

Proof. By Lemma 19, we know that C vT E and that there are finite languages Li,j ⊆ L̂i,j
such that E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) vT C, where σ is defined as in (3). The first
condition guarantees that the test in line 1 does not fail. From the second one, we know that
E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) vT ∀w0.A0 for all ∀w0.A0 ∈ Ĉ. By applying distributivity
of value restrictions over conjunction, E u ∀L1.σ(X1) u . . . u ∀Lm.σ(Xm) can be transformed
into an equivalent concept description D that is a conjunction of value restrictions. Observe
that ∀w.Aj ∈ D̂ iff either ∀w.Aj ∈ Ê, or there exist 1 ≤ i ≤ m and w1, w2 ∈ NR

∗ such

that w = w1w2, w1 ∈ Li and w2 ∈ Li,j ⊆ L̂i,j . By Lemma 30, D vT ∀w0.A0 implies that
there is a successful run of Algorithm 1 for the corresponding subsumption query. Due to
the above observation, this is also a successful run of Algorithm 2 for the matching problem
C ≡?

T E u ∀L1.X1 u . . . u ∀Lm.Xm.

Again, backward TBoxes can be treated similarly.

Theorem 34. Matching in FL0 w.r.t. forward (backward) TBoxes is in PSpace.

6 Conclusion

We have shown in this paper that matching in FL0 w.r.t. TBoxes is in ExpTime, thus com-
plementing the positive results for matching w.r.t. TBoxes in EL [7]. This is the best possible
complexity for matching in this setting since already the subsumption problem is ExpTime-
hard. We have also shown that the complexity of subsumption and matching can be lowered
to PSpace if restricted kinds of TBoxes are considered. Unfortunately, until now we could not
show a matching PSpace lower bound, but we believe that for forward TBoxes these problems
are indeed PSpace-complete.

The big open problem in this area is unification in FL0 w.r.t. TBoxes, for which nothing
is known. We actually conjecture that this problem is undecidable. For EL, decidability of
unification w.r.t. TBoxes is also an open problem, but there are positive results for TBoxes
satisfying certain restrictions on cyclic dependencies [1]. It would be interesting to see whether
this restriction or the restrictions we imposed in Section 5 of the present paper can lead to
positive results for unification in FL0 w.r.t. TBoxes.

93

Matching in FL0 with respect to General TBoxes Baader, Fernández Gil, and Marantidis

References

[1] Franz Baader, Stefan Borgwardt, and Barbara Morawska. Extending unification in EL towards
general TBoxes. In Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2012), pages 568–572. AAAI Press/The MIT Press, 2012.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), pages 364–369, Edinburgh (UK), 2005. Morgan Kaufmann, Los Altos.

[3] Franz Baader, Oliver Fernández Gil, and Maximilian Pensel. Standard and non-standard inferences
in the description logic FL0 using tree automata. In Daniel Lee, Alexander Steen, and Toby Walsh,
editors, GCAI 2018, 4th Global Conference on Artificial Intelligence, volume 55 of EPiC Series in
Computing, pages 1–14. EasyChair, 2018.

[4] Franz Baader and Ralf Küsters. Matching in description logics with existential restrictions. In
Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000),
pages 261–272, 2000.

[5] Franz Baader and Ralf Küsters. Unification in a description logic with transitive closure of roles.
In Proc. of the 8th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR 2001),
volume 2250 of Lecture Notes in Computer Science, pages 217–232. Springer, 2001.

[6] Franz Baader and Barbara Morawska. Unification in the description logic EL. Logical Methods in
Computer Science, 6(3), 2010.

[7] Franz Baader and Barbara Morawska. Matching with respect to general concept inclusions in the
description logic EL. In Carsten Lutz and Michael Thielscher, editors, Proc. of the 37th German
Annual Conf. on Artificial Intelligence (KI’14), volume 8736 of Lecture Notes in Computer Science,
pages 135–146. Springer, 2014.

[8] Franz Baader and Paliath Narendran. Unification of Concept Terms in Description Logics. J.
Symb. Comput., 31(3):277–305, 2001.

[9] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin Resnick.
CLASSIC: A structural data model for objects. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 59–67, 1989.

[10] Alexander Borgida and Ralf Küsters. What’s not in a name? Initial explorations of a structural
approach to integrating large concept knowledge-bases. Technical Report DCS-TR-391, Rutgers
University, 1999.

[11] Alexander Borgida and Deborah L. McGuinness. Asking queries about frames. In Proc. of the 5th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’96), pages 340–349,
1996.

[12] David Harel and Rivi Sherman. Propositional dynamic logic of flowcharts. Information and
Control, 64(1-3):119–135, 1985.

[13] Hector J. Levesque and Ron J. Brachman. Expressiveness and tractability in knowledge represen-
tation and reasoning. Computational Intelligence, 3:78–93, 1987.

[14] Maximilian Pensel. An automata based approach for subsumption w.r.t. general concept inclusions
in the description logic FL0. Master’s thesis, Chair for Automata Theory, TU Dresden, Germany.
See http://lat.inf.tu-dresden.de/research/mas., 2015.

[15] V. R. Pratt. A near-optimal method for reasoning about action. J. of Computer and System
Sciences, 20:231–255, 1980.

[16] Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In Proc. of
the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471. Morgan Kaufmann,
1991.

94

http://lat.inf.tu-dresden.de/research/mas

	Introduction
	Preliminaries
	Subsumption in FLreg w.r.t. an FL0 TBox
	The complexity of matching in FL0 w.r.t. TBoxes
	Subsumption and matching w.r.t. forward TBoxes
	Conclusion

