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Integrating robotics into construction is gaining momentum as a viable solution to industry 

challenges, such as low productivity, on-site errors, and others. Among these challenges, painting 

activity stands out due to its inherent hazards, including exposure to harmful substances and falls. 

Autonomous painting robots (APRs) emerge as a promising means to mitigate these risks. Although 

these APRs are equipped with sensing technologies to facilitate their task execution, the dynamic 

nature of construction environments often leads to errors generated by onboard sensors. This study 

presents an innovative approach that leverages Building Information Modeling (BIM) to enhance 

painting accuracy and efficiency. By extracting semantic and geometric data from BIM models, the 

system improves sensor data interpretation, enabling precise identification of building elements and 

boundary delineation for painting tasks. Furthermore, integrating project scheduling ensures collision 

avoidance with concurrent construction activities, enhancing overall task coordination and 

efficiency. This study addresses sensor-related errors inherent in construction robotics, offering a 

comprehensive solution for safer, more efficient painting operations.  
 

Keywords: Automation; Autonomous Painting Robots; Building Information Modeling; 

Construction Robotics. 
 

Introduction 
 

The adoption and implementation of robotics on construction sites have the potential to improve 

efficiency and safety significantly (Xu & deSoto, 2020). Of the various robotic systems that can be 

adopted and implemented on construction sites, autonomous painting robot (APR) can execute painting 

tasks with limited supervision and generate significant benefits to the potential adopters, such as 

minimized safety risks and improved productivity, when compared to traditional painting methods 

(Naticchia et al., 2007). Workplace safety incidents such as falls from heights, respiratory problems 

from exposure to toxic fumes, and musculoskeletal disorders (Park et al., 2016) can be significantly 

reduced with the implementation of APR. Unlike traditional painting methods that rely mainly on the 

expertise of human painters, APR can be designed to execute painting jobs with higher accuracy and 

speed than human painters and can be customized to adapt to different specifications when needed 

(Kahane & Rosenfeld, 2004). Also, APR is unsusceptible to most human limitations such as fatigue, 

distractions, and others, presenting the possibility of continuous operation when needed, leading to 

increased productivity and timesaving, especially in large-scale and/or time-constrained projects. 
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APRs are equipped with different sensors, algorithms for data collection, and processing to enable task 

execution. Vision sensors consist of cameras, color sensors, and dynamic vision sensors and stand at 

the frontline of these sensors. RGB-D cameras on an APR can capture detailed spatial images (including 

the surface to be painted), enabling APR to navigate the work environment and make necessary 

adjustments to achieve the desired painting trajectory (Zhang et al., 2015; Okonkwo & Awolusi, 2025). 

The sophisticated algorithms onboard APR, powered by artificial intelligence (AI), allow them to 

analyze visual data and make intelligent decisions (Asadi et al., 2021). Some of these decisions include 

appropriate brush strokes or spray pressure based on the texture of the surface. Brush-based painting 

robots are equipped with tactile sensors to enhance interaction with the surface. These robots can 

maintain brush stroke consistency and ensure uniform surface painting by gauging the pressure exerted 

during painting (Asadi et al., 2018).  
 

Since environmental factors such as temperature and humidity play a vital role in painting operations 

(Baglioni et al., 2016), APRs are equipped with sensors to monitor real-time environmental conditions 

(temperature and humidity). By monitoring real-time environmental conditions, APR can make 

necessary adjustments to the painting parameters to attain the desired painting quality with reduced risk 

of defects (such as blemishes, early flaking, and others). Despite the presence of these sophisticated 

sensors, their implementation in the construction industry is very limited. One of the reasons for such 

limited adoption/implementation can be attributed to the complexity of the work environment (Chen et 

al., 2018). The construction environment is dynamic, with co-occurring activities and the constant 

movement of workers, equipment, and materials. Further, changing lighting conditions can interfere 

with data acquisition by the APR onboard sensors, leading to errors and inconsistencies.  
 

By providing a digital representation of the physical components of a facility, Building Information 

Modeling (BIM) can reduce the error rate of APRs (Gagliardo et al., 2024). BIM is a three-dimensional 

virtual model representing a facility's physical and functional characteristics (Ding et al., 2014). BIM 

facilitates dynamic planning and coordination by updating the digital model with any changes on the 

construction site. Relying on this information, APRs can adjust painting based on the most updated 

model, reducing the need for human intervention. To improve accuracy by leveraging the parametric 

digital models generated with BIM, APR can compare the sensor data with the generated digital models, 

thereby allowing better decision-making (Kahane & Rosenfeld, 2004). BIM can also standardize 

surface specifications in the digital model, which can guide the development of the program used by 

APRs to adapt painting techniques (de Lima et al., 2023).  
 

Background 
 

BIM is a modeling process that depicts multi-dimensional models of projects in the construction 

industry (Tang et al., 2019). It is an elaborate data management tool consisting of datasets pertinent to 

building construction (such as schedule, cost management, and others) (Ding et al., 2014) and provides 

stakeholders (such as designers, contractors, and others) the opportunity to generate discipline-specific 

usable information (Langar & Pearce, 2014; Langar & Pearce, 2017: Fountain & Langar, 2018) 

depending on the maturity of the users (Fountain & Langar, 2018). BIM provides stakeholders enhanced 

transparency through comprehensive visual models with project specifications (Azhar, 2011). These 

essential details can impact decision-making, allowing access to problem mitigation and identifying 

alternatives (Rock et al., 2018). Data is integrated into diverse disciplines, enabling the creation of 

detailed digital representations of the input data sets.  
 

The Industry Foundation Curriculum (IFC) serves as a standardized digital description of the built 

environment and is a standardization for data incorporated within BIM design. IFC can be used across 

diverse hardware, software, and numerous application interfaces, allowing information exchange 
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between construction stakeholders and archiving project information (IFC 2024). The IFC schema used 

in BIM contains over 600 data categories (Liu et al., 2021). Visual elements and identifier codes are 

subject to variation based on the specific schema version and the category under which they fall. These 

visual IFC codes represent various elements, including walls, doors, windows, floors, roofs, and others.  
 

Construction robots have shown capabilities in performing tasks traditionally completed by the skilled 

labor force. According to Weaver (2018), as cited in Kim et al. (2021), a bricklaying robot by 

Construction Robotics increased the bricklaying speed by 3–5 times. The Demonstration Learning 

Study experiments showed that construction robots can be programmed to perform repetitive work tasks 

in a geometrically adaptive environment, executing work while sensing these changes (Liang et al., 

2019). According to Shaw (2015), DPR Construction has launched a robot specifically designed to 

improve the efficiency of creating drywall layouts. Thus, construction robots can effectively reduce the 

number of work hours by performing tasks at a higher efficiency and eliminating risks and limitations 

associated with the traditional workforce. 
 

APR currently uses different sensors such as Light Detection and Ranging (LiDAR), ultrasonic, and 

cameras to collect geometric data and used for creating 3D mapping of construction site zones for 

painting (Asadi et al., 2020; Frintrop et al., 2005). The 3D data collected from these sensors are not 

always accurate due to incomplete data sets and poor visual data. According to Ibrahim et al. (2019), 

challenges in the current methods of using LiDAR point cloud data in conjunction with BIM models 

include: inefficient manual data collection planning, lack of visual in-progress feedback, inaccuracies 

in the data collection plan and execution, loss of time, and costly manual placement of visual tags; in 

addition to high investment costs for specialists and the required equipment. These challenges currently 

faced with the existing methods establish the need for a new approach in developing a BIM integration 

framework for APR to improve efficiency and productivity. Current APR functions primarily through 

the use of LiDAR and Radio Detection and Ranging (RADAR); BIM could serve as an augmentation 

system for sensor data, identifying variances in the sensor's datum data, and the specified dimensions 

of the surveyed zone, mitigating errors and improving accuracy. 
 

Most studies on BIM integration in autonomous robots in construction have focused on navigation and 

path planning, with limited studies on construction task execution, such as painting (Chen et al., 2022; 

Hamieh et al., 2020; Zhao & Cheah, 2023). Gagliardo et al. (2024) proposed a BIM-integrated robotic 

color spraying approach using a fixed robotic arm. While this approach utilized semantic and geometric 

information from BIM, its reliance on manual efforts to position the robotic arm correctly limits its 

applicability in real-world scenarios and increases its susceptibility to human errors. Therefore, to 

address these limitations, this study presents a BIM-integrated APR framework that significantly 

reduces task execution errors by leveraging onboard sensors for autonomous operation, thereby 

minimizing the need for manual human intervention. 
 

Research Method 
 

To achieve the study's objective, a scoping review was conducted, sourcing relevant literature from the 

Scopus and Web of Science databases. Initially, 104 articles were identified, but a preliminary review 

led to the exclusion of 57 articles, primarily due to duplication or misalignment with the study's focus. 

The selection criteria included peer-reviewed articles and conference papers published in English, 

specifically examining BIM integration in autonomous robotic task planning and execution within the 

construction industry. After a full-text evaluation, an additional 22 studies were removed, narrowing 

the final sample to 25 (Figure 1). These selected studies were then critically analyzed, and findings were 

synthesized to inform the development of a BIM integration framework tailored for autonomous robotic 

applications in construction. 
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Figure 1. Research Methodology  

 

Results 
 

The framework's structure and phases—data extraction, analysis, task planning, and execution—were 

developed based on the findings from the review of existing literature on BIM integration in 

autonomous mobile robots (Figure 2). These phases align with established methodologies in robotic 

systems and BIM-based task optimization (Pan and Zhang, 2021). Data extraction (first stage) involves 

identifying relevant building information necessary for painting activities and extracting semantic and 

geometric data. Onboard sensors such as cameras and LiDAR are utilized to gather sensory data, while 

the project schedule is incorporated to aid in project planning. BIM data serves as a reference to enhance 

the accuracy of onboard robot sensors, thereby reducing errors. In the second stage (Data Analysis), 

APR uses the acquired sensory data to segment various building elements, preparing for painting tasks. 

BIM data is crucial in verifying the accuracy of surface boundaries generated by the APR. By providing 

a specified error margin, APR can make necessary adjustments to incorrect boundary identifications, 

ensuring precision in painting. The third stage (Task Planning) involves generating painting plans by 

APR based on information obtained during the previous phase. This includes determining the spraying 

angle and distance from the surface for optimized painting efficiency and quality. In the fourth phase 

(Task Execution), APR executes the painting task, implementing plans generated in the previous stages. 

 

 

Figure 2. BIM integration framework for autonomous wall painting 

 

Data Extraction 
 

The framework consists of three data sources: IFC, Sensory data from onboard sensors, and the project 

schedule. IFC standards serve as a common data model for exchanging information between different 

software applications. Five IFC elements considered in this framework are: IfcWall (wall information), 

IfcDoor (door details), IfcWindow (windows properties), IfcOpeninigElement (any wall opening 

parameter(s) other than doors and windows), and IfcCovering (ceiling properties) (Figure 3).  
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Industry Foundation Curriculum (IFC) 
 

IfcWall represents vertical building elements that define the boundaries of spaces. For APR 

applications, IfcWall data serves as a foundation for understanding the layout of surfaces requiring 

painting (IfcWall, 2024). By analyzing wall properties such as dimensions, orientation, and surface 

material, APR can generate optimized painting plans, adjust nozzle angles, and regulate paint flow rates 

to achieve uniform coverage across walls. IfcDoor provides information on openings within building 

elements that allow passage. By extracting data related to IfcDoor from BIM models, robotic painting 

systems can intelligently navigate construction sites, identify locations, and adjust painting patterns 

accordingly. Additionally, door dimensions and materials information can inform robotic painting 

parameters, ensuring precise coverage, and minimizing wastage (IfcDoor, n.d.). IfcWindow represents 

openings within building elements that provide views, daylight, or ventilation. Windows introduces 

complexity to APR tasks due to their varied shapes, sizes, and configurations. Integrating IfcWindow 

data into APR enables precise identification and characterization of window surfaces. APR can adapt 

painting strategies to accommodate windows, including masking off areas, adjusting spray patterns, and 

controlling paint overspray. Leveraging IfcWindow information enhances the accuracy and efficiency 

of painting processes while minimizing the risk of paint damage to window components. Similar to 

three elements, IfcOpeningElements and IfcCovering provide information on voids and 

coverings/claddings. Information from these elements is extracted in the data analysis stage. 
 

 
Figure 3. IFC element parameters 

 

Sensory Data 
 

The sensory data considered in this study are images from an onboard camera on the APR. Although 

there are various devices for environmental sensing, only a camera was considered in this framework 

to simplify the process by avoiding the complexity of multiple data analyses. Also, since this study is 

concerned primarily with painting task execution and not path planning of the mobile robot, images 

from a camera would suffice for object identification and segmentation. Images from onboard cameras 

on an APR provide real-time visual information on the work environment. These images are then 

processed with computer vision algorithms to extract relevant features like edges and contours. The 

real-time images from cameras facilitate quality control, ensuring uniform paint application and prompt 
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detection of defects (Asadi et al., 2021). Despite the above advantage of camera images, real-time 

images on a construction site can be affected by environmental factors like lighting conditions, 

occlusion, and shadows, which negatively affect the accuracy and quality of building element 

identification. By incorporating BIM data from IFC, these errors can be reduced by augmenting the 

feature, extracting data from onboard cameras with BIM data. 
 

Project Schedule 
 

Project schedule integration in robotic painting improves task coordination by aligning the task planning 

with the overall project schedule to minimize conflicts with other construction tasks. By continuously 

monitoring updates in the project schedule, APRs can adjust their operation to accommodate developing 

project requirements.   
 

Data Analysis 
 

In this phase, IFC data and sensory data obtained from the onboard sensor (camera) are analyzed. IFC 

data are parsed with IfcOpenShell to extract semantic and geometric information. Simultaneously, 

images from onboard cameras are analyzed with YOLO v7 for feature identification and segmentation. 

Results from the feature identification are compared with IFC data to improve prediction accuracy and 

reduce segmentation errors. The relational database in this phase is a storehouse of boundary 

information from IFC information and final information based on both IFC and sensory data. 

Juxtaposing this information will provide insight into the level of accuracy of project execution, as well 

as provide facility managers with as-built dimensions of the project. 
 

IFC Data Parsing 
 

IFC data parsing aims to extract geometric and semantic information from the BIM model. Geometric 

information describes an element’s shape, size, and position in a 3D environment (Xu et al., 2022). It 

also includes lines, curves, and volumes that collectively define the physical form of a building element. 

Semantic information includes element type, material properties, function, and other non-geometric 

data that provide contextual meaning to a building element (Karan et al., 2015). In this study, 

IfcOpenShell is employed for IFC data parsing. IfcOpenShell is an open-source library for parsing IFC 

file format (IfcOpenShell, 2024) and pseudocode for implementing IfcOpenShell (Figure 4). 

 

 
Figure 4. Pseudocode for implementing IfcOpenShell adopted in the study 

 
Import libraries and dependencies 

   IfcOpenShell 

   Other data manipulation libraries 

Define task functions like: 

   Loading an IFC file 

   Accessing and manipulating data in the IFC file 

   Information extraction from the IFC file 

Main program: 

   // Load IFC file 

   ifc_file_path = "specify path" 

   ifc_model = IfcOpenShell.Open(ifc_file_path) 

   // Access information from the IFC model 

   entities = ifc_model.GetEntities()   

   // Example: Extract specific information (e.g., doors) 

   walls = ifc_model.GetDoors() 

   for door in doors: 

       door_properties = wall.GetProperties() 

       print("Door:", door_properties) 

   // Other operations like geometry processing, visualization, etc. 

Handle errors gracefully and close the IFC model properly 

   Catch exceptions and errors 

   Close the IFC model and release resources 
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Feature Detection 
 

YOLO v7 is the feature detection algorithm adopted in this framework. The YOLO v7 model, 

characterized by its single-pass architecture and efficient object localization (Wang et al., 2022), proves 

instrumental in feature detection for task planning in painting robots. YOLO v7 facilitates semantic 

understanding of the environment, allowing APR to differentiate between different surfaces and apply 

appropriate painting techniques. First, annotated images of the painting environment are collected and 

labeled with bounding boxes around relevant features. The dataset should include diverse scenarios to 

ensure the model's generalization capability. This is followed by training the algorithm with the 

annotated dataset to learn the visual representations of features. In situations like insufficient training 

data, transfer learning techniques can be employed by fine-tuning pre-trained models on large-scale 

datasets like ImageNet to improve performance (Krizhevsky et al., 2017). Upon completion of the 

algorithm training, it is integrated into the APR operating system. This integration involves developing 

interfaces for image acquisition from onboard cameras, real-time inference using the trained model, and 

decision-making based on detected features.  
 

Feature Matching 
 

BIM data are converted into YOLO v7 compatible format to integrate with camera image data. For this 

study, 3D point cloud is adopted as the preferred format. A 3D point cloud is a group of data points 

representing measurements of an object’s surface (Guo et al., 2021). Figure 5 below provides an 

overview of the data analysis and feature mapping steps. 
 

 
Figure 5. Data analysis and feature-matching steps 

 

To convert BIM data to point cloud, the IFC format is parsed with IfcOpenShell to extract geometric 

and semantic information about the building. The building elements' geometric representation, such as 

boundary representation, are converted to geometric primitives like edges and vertices, which are more 

suitable for point cloud generation. Subsequently, the sampling strategy to generate points representing 

the surface of building elements is defined. For instance, planar surfaces like walls and floors are 

sampled within the surface boundaries, while points that approximate the surface geometry accurately 

are generated for curved surfaces by adaptive sampling. To capture detailed geometry without 

compromising efficiency, point density and distribution are considered in the process. The generated 

3D point coordinates are converted from the local IFC file system to the global coordinate system to 

ensure consistency between the coordinate system of the point cloud and other data used in the system 

optimization. Detected features, such as bounding boxes from YOLO v7, are mapped to the 

corresponding BIM model elements. The spatial relationship between the image prediction and the BIM 

model is analyzed by the Intersection over Union (IoU) technique. IoU is a metric used to measure the 

overlap between two bounding boxes, in this case, the prediction from YOLO v7 and that of the BIM 

elements. IoU operates by calculating the area of intersection and area of union between the bounding 
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boxes and computes the ratio of intersection area to union area (Rahman & Wang, 2016). Based on the 

ratio, the accuracy of the prediction of YOLO v7 is determined. Discrepancies between the BIM model 

and image predictions are analyzed to identify necessary adjustments to the confidence threshold of the 

YOLO v7 algorithm. At this stage, semantic information from the BIM model, such as material type 

and surface properties, are incorporated to improve the prediction quality. Finally, the improved 

accuracy of the model is validated by comparing the refined predictions with the BIM model. 
 

Task Planning  
 

To plan a painting task, boundaries of building elements are established based on the data analysis and 

feature mapping obtained from YOLO v7 feature detection and parsed IFC data. Before task planning, 

final boundary identification information is stored in the relational database to provide building as-built 

dimensions, which facility managers can use for building maintenance. The data from defined 

boundaries and building elements is sent to the Robot Operating System (ROS) node, where the 

spraying motion plan is generated. ROS is an open-source framework designed to facilitate robotic 

software development (Iñigo-Blasco et al., 2012). The modularity and hardware abstraction features of 

ROS allow developers to program the functioning of the nodes to communicate with each other, 

enabling seamless integration of different functionalities (Hellmund et al., 2016), with the basic ROS 

concept operation depicted in Figure 6.  
 

 
Figure 6. Robot Operating System (ROS) operation concept (source: clearoathrobotics.com) 

 

Task Execution 
 

The execution of the painting task relies on ROS’s motion control and coordination capabilities to 

translate planned actions into physical movements of the APR. ROS nodes control the robot’s actuators, 

such as motors, to drive APR movement and adjust painting tools (Iñigo-Blasco et al., 2012). ROS 

nodes are pivotal in controlling the APR’s actuators, including motors responsible for driving the robot's 

movement and motors for adjusting painting tools such as spray nozzles. These nodes communicate 

with hardware drivers and interface with the robot's control system, issuing commands to regulate 

velocity, orientation, and actuator positions with high accuracy and reliability. Additionally, ROS 

provides libraries for implementing feedback control loops, enabling APR to continuously monitor its 

state and adjust its actions in response to environmental changes or deviations from the planned 

trajectory. Project schedule information is integrated into the task planning process with ROS to 

improve the APR's coordination within the project. With access to real-time project timelines, APR can 

prioritize tasks based on project constraints and optimize activities to align with project objectives. 

 

By establishing communication between the APR and the ROS incorporated with BIM, the APR can 

receive calculated instructions and detailed painting parameters from the ROS system. These 

transmitted instructions can include the sequence for painting, specified quality standards, and surfaces 

to be targeted for task execution. During the painting process, the APR can transmit feedback back to 

the ROS to provide insightful data such as the project progression, status updates, and quality results. 

This communication bridges the software together to work cohesively to prioritize tasks, plan a detailed 
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work schedule around conflicting work schedules in the same zone, determine time-saving painting 

paths, and use ideal paint spray settings to achieve quality results in a time-efficient manner. 
 

Conclusion 
 

This paper presents a conceptual framework for integrating BIM with APR to enhance productivity and 

reduce errors in task execution using a literature review. First, BIM data are parsed to extract semantic 

and geometric data to augment the sensory data from onboard sensors. For this study, YOLO v7 was 

adopted as the feature detection algorithm to process the images captured by onboard APR cameras. 

Subsequently, the BIM model and onboard camera visual data are juxtaposed to improve accuracy. The 

output is then fed to ROS for task planning and execution alongside data from the project schedule. In 

addition to addressing sensor-related errors in construction robotics, the framework provides facility 

managers with as-built information about the project, which is stored in a relational database.  
 

Given the conceptual nature of this study, there are several limitations to this study. First, the 

framework's components are developed based on the findings of existing studies. Like most conceptual 

studies, the reliance on theory sometimes overlooks empirical realities and practical constraints that 

may arise in real-world scenarios. Further studies will look into the implementation of the framework 

and the feasibility and interoperability of the software proposed by this study. Also, knowledge of BIM 

is required to operationalize OpenBIM as part of the framework implementation. 
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