
EPiC Series in Computing
Volume 57, 2018, Pages 233–253

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

Quasipolynomial Set-Based Symbolic Algorithms
for Parity Games

Krishnendu Chatterjee1, Wolfgang Dvořák2, Monika Henzinger3, and Alexander
Svozil3∗

1 IST Austria, krish.chat@ist.ac.at
2 Institute of Logic and Computation, TU Wien, dvorak@dbai.tuwien.ac.at

3 Faculty of Computer Science, University of Vienna,
{monika.henzinger,alexander.svozil}@univie.ac.at

Abstract

Solving parity games, which are equivalent to modal µ-calculus model checking, is a
central algorithmic problem in formal methods, with applications in reactive synthesis,
program repair, verification of branching-time properties, etc. Besides the standard compu-
tation model with the explicit representation of games, another important theoretical model
of computation is that of set-based symbolic algorithms. Set-based symbolic algorithms use
basic set operations and one-step predecessor operations on the implicit description of games,
rather than the explicit representation. The significance of symbolic algorithms is that they
provide scalable algorithms for large finite-state systems, as well as for infinite-state systems
with finite quotient. Consider parity games on graphs with n vertices and parity conditions
with d priorities. While there is a rich literature of explicit algorithms for parity games,
the main results for set-based symbolic algorithms are as follows: (a) the basic algorithm
that requires O(nd) symbolic operations and O(d) symbolic space; and (b) an improved
algorithm that requires O(nd/3+1) symbolic operations and O(n) symbolic space. In this
work, our contributions are as follows: (1) We present a black-box set-based symbolic
algorithm based on the explicit progress measure algorithm. Two important consequences
of our algorithm are as follows: (a) a set-based symbolic algorithm for parity games that
requires quasi-polynomially many symbolic operations and O(n) symbolic space; and (b) any
future improvement in progress measure based explicit algorithms immediately imply an
efficiency improvement in our set-based symbolic algorithm for parity games. (2) We present
a set-based symbolic algorithm that requires quasi-polynomially many symbolic operations
and O(d · logn) symbolic space. Moreover, for the important special case of d ≤ logn,
our algorithm requires only polynomially many symbolic operations and poly-logarithmic
symbolic space.

∗A. S. is fully supported by the Vienna Science and Technology Fund (WWTF) through project ICT15-003.
K.C. is supported by the Austrian Science Fund (FWF) NFN Grant No S11407-N23 (RiSE/SHiNE) and an ERC
Starting grant (279307: Graph Games). For M.H the research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreement no. 340506.

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 233–253

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

1 Introduction
In this work, we present new contributions related to algorithms for parity games in the set-based
symbolic model of computation.
Parity games. Games on graphs are central in many applications in computer science, especially,
in the formal analysis of reactive systems. The vertices of the graph represent states of the
system, the edges represent transitions of the system, the infinite paths of the graph represent
traces of the system and the players represent the interacting agents. The reactive synthesis
problem (Church’s problem [18]) is equivalent to constructing a winning strategy in a graph
game [9, 46, 45]. Besides reactive synthesis, the game graph problem has been used in many other
applications, such as (1) verification of branching-time properties [28], (2) verification of open
systems [1], (3) simulation and refinement between reactive systems [43, 31, 2]; (4) compatibility
checking [25], (5) program repair [33], (6) synthesis of programs [13]; to name a few. Game graphs
with parity winning conditions are particularly important since all ω-regular winning conditions
(such as safety, reachability, liveness, fairness) as well as all Linear-time Temporal Logic (LTL)
winning conditions can be translated into parity conditions [47, 48]. In a parity game, every
vertex of the game graph is assigned a non-negative integer priority from {0, 1, . . . , d − 1},
and a play is winning if the highest priority visited infinitely often is even. Game graphs
with parity conditions can model all the applications mentioned above, and are also equivalent
to the modal µ-calculus [39] model-checking problem [28]. Thus the parity games problem
is a core algorithmic problem in formal methods, and has received wide attention over the
decades [28, 5, 51, 34, 58, 36, 50, 12, 35].
Models of computation: Explicit and symbolic algorithms. For the algorithmic analysis of parity
games, two models of computation are relevant. First, the standard model of explicit algorithms,
where the algorithms operate on the explicit representation of the game graph. Second, the
model of implicit or symbolic algorithms, where the algorithms do not explicitly access the game
graph but operate with a set of predefined operations. For parity games, the most relevant class
of symbolic algorithms are called set-based symbolic algorithms, where the allowed symbolic
operations are: (a) basic set operations such as union, intersection, complement, and inclusion;
and (b) one step predecessor (Pre) operations (see [22, 26, 32]).
Significance of set-based symbolic algorithms. We describe the two most significant aspects of
set-based symbolic algorithms.

1. Consider large scale finite-state systems, e.g., hardware circuits, or programs with many
Boolean variables or bounded-domain integer variables. While the underlying game graph
is described implicitly (such as program code), the explicit game graph representation
is huge (e.g., exponential in the number of variables). The implicit representation and
symbolic algorithms often do not incur the exponential blow-up, that is inevitable for
algorithms that require the explicit representation of the game graph. Data-structures
such as Binary Decision Diagrams (BDDs) [7] (with well-established tools e.g. CuDD [52])
support symbolic algorithms that are used in verification tools such as NuSMV [19].

2. In several domains of formal analysis of infinite-state systems, such as games of hybrid
automata or timed automata, the underlying state space is infinite, but there is a finite
quotient. Symbolic algorithms provide a practical and scalable approach for the analysis
of such systems: For many applications the winning set is characterized by µ-calculus
formulas with one-step predecessor operations which immediately give the desired set-based
symbolic algorithms [26, 24]. Thus, the set-based symbolic model of computation is an
equally important theoretical model of computation to be studied as the explicit model.

Symbolic resources. In the explicit model of computation, the two important resources are time

234

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

and space. Similarly, in the symbolic model of computation, the two important resources are
the number of symbolic operations and the symbolic space.
• Symbolic operations: Since a symbolic algorithm uses a set of predefined operations, instead

of time complexity, the first efficiency measure for a symbolic algorithm is the number of
symbolic operations required. Note that basic set operations (that only involve variables
of the current state) are less resource intensive compared to the predecessor operations
(that involve both variables of the current and of the next state). Thus, in our analysis, we
will distinguish between the number of basic set operations and the number of predecessor
operations.

• Symbolic space: We refer to the number of sets stored by a set-based symbolic algorithm as
the symbolic space for the following reason: A set in the symbolic model is considered to
be unit space, for example, a set that contains all vertices, or a set that contain all vertices
where the first variable is true, represent each Θ(n) vertices, but can be represented as
BDD of constant size. While the size of a set and its symbolic representation is notoriously
hard to characterize (e.g., for BDDs it can depend on the variable reordering), in the
theoretical model of computation every set is considered of unit symbolic space, and the
symbolic space requirement is thus the maximum number of sets required by a symbolic
algorithm.

The goal is to find algorithms that minimize the symbolic space (ideally poly-logarithmic) and
the symbolic operations.

Previous results. We summarize the main previous results for parity games on graphs with
n vertices, m edges, and d priorities. To be concise in the following discussion, we ignore
denominators in d in the bounds.
• Explicit algorithms. The classical algorithm for parity games requires O(nd−1 ·m) time and

linear space [59, 42], which was then improved by the small progress measure algorithm that
requires O(nd/2 ·m) time and O(d · n) space [34]. Many improvements have been achieved
since then, such as the big-step algorithm [50], the sub-exponential time algorithm [36], an
improved algorithm for dense graphs [17], and the strategy-improvement algorithm [58],
but the most important breakthrough was achieved last year where a quasi-polynomial time
O(ndlog de+6) algorithm was obtained [12]. While the original algorithm of [12] required
quasi-polynomial time and space, a succinct small progress measure based algorithm [35]
and value-iteration based approach [29] achieve the quasi-polynomial time bound with
quasi-linear space. However, all of the above algorithms are inherently explicit algorithms.

• Set-based symbolic algorithms. The basic set-based symbolic algorithm (based on the direct
evaluation of the nested fixed point of the µ-calculus formula) requires O(nd) symbolic
operations and O(d) space [27]. In a breakthrough result [5] presented a set-based symbolic
algorithm that requires O(nd/2+1) symbolic operations and O(nd/2+1) symbolic space (for
a simplified exposition see [51]). In recent work [14], a new set-based symbolic algorithm
was presented that requires O(nd/3+1) symbolic operations and O(n) symbolic space,
where the symbolic space requirement is O(n) even with a constant number of priorities.

Open questions. Despite the wealth of results for parity games, many fundamental algorithmic
questions are still open. Besides the major and long-standing open question of the existence
of a polynomial-time algorithm for parity games, two important open questions in relation to
set-based symbolic algorithms are as follows:
• Question 1. Does there exist a set-based symbolic algorithm that requires only quasi-

polynomially many symbolic operations?
• Question 2. Given the O(d) symbolic space requirement of the basic algorithm, whereas

all other algorithms require at least O(n) space (even for a constant number of priorities)

235

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

Table 1: Set-Based Symbolic Algorithms for Parity Games.

reference symbolic operations symbolic space

[27, 59] O(nd) O(d)

[5, 51] O(nd/2+1) O(nd/2+1)

[14] O(nd/3+1) O(n)

Thm. 2, 3 nO(log d) O(d log n)

an important question is: Does there exist a set-based symbolic algorithm that requires
Õ(d) symbolic space (note that Õ hides poly-logarithmic factors), but beats the number
of symbolic operations of the basic algorithm? This question is especially relevant since in
many applications the number of priorities is small, e.g., in determinization of ω-automata,
the number of priorities is logarithmic in the size of the automata [47].

Our contributions. In this work, we not only answer the above open questions (Question 1 and
Question 2) in the affirmative but also show that both can be achieved by the same algorithm:
• First, we present a black-box set-based symbolic algorithm based on explicit progress

measure algorithm for parity games that use O(n) symbolic space and O(nO(log d)) symbolic
operations. There are two important consequences of our algorithm: (a) First, given the
ordered progress measure algorithm (which is an explicit algorithm), as a consequence
of our black-box algorithm, we obtain a set-based symbolic algorithm for parity games
that requires quasi-polynomially many symbolic operations and O(n) symbolic space.
(b) Second, any future improvement in progress measure based explicit algorithm (such
as polynomial-time progress measure algorithm) would immediately imply the same
improvement for set-based symbolic algorithms. Thus we answer Question 1 in affirmative
and also show that improvements in explicit progress measure algorithms carry over to
symbolic algorithms.

• Second, we present a set-based symbolic algorithm that requires quasi-polynomially many
symbolic operations and O(d · log n) = Õ(d) symbolic space. Thus we not only answer
Question 2 in affirmative, we also match the number of symbolic operations with the
current best-known bounds for explicit algorithms. Moreover, for the important case
of d ≤ log n, our algorithm requires polynomially many symbolic operations and poly-
logarithmic symbolic space.

We compare our main results with previous set-based symbolic algorithms in Table 1.
Symbolic Implementations. Recently, symbolic algorithms for parity games received attention
from a practical perspective: First, three explicit algorithms (Zielonka’s recursive algorithm, Pri-
ority Promotion [4] and Fixpoint-Iteration [6]) were converted to symbolic implementations [49].
The symbolic solvers had a huge performance gain compared to the corresponding explicit solvers
on a number of practical instances. Second, four symbolic algorithms to solve parity games
were compared to their explicit versions (Zielonka’s recursive algorithm, small progress measure
and an automata-based algorithm [40, 54]) [55]. For the symbolic versions of the small progress
measure, two implementations were considered: (i) Symbolic Small Progress Measure using
Algebraic Decision Diagrams [11] and (ii) the Set-Based Symbolic Small Progress Measure [14].
The symbolic algorithms were shown to perform better in several structured instances.
Other related works. Besides the discussed theoretical results on parity games, there are several
practical approaches for parity games, such as, (a) accelerated progress measure [23], (b) quasi-

236

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

dominion [4], (c) identifying winning cores [57], (d) BDD-based approaches [37, 38], and (e) an
extensive comparison of various solvers [56]. A straightforward symbolic implementation (not
set-based) of small progress measure was done in [11] using Algebraic Decision Diagrams (ADDs)
and BDDs. Unfortunately, the running time is not comparable with our results as using ADDs
breaks the boundaries of the Set-Based Symbolic Model: ADDs can be seen as BDDs which allow
the use of a finite domain at the leaves [3]. Recently, a novel approach for solving parity games in
quasi-polynomial time which uses the register-index was introduced [41]. Moreover, [41] presents
a µ-calculus formula describing the winning regions of the parity game with alternation depth
based on the register-index. The existence of such a µ-calculus formula does not immediately
imply a quasi-polynomial set-based symbolic algorithm due to constructing the formula using
the register-index.
Our work considers the theoretical model of symbolic computation and presents a black-box
algorithm as well as a quasi-polynomial algorithm, matching the best-known bounds of explicit
algorithms. Thus our work makes a significant contribution towards the theoretical understanding
of symbolic computation for parity games.

2 Preliminaries

We follow a similar notation as [14].

2.1 Basic Definitions

Game Graphs. A game graph is a graph Γ = (V,E, 〈VE , VO〉) where the vertices V are partitioned
into player-E vertices VE and player-O vertices VO, i.e., V = VE ∪ VO. Let Out(v) describe the
set of successor vertices of v. The set In(v) describes the set of predecessors of the vertex v.
More formally Out(v) = {w ∈ V | (v, w) ∈ E} and In(v) = {w ∈ V | (w, v) ∈ E}. We assume
without loss of generality that every vertex has an outgoing edge. We denote the number of
vertices with n and the number of edges with m.
Plays. Let Γ = (V,E, 〈VE , VO〉) be a game graph. Initially, a token is placed on a vertex v0 ∈ V .
When v ∈ Vz for z ∈ {E ,O}, player z moves the token along one of the edges to a vertex in
Out(v). Formally, a play is an infinite sequence 〈v0, v1, v2, v3, . . . , 〉 where for every i ≥ 0 the
following condition holds: (vi, vi+1) ∈ E.
Parity Game. A parity game P with d priorities is a game graph Γ with a function α that assigns
each vertex a priority, i.e., α : V 7→ {0, 1, 2, . . . d− 1} where d ∈ N and d > 0 and P = (Γ, α).
The set C is the set of all priorities. Let ρ be a play of P . Player E wins ρ if the highest priority
occurring infinitely often is even. Player O, on the other hand, wins ρ if the highest priority
occurring infinitely often is odd. Let Vi for 0 ≤ i ≤ d− 1 denote the vertices in P with priority
i. Formally, we define Vi = {v ∈ V | α(v) = i}.
Strategies. A strategy for player z ∈ {E ,O} is a function that extends a finite prefix of a play
which ends at vertex v ∈ Vz by appending a vertex v′ ∈ Out(v). A memoryless strategy is
a strategy that depends only on the last vertex of a play. This corresponds to a function
σz : Vz 7→ V such that σz(v) ∈ Out(v) for all v ∈ Vz. The results from [28, 42] show that it
is sufficient to consider memoryless strategies for parity games. We shall therefore from now
on only consider memoryless strategies. A starting vertex s ∈ V , a player-E strategy σ, and
a player-O strategy π describe a unique play ω(s, σ, π) = 〈v0, v1, v2 . . . 〉 in a game graph. It is
defined as follows: v0 = s and for all i ≥ 0, if vi ∈ VE then vi+1 = σ(vi) and if vi ∈ VO then
vi+1 = π(vi).

237

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

Winning Strategies and Winning Sets. A strategy σ is winning at a start vertex s ∈ V for player
E iff for all strategies π of player O, player E wins the play ω(s, σ, π). If there exists a winning
strategy at a start vertex s ∈ V for player z ∈ {O, E}, s is part of the winning set of player z,
Wz. Every vertex is winning for exactly one of the players [28, 44]. In this work, we study the
problem of computing the winning sets for the two players.

2.2 Symbolic Model of Computation

In the set-based symbolic model, the game graph is not accessed explicitly but with set-based
symbolic operations. The resources in the symbolic model of computation are characterized by
the number of set-based symbolic operations and the set-based space.

Set-Based Symbolic Operations. A set-based symbolic algorithm is allowed to use the same
mathematical, logical and memory access operations as a regular RAM algorithm, except for the
access to the input graph. Given an input game graph Γ = (V,E, 〈VE , VO〉) and a set of vertices
S ⊆ V , the game graph G can be accessed only by the following two types of operations:

1. The basic set operation: ∪,∩,⊆, \ and =.

2. The one-step operation to obtain the predecessors of the vertices of S in G. In particular,
we define the predecessor operation

Pre(S) = {v ∈ V | Out(v) ∩ S 6= ∅}.

Let z ∈ {E ,O}, then z̄ = O if z = E and z̄ = E if z = O. The controllable predecessor operation
for z ∈ {E ,O} is defined as

CPrez(S) = {v ∈ Vz | Out(v) ∩ S 6= ∅} ∪ {v ∈ Vz̄ | Out(v) ⊆ S}.

The set CPrez(S) can be expressed using only Pre and basic set operations. Note that basic set
operations (that only involve variables of the current state) are much cheaper compared to the
one-step operations (that involve both variables of the current and of the next state). Thus, in
our analysis, we will distinguish between the number of basic set operations and the number of
one-step operations. Notice that one can define a one-step successor operation (denoted Post(·))
as well [15], but for the algorithms presented in this work the given predecessor operation
suffices.

Set-based Symbolic Space. The basic unit of space for a set-based symbolic algorithm for
game graphs are sets [5, 14]. For example, a set can be represented symbolically as one
BDD [7, 8, 10, 21, 53, 22, 20, 30, 16] and each such set is considered as unit space. Consider for
example a game graph whose state-space consists of valuations of N -Boolean variables. The set
of all vertices is simply represented as a true BDD. Similarly, the set of all vertices where the
kth bit is false is represented by a BDD which depending on the value of the kth bit chooses
true or false. Again, this set can be represented as a constant size BDD. Thus, even large sets
can sometimes be represented as constant-size BDDs. In general, the size of the smallest BDD
representing a set is notoriously hard to determine and depends on the variable reordering [22].
To obtain a clean theoretical model for the algorithmic analysis, each set is represented as a
unit data structure and requires unit space. Thus, for the space requirements of a symbolic
algorithm, we count the maximal number of sets the algorithm stores simultaneously and denote
it as the symbolic space.

238

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

2.3 The Progress Measure Algorithm
High-level intuition. Let P = (V,E, 〈VE , VO〉, α) be a parity game and let (W,≺) be a finite
total order with a maximal element > and a minimal element min. A ranking function is a
function f which maps every vertex in V to a value in W . The value of a vertex v with respect
to the ranking function f is called rank of v. The rank f(v) of a vertex v determines how “close”
the vertex is to being in Wz, the winning set of a fixed player z. Initially, the rank of every
vertex is the minimal value of W. The progress measure algorithm iteratively increases the
rank of a vertex v with an operator called Lift with respect to the successors of v and another
function called lift . The algorithm terminates when the rank of no vertex can be increased any
further, i.e., the least fixed point of Lift is reached. We call the least simultaneous fixed point of
all Lift-operators progress measure. When the rank of a vertex is the maximal element of the
total order it is declared winning for player z. The rest of the vertices are declared winning for
the adversarial player z̄.
Ranking Function. Let W be a total order with a minimal element min and maximal element >.
A ranking function is a function f : V 7→ W.
The best function. The best function represents the ability of player z, given the token is at
vertex v, to choose the vertex in Out(v) with the maximal ranking function. Analogously, it
constitutes the ability of player z̄, given the token is at vertex v, to choose the vertex in Out(v)
with the minimal ranking function. Formally, the function best is defined for a vertex v and a
ranking function f as follows:

best(f, v) =

{
min{f(w) | w ∈ Out(v)} if v ∈ Vz̄
max{f(w) | w ∈ Out(v)} if v ∈ Vz

The lift-function. The function lift :W×C 7→ W defines how the rank of a vertex v is increased
according to the rank r of a successor vertex, and the priority α(v) of v. The lift function needs
to be monotonic in the first argument. Notice that we do not need information about the graph
to compute the lift function. In all known progress measures, the lift function is computable in
constant time.
The Lift-operation. The Lift-operation potentially increases the rank of a vertex v according to
its priority α(v) and the rank of all its successors in the graph.1

Lift(f, v)(u) =

{
lift(best(f, v), α(v)) if u = v

f(u) otherwise

A ranking function is a progress measure if it is the least simultaneous fixed point of all
Lift(·, v)-operators.
The Progress Measure Algorithm. The progress measure algorithm initializes the ranking function
f with the minimum element of W. Then, the Lift(·, v)-operator is computed in an arbitrary
order regarding the vertices. The winning set of player z can be obtained from a progress
measure by selecting those vertices whose rank is >. Notice that we need to define the total
order (W,≺) and a function lift to initialize the algorithm.

For example, the following instantiations of the progress measure algorithm determine the
winning set of a parity game: (i) Small Progress Measure [34], (ii) Succinct Progress Measure [35]
and the (iii) The Ordered Approach [29]. The running time is dominated by the size of W . For
a discussion on the state-of-the-art size of W we refer the reader to Remark 2.

1Notice that in the original definition [34] the lift function is applied to all successors and the best of them is
chosen subsequently. As the lift is monotone in the first argument the two definitions are equivalent.

239

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

3 Set-Based Symbolic Black Box Progress Measure Algo-
rithm

In this section, we briefly present a basic version of a set-based symbolic progress measure
algorithm. The key idea is to compute the Lift-operation with a set-based symbolic algorithm.
Then, we improve the basic version to obtain our black box set-based symbolic progress measure
algorithm. Finally, we prove its correctness and analyze the symbolic resources.

A basic Black Box Algorithm. Throughout the algorithm, we maintain the family S of sets of
vertices, which contains a set for every element in W, i.e., S = {Sr | r ∈ W}. Intuitively, a
vertex v ∈ Sr has rank f(v) = r. Initially, we put each vertex into the set with the minimal
value of W, i.e., Smin . In each iteration, we consider all non-empty sets Sr ∈ S: The algorithm
checks if the ranking function of the predecessors of the vertices in Sr must be increased, i.e.
Lift(f, v)(v) � f(v) where v ∈ Pre(Sr), and if so, performs the Lift-operator for the predecessors.
We repeat this step until the algorithm arrives at a fixed point.

Performing a Lift operation. To compute the Lift-operation in the set-based symbolic setting
we need to compute two functions for the predecessors of Sr: (1) the lift-function and (2) the
best-function. By definition, the lift-function does not access the game graph or vertices thereof.
Thus we can compute the lift-function without the use of symbolic operations. To compute the
best-function we need access to the game graph. In turns out it is simpler to compute the vertices
with best(f, v) � r rather than the vertices with best(f, v) = r. Thus, we lift all vertices v with
best(f, v) � r to the rank lift(r, α(v)). To this end, we first compute the set S�r =

⋃
l�r Sl of

vertices with rank � r. Then, we compute P = CPrez(S�r) and, hence, the set P comprises the
vertices v ∈ P with best(f, v) � r. Finally, to compute Lift(f, v), for each c ∈ C, we consider
the vertices of P with priority c, i.e., the set (P ∩ Vc), and add them to the set Slift(r,c). Notice
that we lift each vertex v to lift(r, α(v)) where r = best(f, v) as we consider all non-empty sets
Sr ∈ S. No vertex v will be lifted to a set higher than lift(r, α(v)) where r = best(f, v) due to
the monotonicity of the lift function in the first argument. If after an iteration of the algorithm
a vertex appears in several sets of S we only keep it in the set corresponding to the largest rank
and remove it from all the other sets.

3.1 Improving the Basic Algorithm

In this section, we improve the basic Algorithm by (a) reducing the symbolic space from O(|W|)
to O(n) and (b) by reducing the number of symbolic operations required to compute the fixed
point.

Key Idea. The naive algorithm considers each non-empty set Sr in iteration i+1 again no
matter if Sr has been changed in iteration i or not. Notice that we only need to consider the
predecessors of the set Sr again when the set S�r in iteration i+1 contains additional vertices
compared to the set S�r in iteration i. To overcome this weakness, we propose Algorithm 1. In
this algorithm, we introduce a data structure called D. In the data structure D we keep track
of the sets S�r instead of the sets Sr. The set S�r contains all vertices with a rank greater
or equal than r. Furthermore, we separately keep track of the elements r ∈ W where the set
S�r changed since the last time S�r was selected to be processed. These elements of W are
called active. Moreover, if we have two sets S�r = S�r′ with r ≺ r′ there is no need to process
the set S�r because lift(r′, c) � lift(r, c) holds due to the monotonicity of the lift function. To
summarize, we precisely store a set S�r if there is no r′ with r ≺ r′ and S�r = S�r′ . Notice,
that this instantly gives us a bound on the symbolic space of O(n).

240

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

Algorithm 1: Black Box Set-Based Symbolic Progress Measure
input :Parity Game P

1 Initialize data structure D;
2 D.activate(min);
3 while r ← D.popActiveSet() do
4 S�r ← D.getSet(r);
5 P ← CPrez(S�r);
6 for c ∈ C do
7 r′ ← lift(r, c);
8 S�r′ ← D.getSet(r′);
9 while P ∩ Vc 6⊆ S�r′ do

10 S�r′ ← S�r′ ∪ (P ∩ Vc);
11 S�next(r′) ← D.getSet(D.getNext(r′));
12 if r′ = > or S�r′ ⊃ S�next(r′) then

// S�r′ is a super set of S�next(r′) and thus we save it
13 D.update(r′, S�r′); D.activate(r′);

14 S�prev(r′) ← D.getSet(D.getPrevious(r′));
15 if S�r′ = S�prev(r′) ∪ (P ∩ Vc) then

// We only keep sets which are different
16 D.removeSet(D.getPrevious(r′));

17 r′ ← D.getPrevious(r′);
18 S�r′ ← D.getSet(r′) ;

19 return S>

Algorithm Description. In Algorithm 1 we use the data structure D to manage the active r ∈ W
and in each iteration of the outer while-loop we process the corresponding set S�r of such an
r ∈ W. We first compute P = CPrez(S�r), then, for each c ∈ C we compute r′ = lift(r, c) and
update the set S�r′ by adding P ∩ Vc. The inner while-loop ensures that P ∩ Vc is also added
to all the sets S�r′ with r′ ≺ r and the properties of the data structure are maintained, i.e.,
(a) all active elements are in the active list, and (b) exactly those r ∈ W with S�r ⊃ S�r′ , for
r ≺ r′ are stored in D.
Active Elements. Intuitively, an element r ∈ W is active if S�r ⊃ S�r′ , for all r′ where r ≺ r′
and S�r has been changed since the last time S�r was selected at Line 3 of Algorithm 1. We
define active elements more formally later.

Data Structure 1. Our algorithm relies on a data structure D, which supports the following
operations:
• D.popActiveSet() returns an element r ∈ W marked as active and makes it inactive. If
all elements are inactive, returns false.
• D.getSet(r) returns the set S�r.
• D.getNext(r) returns the smallest r′ with S�r ⊃ S�r′ .
• D.getPrevious(r) returns the largest r′ where S�r ⊂ S�r′ .
• D.removeSet(r) marks r as inactive.
• D.activate(r) marks r as active.
• D.update(r, S) updates the set S�r to S, i.e., D.getSet(r) returns S. Moreover, all sets
S�r′ with r′ ≺ r and S�r′ = S�r beforehand are updated to S as well.

241

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

We initialize D with D.update(min, V) and D.update(>, ∅).

We can define active elements formally now as the definition depends on D.

Definition 1. Let S0
�r = D.getSet(r) be the set stored in D for S�r after the initialization

of D, and let Si
�r = D.getSet(r) be the set stored in D for S�r after the i-th iteration of the

while-loop at Line 3. An element r ∈ W is active after the i-th iteration of the while-loop if (i)
for all r′ ∈ W where r ≺ r′ we have Si

�r ⊃ Si
�r′ and (ii) there is a j < i such that Si

�r ⊃ S
j
�r

and for all j < j′ ≤ i the set S�r is not selected in Line 3 in the j′-th iteration. Additionally,
we consider r = min as active before the first iteration. An element r ∈ W is inactive if it is
not active.

Notice that, in Algorithm 1 an r ∈ W is active iff r is marked as active in D. The algorithm
ensures this in a very direct way. At the beginning only min ∈W is active, which is also marked
as active in D in the initial phase of the algorithm. Whenever some vertices are added to a set
S�r, it is tested whether S�r is larger than its successor and if so r is activated (Lines 12-13).
On the other hand, if something is added to the successor of S�r in the data structure D then
the algorithm tests whether the two sets are equal and if so r is rendered inactive (Lines 15-16).
Implementation of the data structure D. The data structure uses an AVL-tree and a doubly
linked list called “active list” that keeps track of the active elements. The nodes of the tree
contain a pointer to the corresponding set S�r and to the corresponding element in the active
list.
• Initialization of the data structure D: Create the AVL tree with the elements min and >.
The former points to the set of all vertices and the latter to the empty set. Create the
doubly linked list called “active list” as an empty list.

• D.popActiveSet(): Return the first element from the active list and remove it from the
active list. If the list is empty, return false.

• D.getSet(r): Searches the AVL tree for r or for the next greater element (w.r.t. �). Then
we return the set by using the pointer we stored at the node.
• D.getNext(r): First performs D.getSet(r) and then computes the inorder successor in

the AVL-tree. This corresponds to the next greater node w.r.t. �.
• D.getPrevious(r): First performs D.getSet(r) and then computes the inorder predecessor

in the AVL-tree. This corresponds to the next smaller node w.r.t. �.
• D.removeSet(r): This operation needs the element r to be stored in the AVL tree. Search
the AVL tree for r. Remove the corresponding element from the active list and the AVL
Tree.
• D.activate(r): This operation needs the element r to be stored in the AVL tree. Add r to

the active list and add pointers to the AVL-tree. The element in the active list contains a
pointer to the tree element and vice versa.

• D.update(r, S) : Perform S�r ← D.getSet(r): If r is contained in the AVL tree then
update S�r to S. Otherwise, insert r as a new element and let the element point to S.

We initialize the data structure D with min ∈ W and > ∈ W . Thus, whenever we query D
for a value r ∈ W we find it or there exists an r′ � r which is in D.
Analysis of the data structure D. The data structure can be implemented with an AVL-tree and
a doubly linked list called “active list” that keeps track of the active elements such that all of the
operations can be performed in O(log n): when the algorithm computes D.update(r, S) we store
r and a pointer to the set S as a node in the AVL tree. By construction, the algorithm only
stores pointers to different sets and when we additionally preserve anti-monotonicity among
the sets we only store ≤ n sets. Therefore, the AVL tree has only ≤ n nodes with pointers

242

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

to the corresponding sets and searching for a set with the operation D.getSet(r) only adds a
factor of log n to the non-symbolic operations when we store r as key with a pointer to S�r in
the AVL-tree. Moreover, we maintain pointers between the elements of the active list and the
corresponding vertices in the AVL tree.

Remark 1. The described algorithm is based on a data structure D which keeps track of the
sets that will be processed at some point later in time. Note that this data structure does not
access the game graph but only stores pointers to sets that the Algorithm 1 maintains. The size
of the AVL tree implementing D is proportional to the symbolic space of the algorithm.

3.1.1 Correctness

In order to prove the correctness of Algorithm 1 we tacitly assume that the algorithm terminates.
An upper bound on the running time is then shown in Proposition 2.

Proposition 1 (Correctness.). Let P be a parity game. Given a finite total order (W,≺) with
minimum element min, a maximum element > and a monotonic function lift : W × C 7→ W
Algorithm 1 computes the least simultaneous fixed point of all Lift(·, v)-operators.

To prove the correctness of Algorithm 1, we prove that when Algorithm 1 terminates, the
function ρ(v) = max{r ∈ W | v ∈ S�r} is equal to the least simultaneous fixed point of all
Lift(·, v)-operators. We show that when the properties described in Invariant 1 hold, the function
ρ is equal to the least fixed point at the termination of the algorithm. Then, we prove that we
maintain the properties of Invariant 1.

Invariant 1. Let ρ̃ be the least simultaneous fixed point of Lift(·, v) and ρ(v) = max{r ∈ W |
v ∈ S�r} be the ranking function w.r.t. the sets S�r that are maintained by the algorithm.

1. Before each iteration of the while-loop at Line 3 we have S�r2 ⊆ S�r1 for all r1 � r2

(anti-monotonicity).
2. Throughout Algorithm 1 we have ρ̃(v) � ρ(v) for all v ∈ V .
3. For all r ∈ W: (a) r is active or (b) for all v ∈ CPrez(S�r) :

if best(ρ, v) = r, then ρ(v) = Lift(ρ, v)(v).

In the following paragraph, we describe the intuition of Invariant 1. Then, we show that
the properties of Invariant 1 are sufficient to obtain the correctness of Algorithm 1. Finally, we
prove that each property holds during the while-loop at Line 3.

Intuitive Description. The intuitive description is as follows:
1. Ensures that the sets S�r contain the correct elements. Having the sets S�r allows

computing best(f, v) � r as discussed at the beginning of the section.
2. Guarantees that ρ is a lower bound on ρ̃ throughout the algorithm.
3. When an r ∈ W is not active, the rank of no vertex can be increased by applying lift to

the vertices which have best(ρ, v) = r.
When the algorithm terminates, all r ∈ W are inactive and ρ is a fixed point of all Lift(ρ, v) by
condition (3b). The next lemma proves that Algorithm 1 computes the least simultaneous fixed
point of all Lift(·, v) operators for a parity game.

Lemma 1 (The Invariant is sufficient). Let the lift function be monotonic in the first argument
and (W,≺) be a total order. The ranking function ρ at termination of Algorithm 1 is equal to
the least simultaneous fixed point of all Lift(·, v)-operators for the given parity game P.

243

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

Proof. Consider the ranking function ρ(v) = max{r ∈ W | v ∈ S�r} computed by Algorithm 1.
By Invariant 1(2) we have ρ̃(v) � ρ(v) for all v ∈ V . We next show that ρ(v) is a fixed point
of Lift(ρ, v) for all v ∈ V . When the algorithm terminates, no r ∈ W is active. Consider an
arbitrary v and let r = best(ρ, v). Now, as the set r is not active, by Invariant 1(3b), we have
ρ(v) = Lift(ρ, v)(v). Thus ρ(v) is a fixed point of Lift(ρ, v) for all vertices in V . Therefore, as ρ
is a simultaneous fixed point of all Lift(·, v)-operators and ρ̃ is the least such fixed point, we
obtain ρ(v) � ρ̃(v) for all v ∈ V . Hence we have ρ(v) = ρ̃(v) for all v ∈ V .

The following lemmas prove each part of the invariant separately. The first part of the
invariant describes the anti-monotonicity property which is needed to compute the best function
with the CPrez operator.

Lemma 2. Invariant 1(1) holds: Let r1, r2 ∈ W and r1 � r2. Before each iteration of
the while-loop at Line 3 we have that if a vertex v is in a set S�r2 then it is also in S�r1
(anti-monotonicity).

Proof. We prove the claim by induction over the iterations of the while-loop. Initially, the claim
is satisfied as the only non-empty set is Smin. It remains to show that when the claim is valid
at the beginning of an iteration, then the claim also holds in the next iteration. By induction
hypothesis, the claim holds for the sets at the beginning of the while-loop. In the trivial case,
the algorithm terminates and the claim holds by the induction hypothesis. Otherwise, the sets
are only modified at Line 10 and stored at Line 13. First, the vertices P ∩ Vc are added into
the set S�r′ . Let r′′ = D.getPrevious(r′). Notice that after activating r′ all r with r′′ ≺ r ≺ r′
refer to the same set as r′ and thus we add P ∩ Vc implicitly to all r. In the next iteration the
while-loop then adds P ∩ Vc also to the set S�r′′ . As this done iteratively until a set S�r∗ with
P ∩ Vc ⊆ S�r∗ is reached (Lines 9-17), the algorithm ensures that P ∩ Vc is contained in all
set S�r′′ with r ≺ r′. By induction hypothesis we know that the invariant holds for all r2 � r′
(S�r2 is unchanged), and as the algorithm added P ∩ Vc to all set S�r′′ with r′′ � r′ the claim
holds for all r1, r2 � r′.

The second part of the invariant shows that the fixed point Algorithm 1 computes is always
smaller or equal to the least fixed point. In particular, the fixed point computed by the algorithm
is defined as ρ(v) = max{r ∈ W | v ∈ S�r} and we denote the least fixed point with ρ̃. The
proof is by induction: In the beginning, every vertex is initialized with the minimum element
which obviously suffices for the claim. When we apply the lift function to vertices, we observe
that by the induction hypothesis the current value of a vertex is below or equal to the fixed
point. Additionally, we obtain a rank which is also smaller or equal to the lifted value of ρ̃ for
every vertex as lift is a monotonic function.

Lemma 3. Invariant 1(2) holds: Throughout Algorithm 1 we have ρ̃(v) ≥ ρ(v) for all v ∈ V .

Proof. Before the while-loop at Line 3 the claim is obviously satisfied as ρ̃(v) � min for all
v ∈ V . We prove the claim by induction over the iterations of the while-loop: Assume we have
ρ(v) � ρ̃(v) for all v ∈ V before an iteration of the while-loop. The function ρ(·) is only changed
at Line 10 and stored at Line 13 where the set (P ∩Vc) is added to S�r′ . For v ∈ P ∩Vc we have
that v is a priority c vertex and either v is a player-z vertex with a successor in S�r or a player-z̄
vertex with all successors in S�r. Thus, r � best(ρ, v) for v ∈ P . At Line 7 we compute the
lift-operation for ranking r with priority c which results in the ranking r′ for the first iteration
of the while-loop. By the monotonicity of the lift operation and the induction hypothesis we
have that r′ = lift(r, c)(v) � lift(best(ρ, v), c)(v) � lift(best(ρ̃, v), c) = ρ̃(v) for v ∈ P ∩ Vc and
thus adding v to S≥r′ maintains the invariant (if ρ(v) � r′ beforehand it is not changed and

244

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

otherwise it is lifted to r′ ≺ ρ̃(v)). In the later iterations of the while-loop P ∩ Vc is added to
sets with smaller r′, which does not affect ρ, as these vertices already appear in sets with larger
rank.

The following lemma proves the third part of Invariant 1: Either there is an active r ∈ W,
i.e., the set S≥r needs to be processed, or ρ(v) is a fixed point. We prove the property again by
induction: Initially, the set min ∈ W is active and every other set is empty which trivially fulfills
the property. Then, in every iteration when we change a set with value r we either activate it,
or there is a set with a value r′ � r where S�r′ subsumes S�r. In the former case, the condition
is instantly fulfilled. In the latter case, there is no vertex v where best(ρ, v) = r which renders
S�r irrelevant by definition of ρ.

Lemma 4. Invariant 1(3) holds: For all r ∈ W:
1. S�r is active or,
2. ∀v ∈ CPrez(S�r) : if best(ρ, v) = r, then ρ(v) = Lift(ρ, v)(v)

Proof. We prove this invariant by induction over the iterations of the while-loop: Before the
while-loop at Line 3 the claim is obviously satisfied as we activate min which contains all vertices;
for all other r ∈ W the set S�r is empty and thus condition (2) is trivially satisfied.

Assume the condition holds at the beginning of the loop. We can, therefore, assume by the
induction hypothesis that the condition holds for all the sets. If there is no active r ∈ W, the
algorithm terminates and the condition holds by the induction hypothesis. The condition for a
set S�r can be violated only if either the set S�r is changed or the set S�r is deactivated. That
is either at Line 3, Line 10 or Line 16 of the algorithm.

Let us first consider the changes made in the while-loop. If a set S�r is changed in Line 10,
then the algorithm either activates r (Line 13) and thus satisfies (1) or S�next(r) = S�r which
implies that best(ρ, v) 6= r and thus (2) is fulfilled trivially. At Line 16 there is no vertex v with
best(ρ, v) = r (as there is no vertex w with ρ(w) = r) and thus (2) is satisfied (and it is safe to
remove/deactivate the set in Line 16).

Now consider the case where we remove the set S�r and make r inactive at Line 3. If the
set S�r is unchanged during the iteration of the outer while-loop then S�r satisfies condition
(2) after the iteration. This is because for all v with best(ρ, v) = r and α(v) = c we have
that if v is not already contained in S�lift(r,c) the algorithm adds it to the set S�lift(r,c) in
Line 10 in the first iteration of the while-loop when processing c. This is equivalent to applying
Lift(ρ, v)(v) = lift(r, c). If the set S�r is changed during the iteration then this happens in
the inner while-loop. As argued above, then either r is activated and thus satisfies (1) or
S�next(r) = S�r holds. Thus, there is no vertex v with best(ρ, v) = r, i.e., (2) is satisfied.

3.1.2 Symbolic Resources

In the following, we discuss the amount of symbolic resources Algorithm 1 needs. We determine
the number of symbolic one-step operations, the number of basic set operations and the symbolic
space consumption.

Proposition 2. The number of symbolic one-step operations in Algorithm 1 is in O(n · |W|).

Proof. Each iteration of the while-loop at Line 3 processes an active r. That means, that the
set S�r was changed in a prior iteration. We use a symbolic one-step operation at Line 5 for
each active S�r. It, therefore, suffices to count the number of possibly active sets throughout
the execution of the algorithm. Initially only S�min is active. After extracting an active set out
of the data structure D, it is deactivated at Line 3. We only activate a set S�x when a new

245

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

vertex is added to it at Line 13. Because there can only be n vertices with ranking � x for all
x ∈ W the size of each set |S�x| is smaller or equal to n. In the worst case, we eventually put
every vertex into every set S�x where x ∈ W. Thus we activate n · |W| sets which is equal to
the number of symbolic one-step operations.

A similar argument works for analysing the number of basic set operations.

Proposition 3. The number of basic set operations in Algorithm 1 is in O(d · n · |W|).

Proof of Proposition 3. As proven in Proposition 2, there are O(n · |W|) iterations of the outer
while-loop and thus O(n · |W|) iterations of the for-loop. Thus the inner while-loop is started
O(dn · |W|) times. The test whether the while-loop is started only requires two basic set
operations and the overall costs are bound by O(dn · |W|). We bound the overall costs for the
iterations of the inner while-loop by an amortized analysis. First, notice that each iteration
just requires 8 basic set operations (including testing the while condition afterward). In each
iteration for a value r′ ∈ W we charge the r′ for the involved basic set operations. Notice, that
in each such an iteration new vertices are added to the set S�r′ and thus r′ is processed at most
n times. Thus each r′ ∈ W is charged for at most 8n basic set operations Therefore, the number
of basic set operations is O(d · n · |W|) +O(n · |W|) = O(d · n · |W|).

Due to Proposition 1, Proposition 2, Proposition 3 and the fact that we use ≤ n sets in the
data structure D, we obtain Theorem 1.

Theorem 1. Given a parity game, a finite total order (W,�) and a monotonic function lift
we can compute the least fixed point of all Lift(·, v) operators with O(n · |W|) symbolic one-step
operations, O(d · n · |W|) basic set operations, and O(n) symbolic space.

4 Implementing the Ordered Progress Measure
In this section, we plug the ordered approach to progress measure (OPM) described by Fearnley
et al. [29] into Algorithm 1. To do this, we recall the witnesses they use in their algorithm and
encode it with a specially-tailored technique to obtain an algorithm with a sublinear amount
of symbolic space. Finally, we argue that the function lift : W × C 7→ W and the total order
(W,�) described in [29] can be used to fully implement Algorithm 1.
The Ordered Progress Measure. To implement the ordered progress measure algorithm we need
to argue that the lift-operation is monotonic in the first argument and the order (W,�) is a
total finite order in order to fulfill the conditions of Algorithm 1. Let P be a parity game and
C = {0, . . . , d − 1} be the set of priorities in P. The set W in the ordered progress measure
consists of tuples of priorities of length k, where k ∈ O(log n). Each element in the tuple is
an element of C_ = C ∪ {_}, i.e., it is either a priority or "_". The set C_ has a total
order (C_,�) such that _ is the smallest element, odd priorities are order descending and are
considered smaller than even priorities which are ordered ascending. The order (W,�) is then
obtained by extending the order (C_,�) lexicographically to the tuples r ∈ W.

For the details of the lift function we refer the reader to the work of Fearnley et al. [29].
An implementation of the lift operation can be found at the GitHub repository of the Oink
system [56].

By the results in [29] the order (W,�) and lift meet the requirements of our algorithms.

Lemma 5. The following holds: (1) The function lift :W × C 7→ W is monotonic in the first
parameter [29, p.6]. (2) The order (W,�) is a total finite order [29, p.3]. (3) Let ρ be the least

246

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

simultaneous fixed point of all Lift(·, v) operators. Then ρ(v) = > iff player E has a strategy to
win the parity game P when starting from v [29, Lemma 7.3, Lemma 7.4].

Theorem 1 together with Lemma 5 imply the following theorem.

Theorem 2. Algorithm 1 implemented with the OPM computes the winning set of a parity
game with O(n · |W|) symbolic one-step operations, O(d · n · |W|) basic set operations, and O(n)
symbolic space.

Remark 2. (Bounds for |W|). We now discuss the bounds on |W|. The breakthrough result
of [12] shows that |W| is quasi-polynomial (nO(log d)) in general and polynomial when d ≤
log n. Using the refined analysis of [29], we obtain the following bound on |W|: in general,
min(n · log(n)d−1, h · nc1.45+log2(h)), where c1.45 = log2(e) < 1.45 and h = d1 + d/ log(n)e; and
if d ≤ log n, then |W| is polynomial due to [12, Theorem 2.8] and [29, Corollary 8.8]. Note that
O
(
n2.45+log2(d)

)
gives a naive upper bound on |W| in general. Plugging the bounds in Theorem 2

we obtain a set-based symbolic algorithm that requires quasi-polynomially many symbolic one-step
and basic set operations and O(n) symbolic space. The algorithm requires only polynomially
many symbolic one-step and basic set operations when d ≤ log n.

5 Reducing the Number of Sets for the OPM

In this section, we tailor a data structure for the OPM in order to only use O(d · log n) sets.
While each progress measure can be encoded by log(|W|) many sets, the challenge is to provide
a representation that also allows to efficiently compute the sets S�r. Such a representation has
been provided for the small progress measure [14] and in the following we adapt their techniques
for the OPM.
Key Idea. The key idea of the symbolic space reduction is that we encode the value of each
coordinate of the rank r separately. A set no longer just stores the vertices with specific rank
r = b1 . . . bk but instead stores all vertices where, say, the first coordinate b1 is equal to a specific
value in C_. This encoding enables us to use only a polylogarithmic amount of symbolic space
under the assumption that the number of priorities in the game graph is polylogarithmic in the
number of vertices.
Symbolic Space Reduction. Let the rank of v be r = b1 . . . bk. Vertex v is in the set Ci

x iff the
ith coordinate of the rank of v is x and a vertex v is in the set C> iff the rank of v is >. Thus
O(log(n) · d) sets suffice to encode all r ∈ W. We demonstrate this encoding of the sets in
Example 1.

Example 1. Let P be a parity game containing the vertices v1, v2, v3. Assume the following
ranking function: f(v1) = 65433, f(v2) = 75422, f(v3) = 32. Using the definition of our
encoding, we have that: {v3} ⊆ C1

_, {v1} ⊆ C1
6 , {v2} ⊆ C1

7 , {v3} ⊆ C2
_, {v1, v2} ⊆ C2

5 , {v3} ⊆
C2

_, {v1, v2} ⊆ C3
4 , {v2} ⊆ C4

2 , {v1, v3} ⊆ C4
3 , {v1} ⊆ C5

3 , {v2, v3} ⊆ C5
2 .

Computing the set S�r from Ci
x. We obtain the set Sr for rank r = b1 . . . bk with an intersection

of the sets
⋂k

i=1 C
i
bi

= Sr. To acquire the set S�r we first consider sets where the first i elements
are the equal to b1, . . . bi but the i+1th element x is � bi+1.

Si
�r =

⋂
1≤j≤i

Cj
bj
∩

⋃
x�bi+1

Ci+1
x (1)

247

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

To construct the set S�r we apply the following union operations:

S�r =

k−1⋃
i=1

Si
�r ∪ Sr ∪ C> (2)

That is, we can compute the set S�r with O(d · log n) set operations and four additional
sets. Notice that there is no need to store all sets Si

�r as we can immediately add them to the
final set when we have computed them. The number of ∪-operations is immediately bounded by
O(d · k) = O(d · log n) by the above definitions. In order to bound the number of ∩-operations
by O(log n), we do the following. To compute the sets Si

�r we introduce an additional set
T i =

⋂
1≤j≤i C

j
bj
. We have that Si

�r = T i ∩
⋃

x�bi+1
Ci+1

x and T i+1 = T i ∩ Ci+1
bi+1

, i.e., we just
need two ∩ operation to compute the next set Si+1

�r . Moreover, we have that Sr = T k and thus
can be computed with just one ∩ operation. In total, this amounts to 2k − 2 = O(log n) many
∩-operations.
Updating the set S�r to S′�r. Assume that the set S�r is the old set that is saved within the sets
Ci

x. The new set, S′�r is an updated set, which is also a superset. First, compute the difference
S∆ = S′�r \ S�r. Intuitively, the algorithm increased the rank of the vertices in S∆. We delete
their old values by updating Ci

x = Ci
x \ S∆ for all i = 0 . . . k and each x ∈ {0, . . . d− 1}. Then

we add the vertices to the set Ci
ri = Ci

ri ∪ S∆ for all i = 0 . . . k. In total there are O(d log n)
many \-operations and O(k) = O(log n) many ∪-operations.

Using the above techniques for constructing and updating the sets Algorithm 1 can be
modified to obtain the following theorem. We present the details in Section 5.1.

Theorem 3. The winning set of a parity game can be computed in O(n · |W|) symbolic one-step
operations, O(d2n · |W| · log n) basic set operations, and O(d · log n) symbolic space.

Remark 3. Note that Theorem 3 achieves bounds similar to Theorem 1 with a factor d · log n
increase in basic set operations, however, the symbolic space requirement decreases from O(n)
to O(d · log n). In particular, using the bounds as mentioned in Remark 2, we obtain a set-
based symbolic algorithm that requires quasi-polynomially many symbolic one-step and basic set
operations, and O(d · log n) symbolic space, and moreover, when d ≤ log n, then the algorithm
requires polynomially many symbolic one-step and basic set operations and only poly-logarithmic
O(log2 n) symbolic space.

Remark 4. Recall that our AVL-tree data structure potentially requires O(n) non-symbolic space
(cf. Remark 1) in the worst case. The algorithm above reduces the symbolic space requirement to
O(d · log n). We briefly outline how to reduce the non-symbolic space to the same bound. The
main purpose of our AVL-tree data structure is to (a) avoid storing all sets explicitly and (b)
efficiently maintain pointers to the active sets. As we now have a succinct representation of
all sets we are only left with (b). For (b), we additionally maintain d · log n+ 1 sets in a data
structure O to determine if the set S�r was changed since the last time we chose r at the start
of the while-loop which processes an active r in each iteration. In each iteration of the outer
while loop the chosen active set S�r of D is copied into the corresponding set T�r in O. We
can then identify sets S�r which changed since the last iteration where r was chosen by testing
(S�r 6= T�r). To obtain an active element, it remains to additionally check whether there is
no r′ > r where S�r′ = S�r. If Sr 6= ∅ this property is true and we can return an active set.
Because we need to possibly go through W in each iteration, the number of basic set operations
is increased by a factor of W. In total, the number of basic set operations are increased to
O(d · n · |W|2 log n) while the other symbolic resource consumption stays the same.

248

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

5.1 Proof of Theorem 3

Algorithm 2: OPM Algorithm with Reduced Symbolic Space
input :Parity Game P

1 Initialize Ci
_ ← V for 0 ≤ i ≤ k;

2 Initialize Ci
c ← ∅ for 0 ≤ i ≤ k, c ∈ C;

3 D.activate(min);
4 while r ← D.popActiveSet() do
5 S�r ← D.getSet(r);
6 D.deactivate(r);
7 P ← CPrez(S�r);
8 for c ∈ C do
9 r′ ← lift(r, c);

10 S�r′ ← D.getSet(r′) ;
11 rold← r′;
12 Srold ← S�r′ ∪ (P ∩ Vc);
13 while P ∩ Vc 6⊆ S�r′ do
14 S�r′ ← S�r′ ∪ (P ∩ Vc);
15 S�next(r′) ← D.getSet(D.next(r′)) ;
16 if r′ = > or S�r′ ⊃ S�next(r′) then
17 D.activate(r′, S�r′);

18 S�prev(r′) ← D.getSet(D.getPrevious(r′));
19 if S�r′ = S�prev(r′) ∪ (P ∩ Vc) then
20 D.removeSet(D.getPrevious(r′));

21 r′ ← D.getPrevious(r′);
22 S�r′ ← D.getSet(r′) ;

23 D.update(rold, Srold) ;

24 return S>

Data Structure. The new data structure D supports all functions of Data Structure 1 but the
nodes of the AVL tree no longer store a pointer to a set (but only the value r). The data structure
D stores d · log n+ 1 sets as described in Section 5, and overrides the D.update(r, S)-operation.

• D.update(r,S): Updates the set S�r to be S. Every set S�r′ with r′ ≺ r is updated to
S�r′ ∪ S.

Implementation of the data structure D.

• D.getSet(r): This function computes the set S�r as described in Section 5 and returns it.

• D.update(r,S): Computes the update of the set S�r with S as described in Section 5.
Precondition: S�r ⊆ S.

Notice that Algorithm 2 only differs from Algorithm 1 in (a) the way the D.getSet(r)
method is implemented and (b) how the sets are updated, i.e., the overridden D.update(r,S)
method. Hence, to establish the correctness of Algorithm 2, it suffices to show that these two
methods do exactly the same as the corresponding operations in Algorithm 1. The correctness
then directly follows from Proposition 1.

249

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

Proposition 4 (Correctness). Given a parity game P Algorithm 2 computes the winning set.

Proof. We show that the D.getSet(r) method (in the interplay with the D.update(r,S)
method) in Algorithm 2 returns the same sets as the D.getSet(r) method in Algorithm 1. The
correctness then directly follows from Proposition 1.

The proof is by induction. Consider the base case after the initialization of the data structure
D and its sets Ci

c. In Algorithm 1 we have that D.getSet(min) would return V and D.getSet(r)
would return the empty set for min ≺ r. In Algorithm 2, by the initialization in line 1, we
have that D.getSet(min) would return V and by the initialization in line 2 we have D.getSet(r)
would return the empty set for min ≺ r. Therefore, the base case is satisfied.

Notice that the data structures both in Algorithm 1 and Algorithm 2 are only changed in the
for-loop. Assume the claim holds before an iteration of the for-loop. Let r̄ be the element of W
currently processed by the outer while-loop, and let r̄′ the r′ currently processed by the for-loop.
Consider some r ∈ W. By induction hypothesis, D.getSet(r) coincides in both algorithms
beforehand. If r � r̄′ then D.getSet(r) is not affected by the changes in both algorithms and
thus D.getSet(r) coincides in both algorithms after the iteration of the for loop. If r � r̄′

then Algorithm 1 updates the data structure such that P ∪ Vc is added to the set S�r (the set
returned by D.getSet(r)). Now consider Algorithm 2. Here the algorithm adds the set P ∪ Vc
to the set Ci

x that correspond to r̄′. As r � r̄′ there is an i ≥ 0 such that r and r̄′ coincide
on the first i elements and the set P ∪ Vc is then contained in the set Si

�r. That means that
the set returned by D.getSet(r) contains the set P ∪ Vc. Moreover, as only vertices in P ∪ Vc
are affected by the update, all the vertices that were previously contained in D.getSet(r) are
still contained in the set. In other words, Algorithm 2 adds P ∪ Vc to the set S�r. That is, the
two D.getSet(r) methods coincide also after the iteration of the for-loop for all r ∈ W. Thus,
we have that D.getSet(r) coincides in the two algorithms and the correctness of Algorithm 1
extends to Algorithm 2.

Proposition 5 (Symbolic operations). Algorithm 2 uses O(d log n) sets with O(n|W|) symbolic
one-step operations and O(d2n|W| log n) basic set operations.

Proof. There are O(n · |W|) iterations if the while-loop at Line 4 (cf. Proposition 2). Therefore,
the number of symbolic one-step operations is O(n · |W|). In each iteration of the while-loop,
the for-loop at Line 8 has d iterations. The basic set operations at Line 10, Line 13, Line 12
and at Line 23 occur O(d · n · |W|) times. This sums up to a total of O(d2 · n · |W| log n)
basic set operations (as each getSet(r) requires O(d log n) basic set operations). By the same
amortized argument as in the proof of Proposition 2, we obtain that the total number of basic
set-operations in executions of the inner while-loop is in O(n|W|d log n). The number of basic
set operations is, thus, in O(d2n|W| log n) +O(dn|W| log n) = O(d2n · |W| log n).

Due to Proposition 4 and Proposition 5 and the fact that we use only O(d log n) symbolic space
in the modified data structure D, we obtain Theorem 3.

6 Conclusion
In this work, we present improved set-based symbolic algorithms for parity games. There
are several interesting directions for future work. On the practical side, implementations and
experiments with case studies, especially for the algorithm presented in Section 3 instantiated
with either the ordered approach or the succinct progress measure, is an interesting direction.
On the theoretical side, recent work [15] has established lower bounds for symbolic algorithms
for graphs, and whether lower bounds can be established for symbolic algorithms for parity
games is another interesting direction for future work.

250

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM, 49:672–713,
2002.

[2] R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations. In
CONCUR’98, LNCS 1466, pages 163–178. Springer, 1998.

[3] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo,
and Fabio Somenzi. Algebraic decision diagrams and their applications. Formal Methods in System
Design, 10(2/3):171–206, 1997.

[4] M. Benerecetti, D. Dell’Erba, and F. Mogavero. Solving parity games via priority promotion. In
CAV, pages 270–290, 2016.

[5] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An improved algorithm for the
evaluation of fixpoint expressions. Theoretical Computer Science, 178(1-2):237–255, 1997.

[6] Florian Bruse, Michael Falk, and Martin Lange. The fixpoint-iteration algorithm for parity games.
In GandALF, pages 116–130, 2014.

[7] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, 100(8):677–691, 1986.

[8] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv., 24(3):293–318, September 1992.

[9] J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state strategies. Trans.
AMS, 138:295–311, 1969.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking:
10ˆ20 states and beyond. In LICS, pages 428–439, 1990.

[11] Doron Bustan, Orna Kupferman, and Moshe Y. Vardi. A measured collapse of the modal µ-calculus
alternation hierarchy. In STACS, pages 522–533, 2004.

[12] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in quasipoly-
nomial time. In STOC, pages 252–263, 2017.

[13] P. Cerný, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative synthesis
for concurrent programs. In CAV, pages 243–259, 2011.

[14] K. Chatterjee, W. Dvořák, M. Henzinger, and V. Loitzenbauer. Improved set-based symbolic
algorithms for parity games. In CSL, pages 18:1–18:21, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[15] K. Chatterjee, W. Dvořák, M. Henzinger, and V. Loitzenbauer. Lower bounds for symbolic
computation on graphs: Strongly connected components, liveness, safety, and diameter. In SODA,
pages 2341–2356. SIAM, 2018.

[16] K. Chatterjee, M. Henzinger, M. Joglekar, and N. Shah. Symbolic algorithms for qualitative analysis
of Markov decision processes with büchi objectives. Form. Methods Syst. Des., 42(3):301–327, 2013.
Announced at CAV’11.

[17] K. Chatterjee, M. Henzinger, and V. Loitzenbauer. Improved Algorithms for One-Pair and k-Pair
Streett Objectives. In LICS, pages 269–280, 2015.

[18] A. Church. Logic, arithmetic, and automata. In ICM, pages 23–35, 1962.
[19] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic model checker.

International Journal on Software Tools for Technology Transfer, 2(4):410–425, Mar 2000.
[20] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement

for symbolic model checking. J. ACM, 50(5):752–794, September 2003. Announced at CAV’00.
[21] E. M. Clarke, K. L. McMillan, S. V. Aguiar Campos, and V. Hartonas-Garmhausen. Symbolic

model checking. In CAV, pages 419–427, 1996.
[22] E.M. Clarke, O. Grumberg, and D. Peled. Symbolic model checking. In Model Checking. MIT

Press, 1999.

251

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

[23] L. de Alfaro and M. Faella. An accelerated algorithm for 3-color parity games with an application
to timed games. In CAV, pages 108–120, 2007.

[24] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of surprise
in timed games. In CONCUR, pages 142–156, 2003.

[25] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In EMSOFT,
pages 148–165. Springer, 2001.

[26] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-state games. In
CONCUR, pages 536–550, 2001.

[27] E. A. Emerson and Ch.-L. Lei. Efficient model checking in fragments of the propositional mu-calculus.
In LICS, pages 267–278, 1986.

[28] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy. In FOCS, pages
368–377, 1991.

[29] J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. An ordered approach to solving
parity games in quasi polynomial time and quasi linear space. In Hakan Erdogmus and Klaus
Havelund, editors, SPIN, Santa Barbara, CA, USA, July 10-14, 2017, pages 112–121. ACM, 2017.

[30] R. Gentilini, C. Piazza, and A. Policriti. Symbolic graphs: Linear solutions to connectivity related
problems. Algorithmica, 50(1):120–158, 2008. Announced at SODA’03.

[31] T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. Information and Computation,
173(1):64–81, 2002.

[32] T. A. Henzinger, R. Majumdar, and J.F. Raskin. A classification of symbolic transition systems.
ACM Trans. Comput. Log., 6(1):1–32, 2005.

[33] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In CAV, pages 226–238,
2005.

[34] M. Jurdziński. Small Progress Measures for Solving Parity Games. In STACS, pages 290–301,
2000.

[35] M. Jurdziński and R. Lazic. Succinct progress measures for solving parity games. In LICS, pages
1–9, 2017.

[36] M. Jurdziński, M. Paterson, and U. Zwick. A Deterministic Subexponential Algorithm for Solving
Parity Games. SIAM J. Comput., 38(4):1519–1532, 2008.

[37] G. Kant and J. van de Pol. Efficient instantiation of parameterised boolean equation systems to
parity games. In GRAPHITE 2012, pages 50–65, 2012.

[38] G. Kant and J. van de Pol. Generating and solving symbolic parity games. In GRAPHITE 2014,
pages 2–14, 2014.

[39] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27(3):333–354,
1983.

[40] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata and tree automata emptiness.
In STOC, pages 224–233, 1998.

[41] Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial time. In
LICS, pages 639–648, 2018.

[42] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic,
65(2):149–184, 1993.

[43] R. Milner. An algebraic definition of simulation between programs. In Second International Joint
Conference on Artificial Intelligence, pages 481–489. The British Computer Society, 1971.

[44] A. W. Mostowski. Games with forbidden positions. Technical Report 78, University of Gdańsk,
1991.

[45] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190. ACM
Press, 1989.

[46] P.J. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete-event processes.

252

Quasipolynomial Set-Based Symbolic Algorithms for Parity Games Chatterjee, Dvořák, Henzinger and Svozil

SIAM J. Control Optim., 25(1):206–230, 1987.
[47] S. Safra. On the complexity of ω-automata. In FOCS, pages 319–327, 1988.
[48] S. Safra. Complexity of automata on infinite objects. PhD thesis, Weizmann Institute of Science,

1989.
[49] L. Sanchez, J.W. Wesselink, and T.A.C. Willemse. BDD-based parity game solving: a comparison

of Zielonka’s recursive algorithm, priority promotion and fixpoint iteration. Computer science
reports. Technische Universiteit Eindhoven, 2018.

[50] S. Schewe. Solving parity games in big steps. In FSTTCS, pages 449–460. Springer, 2007.
[51] H. Seidl. Fast and simple nested fixpoints. Information Processing Letters, 59(6):303–308, 1996.
[52] F. Somenzi. Colorado university decision diagram package. http://vlsi.colorado.edu/pub/,

1998.
[53] F. Somenzi. Binary Decision Diagrams. In Calculational System Design, NATO Science Series F:

Computer and Systems Sciences, volume 173, pages 303–366. IOS Press, 1999.
[54] Antonio Di Stasio, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Solving parity games

using an automata-based algorithm. In CIAA, pages 64–76, 2016.
[55] Antonio Di Stasio, Aniello Murano, and Moshe Y. Vardi. Solving parity games: Explicit vs symbolic.

In CIAA, pages 159–172, 2018.
[56] T. van Dijk. Oink: An implementation and evaluation of modern parity game solvers. In TACAS,

pages 291–308, 2018.
[57] S. Vester. Winning cores in parity games. In LICS, pages 662–671, 2016.
[58] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving parity games.

In CAV, pages 202–215, 2000.
[59] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite

trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

253

http://vlsi.colorado.edu/pub/

	Introduction
	Preliminaries
	Basic Definitions
	Symbolic Model of Computation
	The Progress Measure Algorithm

	Set-Based Symbolic Black Box Progress Measure Algorithm
	Improving the Basic Algorithm
	Correctness
	Symbolic Resources

	Implementing the Ordered Progress Measure
	Reducing the Number of Sets for the OPM
	Proof of Theorem 3

	Conclusion

