Progress in Automating Higher-Order Ontology
Reasoning”

Christoph Benzmiiller and Adam Pease
Articulate Software, CA, USA {cbenzmueller,apease}@articulatesoftware.com

Abstract

We report on the application of higher-order automated theorem proving in ontology
reasoning. Concretely, we have integrated the Sigma knowledge engineering environment
and the Suggested Upper-Level Ontology (SUMO) with the higher-order theorem prover
LEO-II. The basis for this integration is a translation from SUMOQO’s SUO-KIF represen-
tations into the new typed higher-order form representation language TPTP THF. We
illustrate the benefits of our integration with examples, report on experiments and analyze
open challenges.

1 Introduction

In recent years much progress has been made regarding applications of first-order automated
theorem provers (FO-ATP) in ontology reasoning and question answering. A prominent example
is the application of FO-ATPs to the Suggested Upper-Level Ontology (SUMO) [22]. Related
work has also been reported for Cyc [24] and the LogAnswer question answering system [13],
and further related references are given in [I3]. In all those approaches, translations from the
ontology representation languages into proper first-order representations are employed.

Challenges that have been identified in this application context, amongst others, include
the large theories challenge and answer extraction problem. The former addresses the problem
that the proofs are often shallow while the axiom sets are usually huge and may contain lots of
information irrelevant to a given query. The latter deals with the issue of extracting single or
multiple answers to queries from prover output.

Another challenge, which is in the focus of this paper, is that knowledge bases such as SUMO
contain a small but significant amount of higher-order representations. SUMO, for example,
began as just an upper level ontology encoded in first-order logic but subsequently its logic has
been expanded to also include higher-order elements.

The approach taken in the above systems to reason with higher-order content is to employ
specific translation ’tricks’, possibly in combination with or in addition to some pre-processing
techniques. An example is the quoting technique for embedded formulas as employed in the
Sigma knowledge engineering environment [22]. Unfortunately, however, this solution is strongly
limited. The effect is that many desirable inferences are currently not supported, so that many
queries cannot be answered. Illustrating examples are presented in this paper and a solution is
proposed that employs higher-order automated theorem proving (HO-ATP) for the task. Our
solution exploits the new TPTP infrastructure for higher-order automated theorem proving [27]
and provides a generic translation from the Standard Upper Ontology Knowledge Interchange
Format (SUO-KIF) [20] into the new typed higher-order form (THF) language of the TPTP.

This paper is structured as follows. In Section [2| we briefly sketch the background of our
work. Section [3] further motivates it with examples. Our translation from the SUO-KIF to
TPTP THEF is presented in Section[d] Implementation, system integration and experiments are
reported in Section [5| The paper ends with a discussion of open challenges and future work.

*This work was funded by the German Research Foundation (DFG) under grant BE 2501/6-1.

22 R.A. Schmidt, S. Schulz, B. Konev (eds.), PAAR-2010 (EPiC Series, vol. 9), pp. 22

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

2 Background

SUMO [17] is an open source’, formal ontology. In addition to the expressive logic it was au-
thored in, it has also been translated into the OWL semantic web language. It has undergone
ten years of development, review by a community of hundreds of people, and application in
expert reasoning, linguistics and performance testing for theorem provers. SUMO has been
subjected to partial formal verification with automated theorem provers. This consisted of
asking a theorem prover to prove the negation of each axiom in the knowledge base. While
necessarily incomplete, this did focus the attention of the prover with more success than simply
asking it to prove "false”. With repeated testing on incrementally more generous time allot-
ments, this method caught a number of non-obvious contradictions. It has been one method of
many partial methods to ensure quality and consistency.

SUMO covers areas of knowledge such as temporal and spatial representation, units and
measures, processes, events, actions, and obligations. SUMO has been extended with a number
of domain specific ontologies, which are also public, together they number some 20,000 terms
and 70,000 axioms. Domain specific ontologies extend and reuse SUMO, for example, in the
areas of finance and investment, country almanac information, terrain modeling, distributed
computing, and biological viruses. SUMO has also been mapped by hand [I§] to the entire
WordNet lexicon of approximately 100,000 noun, verb, adjective and adverb word senses, which
not only acts as a check on coverage and completeness, but also provides a basis for application
to natural language understanding tasks.

SUMO has natural language generation templates and a multi-lingual lexicon that allows
statements in SUMO to be automatically paraphrased in multiple natural languages.

The formal language of SUMO is SUO-KIF, a simplified version of the original KIF [14],
with extensions for higher-order logic. Since SUO-KIF syntax is rather self-explaining we avoid
a formal introduction here and provide some explanations on the fly. For further details we
refer to [20].

Sigma [21] is a browsing and inference system that is both a stand-alone system for ontology
development and an embeddable component for reasoning. We have also developed a set of
optimizations that improve the performance of reasoning on SUMO, typically by “trading space
for time” — pre-computing certain inferences and storing them in the knowledge base [2I]. In
many cases this results in speedups of several orders of magnitude. While Sigma originally
included only the Vampire prover for performing logical inference on SUMO, it now embeds
the TPTPWorld environment [29], giving it access to some 40 different systems, including
the world’s most powerful automated theorem provers and model generators. Sigma now also
integrates the SInE reasoner [16], which was the winner of the SUMO division of the CASC
international theorem proving competition [23]. Use of the SInE axiom selection system has
been shown to provide orders of magnitude improvements in theorem proving performance
compared to using top-performing theorem prover, such as E or Vampire, alone. By selecting
its best guess at axioms relevant to a particular query, it can dramatically reduce the search
space for solving queries on large knowledge bases, such as SUMO, where only a small number
of axioms are likely to be relevant to any given query. Sigma handles making statements and
posing queries to the different reasoners, optimizing the knowledge sent to them to support
efficient inference, and handling their output, formatting answers and proofs in a standard and
attractive format. Sigma includes a Java API and XML messaging interface.

HO-ATP is currently experiencing a renaissance that has been fostered by the recent exten-
sion of the successful TPTP infrastructure for first-order logic [26] to higher-order logic, called

Terw . ontologyportal.org

23

www.ontologyportal.org

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

TPTP THF [27,28]. Available HO-ATPs include LEO-II [10], TPS [2], IsabelleP, IsabelleM /N?
and Satallax [3]. These systems are available online via the SystemOnTPTP tool [25], they
support the TPTP THF infrastructure, and they employ THFO [I1], the simple type theory
fragment of the THF language, as input language.

3 Examples and Challenges

Our goal has been to enable and study applications of HO-ATP for question answering in
ontology reasoning, exemplary in SUMO. In this section we present some motivating examples.
They illustrate the potential of our approach to reason within temporal and other contexts. We
also point to a problem regarding Boolean extensionality and epistemic modalities.

Embedded Formulas Embedded formulas are one prominent source of higher-order aspects
in SUMO. This is illustrated by the following example, which has been adapted from [22].
(Premises are marked with P and the query is marked with Q. In SUMO variables always start
with a ’?’. Free variables in queries are implicitly existentially quantified and those in premises
are implicitly universally quantified.)

Example 1 (During 2009 Mary liked Bill and Sue liked Bill. Who liked Bill in 20097).
P1: (holdsDuring (YearFn 2009) (and (likes Mary Bill) (likes Sue Bill)))
Q: (holdsDuring (YearFn 2009) (likes 7X Bill))

The challenge is to reason about the embedded formulas (and (likes Mary Bill) (likes
Sue Bill)) and (likes 7X Bill) within the context (holdsDuring (YearFn 2009) ...).
In our example, the embedded formula in the query does not match the embedded formula in
the premise, however, it is inferable from it. The quoting technique presented in [22], which
encodes embedded subformulas as strings, fails for this query. There are possible further ’tricks’
though which could eventually be applied. For example, we could split P1 in a pre-processing
step into P2: (holdsDuring (YearFn 2009) (likes Mary Bill)) and P3: (holdsDuring
(YearFn 2009) (likes Sue Bill)). However, such means quickly reach their limits when
considering more involved embedded reasoning problems. The following modifications of Ex-
ample [I] illustrate the challenge.

Example 2 (Example [I| modified; ’and’ reformulated).
P4: (holdsDuring (YearFn 2009)

(not (or (not (likes Mary Bill)) (mot (likes Sue Bill)))))
Q: (holdsDuring (YearFn 2009) (likes 7X Bill))

Example 3 (At all times Mary likes Bill. During 2009 Sue liked whomever Mary liked. Is
there a year in which Sue has liked somebody?).

P5: (holdsDuring ?Y (likes Mary Bill))

P6: (holdsDuring (YearFn 2009) (forall (?X) (=> (likes Mary ?X) (likes Sue 7X))))
Q: (holdsDuring (YearFn 7Y) (likes Sue 7X))

In particular, Example [3illustrates that the reasoning tasks may indeed quickly become non-
trivial for approaches based on translations to first-order logic. This example can be further
modified as follows. Here we use a propositional variable 7P in order to encode that what
generally holds also holds in all holdsDuring-contexts.

2TsabelleM and TsabelleN are model finders in the Isabelle proof assistant [I9] that have been made available
in batch mode, while IsabelleP applies a series of Isabelle proof tactics in batch mode.

24

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

Example 4 (What holds that holds at all times. Mary likes Bill. During 2009 Sue liked
whomever Mary liked. Is there a year in which Sue has liked somebody?).

P7: (=> 7P (holdsDuring 7Y ?7P))

P8: (likes Mary Bill)

P9: (holdsDuring (YearFn 2009) (forall (7X) (=> (likes Mary ?7X) (likes Sue 7X))))
Q: (holdsDuring (YearFn ?Y) (likes Sue 7X))

We may instead of P7 express that true things hold at all times in an alternative way, cf.
P7’ below.?

Example 5 (Example {4 modified).

P7: (holdsDuring 7Y True)

P8: (likes Mary Bill)

P9: (holdsDuring (YearFn 2009) (forall (7X) (=> (likes Mary 7X) (likes Sue 7X))))
Q: (holdsDuring (YearFn 7Y) (likes Sue 7X))

Some key steps of the informal argument for the latter query are: Since True is always valid
and since we assume (likes Mary Bill) we know that these two formulas are equivalent.
Hence, they are equal. We can thus replace True in (holdsDuring ?Y True) by (likes Mary
Bill). The remaining argument is straightforward.

Set abstraction Another important higher-order construct in SUMO is the set (or class)
constructor KappaFn. It takes two arguments, a variable and a formula, and returns the set (or
class) of things that satisfy the formula. We illustrate the use of KappaFn in Example @

Example 6 (The number of people John is grandparent of is less than or equal to three. How
many grandchildren does John at most have?).

P10: (<=> (grandchild ?X ?Y) (exists (?Z) (and (parent ?Z 7X) (parent ?Y 7Z))))
P11: (<=> (grandparent ?X 7Y) (exists (?Z) (and (parent ?X ?Z) (parent 7Z ?7Y))))
P12: (lessThanOrEqualTo (CardinalityFn (KappaFn 7X (grandparent John 7X))) 3)
Q: (lessThanOrEqualTo (CardinalityFn (KappaFn 7X (grandchild 7X John))) ?7Y)

The query can be proved valid independent of the specific axiomatization of CardinalityFn.
This is because the embedded set abstractions can be shown equal.

Extensionality In the examples discussed so far we have assumed that the semantics of our
logic is classical and that the Boolean and functional extensionality principles are valid. In
particular Boolean extensionality, which says that two formulas P and Q are equal if and only if
they are equivalent (or, alternatively, that there are not more than two truth values), is relevant
for all of the examples above. Without it we could not even prove the following query since the
denotations of the two embedded formulas could be different despite the equivalence of these
formulas.

Example 7 (During 2009 Mary liked Bill and Sue liked Bill. Is it the case that in 2009 Sue
liked Bill and Mary liked Bill?).

P1: (holdsDuring (YearFn 2009) (and (likes Mary Bill) (likes Sue Bill)))

Q: (holdsDuring (YearFn 2009) (and (likes Sue Bill) (likes Mary Bill)))

3Instead of P7’ we may equally well use e.g. P7”: (holdsDuring 7Y (equal Chris Chris)) or any other
embedded tautology.

25

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

Functional extensionality, which is required in Example [in combination with Boolean
extensionality, has been discussed as an option for the semantics of KIF in [I5]. The validity of
Boolean extensionality has never been questioned though in the literature. Weakening it would
require a semantics with more than two truth values and this is not considered an option,
neither in [I5] nor in [20]. For a detailed discussion of functional and Boolean extensionality in
classical higher-order logic we refer to [7].

Modalities Challenge Assuming Boolean extensionality in the semantics of SUO-KIF seems
perfectly fine for the above examples. We do not want to conceal, though, the following problem
related to it. SUMO employs epistemic modalities, such as believes and knows. When used
in combination with Boolean extensionality, however, inferences are enabled that do obviously
contradict their intended meaning. We give an example that is very similar to Example [} the
main difference is that the temporal context has been replaced by an epistemic context.

Example 8 (Adapted Example [5| within epistemic context: Everybody knows that Chris is
equal to Chris. Mary likes Bill. Chris knows that Sue likes whomever Mary likes. Does Chris
know that Sue likes Bill?).

P7’: (knows 7Y (equal Chris Chris))

P8: (likes Mary Bill)

P9’: (knows Chris (forall (7X) (=> (likes Mary ?7X) (likes Sue 7X)))

Q: (knows Chris (likes Sue Bill))

Assuming Boolean extensionality the query is valid, even though we have not explicitly
stated the fact (knows Chris (likes Mary Bill)). Intuitively, however, this assumption
seems mandatory for enabling the proof of the query. Hence, we here (re-)discover an issue
that some logicians possibly claim as widely known: modalities have to be treated with great
care in classical, extensional higher-order logic. Our ongoing work therefore studies how we can
suitably adapt the modeling of affected modalities in SUMO in order to appropriately address
this issue.

Relation and Function Variables Generating suitable instantiations for relation or func-
tion variables is another prominent higher-order challenge. For instance, in the following query
the relation sib, with (sib ?X ?Y) if and only if (or (sister ?X ?7Y) (brother ?7X ?Y))))),
is a valid instantiation for the queried variable ?R. (There are other instantiations possible for
?R in our example though and enumerating them is a challenge for future work.) Our example
illustrates that the invention of new concepts like the notion of sibling from simpler notions
like brother and sister is in principle feasible in higher-order logic, though there are clearly
practical limitations.

Example 9 (Mary, Sue, Bill and Bob are mutually distinct. Mary is neither a sister of Sue
nor of Bill, and Bob is not a brother of Mary. Sue is a sister of Bill and of Bob, and Bob is a
brother of Bill. Is there a relation that holds both between Bob and Bill and between Sue and
Bob; we exclude the trivial universal relation AX,Y.T).

P13: (and (not (equal Mary Sue)) (not (equal Mary Bill)) (not (equal Mary Bob))
(not (equal Sue Bill)) (not (equal Sue Bob)) (not (equal Bob Bill)))

P14: (and (not (sister Mary Sue)) (not (sister Mary Bill)) (not (brother Bob
Mary)))

P15: (and (sister Sue Bill) (sister Sue Bob) (brother Bob Bill))

Q: (and (7R Bob Bill) (7R Sue Bob) (not (forall (?X ?Y) (7R 7X ?7Y))))

26

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

4 THF Translation

The main objective for our translation from SUMO to TPTP THFO [11] has been to enable
inferences as required for query examples as presented above.

THFO provides a syntax for Church’s simple type theory [I], that is, a classical logic built
on top of the simply typed A-calculus. The standard base types in simple type theory are o and
¢; the former denotes the set of Booleans and the latter a (non-empty) set of individuals . They
are represented in THF0 as $i and $o. Further base types can be declared as needed. Function
types in THFO are encoded with the >-constructor, e.g. the type of predicates (resp. sets)
over type $i is denoted as $1 > $o. THFO files obey the convention that the types of constant
symbols and variable symbols have to be declared before their first use. Type declarations for
constant symbols are typically provided in a type signature part at the beginning of each THFO0
file while types of variable symbols are provided in their binding positions.

In our translation of SUMO to THFOQ we recursively analyze all SUMO terms and subterms
with the aim of assigning consistent type information to them. From this process we then extract
the assigned type information for all constant and variable symbols as required in THFO files.
When applying our transformation procedure to P12, for example, we generate the following
THFO information:

%4% The extracted Signature %%%
thf (grandparent _THFTYPE_IiioI,type, (
grandparent _THFTYPE_IiioI: $i > $i > $o)).

thf (1CardinalityFn_THFTYPE_IIioIil,type, (
1CardinalityFn_THFTYPE_ITioIil: ($i > $o0) > $i)).

thf (1John_THFTYPE_i,type, (
1John_THFTYPE_i: $i)).

thf (1tet _THFTYPE_IiioI,type, (
ltet _THFTYPE_IiioI: $i > $i > $o)).

thf (n3_THFTYPE_i, type, (
n3_THFTYPE_i: $i)).

%%% The translated axioms %%%
thf (ax,axiom,
(1ltet_THFTYPE_IiioIl
@ (1lCardinalityFn_THFTYPE_IIioIil
@ "~ [X: $i]
(grandparent_THFTYPE_Iiiol @ 1lJohn THFTYPE i @ X))
@ n3_THFTYPE_i)).

This THFO representation is, for obvious reasons, not intended for human consumption.
It serves the sole purpose of communicating the reasoning problem to the higher-order the-
orem provers. We briefly sketch a few aspects: (i) So far, we use THFO type $i as only
base type other than $o; for example, SUMO formulas and sentences are mapped to type $o
while constants such as 1John_THFTYPE_i and n3_THFTYPE_i, which are the translations of the

27

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

SUMO constants John and 3, are currently both declared of type $i.* Function types, e.g. for
1CardinalityFn THFTYPE ITioIil, are determined by our translation algorithm. Future work
includes the introduction of further base types in combination with a better exploitation of the
rich typing information already available in SUMO. (ii) As expected, the simple type computed
for 1CardinalityFn_THFTYPE ITIioIiI®, the translation of SUMO constant CardinalityFn, is
($1i > $0) > $i, that is, the arguments for this constant have to be sets of objects of type
$i. (iii) KappaFn is mapped to A-abstraction.

Assigning types to SUMO terms is in fact not as straightforward as this example might sug-
gest. One major problem is that SUMO supports self-applications as in the following SUMO
axiom.

(instance instance BinaryRelation)

In order to translate such axioms we currently split affected constants like instance into
separate constants:

%h% The extracted Signature %%%
thf (1BinaryPredicate_THFTYPE_i,type, (
1BinaryPredicate_THFTYPE_ i: $i)).

thf (instance_THFTYPE_IIiioIioI,type, (
instance_THFTYPE_IIiioIioI: ($i > $i > $o) > $i > $0)).

thf (instance_THFTYPE_IiioI,type, (
instance _THFTYPE_IiioI: $i > $i > $o)).

%%% The translated axiom(s) %%%
thf (ax,axiom,
(instance_THFTYPE_IIiioIiol @ instance_THFTYPE_Iiiol
@ 1BinaryPredicate_THFTYPE_i)).

Obviously, we thereby lose important information, for example, in our examples we now
only know that instance THFTYPE_ IiioI denotes a binary relation. If we want this information
restored for instance THFTYPE IIiioIiol we can generate a new constant
instance THFTYPE IITiiolioIiol and a new axiom

thf (ax,axiom, ((instance_THFTYPE_IIIiioIioliol @ instance_THFTYPE_IIiioIliol
@ 1BinaryPredicate_THFTYPE_i))).

Currently such a duplication of axioms is still disabled in our translation. Future work,
however, will study the need for such duplications more closely.

Our first project goal has thus been achieved, namely to provide a translation of the entire
SUMO into THFO that can be parsed and type checked by all THFO reasoners in the TPTP
and that, in spite of its need for further improvement, can already serve as a starting point for
examples as we have discussed.®

4TPTP syntax requires all constants in lower case, hence, the leading I’ and 'n’. Moreover, we also encode
the computed type information in the constant name; the reasons for this will become clear below.

5The ’I’s encode bracketing information.

6The THFO translation of SUMO is available at: http://www.ags.uni-sb.de/~chris/papers/SUMO. thfl

28

http://www.ags.uni-sb.de/~chris/papers/SUMO.thf

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

5 System Implementation, Integration, and Initial Exper-
iments

The THF translation mechanism has been implemented as part of the Sigma environment.
This enabled the reuse of already existing infrastructure, e.g. for manipulating formulas and
knowledge bases, as well as the reuse of existing first-order logic TPTP tools in Sigma.

Additionally, an initial integration of the LEO-II system has been created with Sigma. There
are three modes in which LEO-II can be applied to queries in this integration. The local mode
only translates the user assertions and the query, the global mode translates the entire SUMO
knowledge base and then adds the user assertions and the query, and the SInE mode employs
Hoder’s SInE system to extract a (hopefully) relevant subset of the axioms from the SUMO
knowledge base.

We have conducted initial experiments with the LEO-II prover (version v1.1) integrated to
Sigma: All examples in this paper can be effectively solved by LEO-II in local mode, except for
Example 9: Ex.1(0.19s), Ex.2 (0.19s), Ex.3 (0.13s), Ex.4 (0.16s), Ex.5 (0.08s), Ex.6 (0.34), Ex.7
(0.18s), Ex.8 (0.04s), Ex.9 (2642.55s) — the timings were obtained on a standard MacBook Pro
with a 2.4 GHz Intel Core 2 Duo processor and 2GB of memory. There is actually no general
problem with Example 9, only LEO-II performs particularly poorly on it and the reasons for
this should be investigated. Tests with other HO-ATPs via the SystemOnTPTP tool confirm
that IsabelleP, for example, finds a proof in 10s.

We have submitted 28 related examples, each in two or three different versions, to the TPTP
for inclusion. The different versions are corresponding to the three modes for calling LEO-II in
Sigma as discussed before. Recent experiments of Geoff Sutcliffe with his TPTP infrastructure
indicates that LEO-II is slightly ahead of the other provers for these example problems. The
important news, however, is that the main hypotheses of our work has been confirmed: higher-
order automated reasoners have the potential to advance the state-of-art in ontology reasoning
and question answering. This has also been confirmed by the detection (and subsequent fixing)
of some problematic axioms in SUMO in the course of our experiments. For example, in the
following axiom for ‘pretending’ the last occurrence of True has been detected as semantically
wrong and was subsequently replaced by False (‘pretending’ is is a social interaction where a
cognitive agent or group of cognitive agents attempts to make another cognitive agent or group
of cognitive agents believe something that is false):

(=> (instance 7PRETEND Pretending)
(exists (7PERSON 7PROP) (and (hasPurpose 7PRETEND (believes 7PERSON 7PROP))
(truth ?PROP True))))

Moreover, not only HO-ATP theorem provers are applicable to support ontology reasoning
but also higher-order model finders. The IsabelleN model finder, for example, has revealed
several typos in earlier versions of our example problems by constructing countermodels.

On the downside, however, our tests also show that much further work is needed for turning
our proof of concept into a practically reliable and robust success story. For example, only very
few of our examples can currently be solved in the SInE mode and even less can be solved in
the global mode. Hence, the challenges involved in making inference efficient over large theories
turns out even worse for the HO-ATPs than it already is for the FO-ATPs. This was to be
expected though, in particular, since the theoretical and technical maturity of HO-ATPs is still
many years, if not decades, behind those of FO-ATP systems.

29

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

6 Discussion

In this paper we have shown that HO-ATP is in principle capable of advancing the state-of-art
in ontology reasoning and question answering in expressive frameworks such as SUMO. There
are many open issues though that require much further thought and work. We briefly discuss
a few.

The large theories challenge requires the development or adaptation of strong relevance
filters such as SInE. We are still using an older version of SInE and we speculate that the latest
version, in which the maximal number of selected axioms can be predetermined by a parameter,
may already significantly improve the performance of the HO-ATPs in SInE mode.

There is also an important meta-reasoning task to be solved for Sigma. Currently, the
selection of reasoners and further options is task of the user. In the future, however, we plan
to automate this task. We envision distributed, possibly even cooperative, proof attempts by
reasoners working for different translation targets like TPTP FOL and TPTP THF. Hence,
the intended meta-reasoner needs to support various non-trivial tasks including: (i) selection of
appropriate reasoners and translation targets, (ii) relevance filtering, (iii) control of (distributed)
prover execution, (iv) extraction of answers from prover results, (v) result verification, (vi)
preparation of answers and their presentation to the user.

For several of these tasks existing technology can possibly be adapted. Answer extraction,
for example, is already supported in Sigma for all first-order provers which obey the standardized
TPTP proof output format. And for supporting distributed or even cooperative reasoning with
external systems in Sigma the agent-based OANTS architecture [12] can possibly be adapted.

One of the most interesting and relevant challenges, however, is the modalities challenge.
As we have shown, Boolean extensionality and epistemic modalities such 'knows’ or 'believes’,
for example, do not go well together. This observation is relevant beyond the borders of SUMO
and it clearly also affects the current first-order translations: if they will eventually be extended
so that they can successfully handle Examples |4 and [5, then they will also face the problem of

Example

Traditional (propositional) modal logics approaches and reasoners seem hardly applicable
for the task since the modalities are usually employed in SUMO in combination with other
first-order and higher-order constructs. One of our current research directions therefore aims
at exploiting recent results that show how (multi-)modal logics can be elegantly encoded as
simple fragments of higher-order logics [9}[8]. The idea is to consider modalities such as "knows’
or ’believes’ as abbreviations for lambda-terms (as presented in [9]) denoting the appropriate
modal operators. This solution explicitly supports the coexistence of different modalities in
combination with other first-order and higher-order constructs. Related case studies on epis-
temic reasoning (for example, an elegant and efficient solution of the Wise Men Puzzle) with
classical, extensional higher-order theorem provers can be found in [6].

We may also consider a modification of the theorem prover LEO-II and its underlying
calculus. The idea would be to provide means for annotating function and predicate symbols
regarding their pre-determined extensionality properties and to distinguish in the inference
process according to these annotations. holdsDuring, for example, would be annotated as
fully extensional, while knows and believes would not. Hence, the inference in Example
could be blocked in the prover while Example [5| would still go through. A respective research
proposal in such a direction can already be found in [5] (which unfortunately was not funded at
the time). Such a solution would allow us to make an informed and context-dependent choice
regarding the extensionality principles for the semantics of SUO-KIF.

30

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

References

1]
2]
3]

(4]

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

(19]

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof. Kluwer Academic Publishers, second edition, 2002.

Peter B. Andrews and Chad E. Brown. TPS: A hybrid automatic-interactive system for developing
proofs. Journal of Applied Logic, 4(4):367-395, 2006.

Julian Backes and Chad E. Brown. Analytic tableaux for higher-order logic with choice. In
J. Giesl and R. Haehnle, editors, IJCAR 2010 - 5th International Joint Conference on Automated
Reasoning, LNAI, Edinburgh, UK, July 2010. Springer. to appear.

P. Baumgartner, A. Armando, and D. Gilles, editors. Proceedings of the 4th International Joint
Conference on Automated Reasoning, number 5195 in Lecture Notes in Artificial Intelligence.
Springer, 2008.

Christoph Benzmiiller. ALONZO: Deduktionsagenten héherer Ordnung fiir Mathematische As-
sistenzsysteme. Research project proposal to the DFG Aktionsplan Informatik, available at
http://www.ags.uni-sb.de/~chris/papers/R23.pdf, 2003.

Christoph Benzmiiller. Automating Quantified Multimodal Logics in Simple Type Theory — A Case
Study. SEKI Working-Paper SWP-2009-02 (ISSN 1860-5931)). SEKI Publications, DFKI Bremen
GmbH, Germany, 2009. http://arxiv.org/abs/0905.4369.

Christoph Benzmiiller, Chad Brown, and Michael Kohlhase. Higher-order semantics and exten-
sionality. Journal of Symbolic Logic, 69(4):1027-1088, 2004.

Christoph Benzmiiller and Lawrence C. Paulson. Quantified Multimodal Logics in Simple Type
Theory. SEKI Report SR-2009-02 (ISSN 1437-4447). SEKI Publications, DFKI Bremen GmbH,
Germany, 2009. http://arxiv.org/abs/0905.2435.

Christoph Benzmiiller and Lawrence C. Paulson. Multimodal and intuitionistic logics in simple
type theory. The Logic Journal of the IGPL, 2010. In print.

Christoph Benzmiiller, Lawrence C. Paulson, Frank Theiss, and Arnaud Fietzke. LEO-II — a
cooperative automatic theorem prover for higher-order logic. In Baumgartner et al. [4], pages
162-170.

Christoph Benzmiiller, Florian Rabe, and Geoff Sutcliffe. THF0 — the core TPTP language for
classical higher-order logic. In Baumgartner et al. [4], pages 491-506.

Christoph Benzmiiller and Volker Sorge. OANTS — an open approach at combining interactive
and automated theorem proving. In M. Kerber and M. Kohlhase, editors, Symbolic Computation
and Automated Reasoning, pages 81-97. A.K.Peters, 2000.

Ulrich Furbach, Ingo Glockner, and Bjorn Pelzer. An application of automated reasoning in natural
language question answering. AI Communications, 23(2-3):241-265, 2010. PAAR Special Issue.
Michael R. Genesereth. Knowledge interchange format. In J. Allen, R. Fikes, and E. Sande-
wall, editors, Proceedings of the Second International Conference on the Principles of Knowledge
Representation and Reasoning, pages 238-249. Morgan Kaufmann, 1991.

Patrick Hayes and Christopher Menzel. A semantics for the knowledge interchange format. In
IJCAI 2001 Workshop on the IEEE Standard Upper Ontology, August 2001.

Krystof Hoder. Automated reasoning in large knowledge bases. Master’s thesis, Department of
Theoretical Computer Science and Mathematical Logic, Charles University, Prague, 2008.

Tan Niles and Adam Pease. Towards a standard upper ontology. In FOIS ’01: Proceedings of the
international conference on Formal Ontology in Information Systems, pages 2-9, New York, NY,
USA, 2001. ACM.

Tan Niles and Adam Pease. Linking lexicons and ontologies: Mapping WordNet to the Suggested
Upper Merged Ontology. In H. R. Arabnia, editor, Proceedings of the International Conference on
Information and Knowledge Engineering. IKE’03, June 28 - 26, 2003, Las Vegas, Nevada, USA,
Volume 2, pages 412-416. CSREA Press, 2003.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for

31

http://www.ags.uni-sb.de/~chris/papers/R23.pdf
http://arxiv.org/abs/0905.4369
http://arxiv.org/abs/0905.2435

Progress in Automating Higher-Order Aspects in SUMO C. Benzmiiller and A. Pease

20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

[29]

32

Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

Adam Pease. Standard Upper Ontology Knowledge Interchange Format. http://sigmakee.cvs.
sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf.

Adam Pease. The Sigma ontology development environment. In F. Giunchiglia, A. Gomez-Perez,
A. Pease, H. Stuckenschmid, Y. Sure, and S. Willmott, editors, Proceedings of the IJCAI-03
Workshop on Ontologies and Distributed Systems, volume 71. CEUR Workshop Proceedings, 2003.

Adam Pease and Geoff Sutcliffe. First order reasoning on a large ontology. In G. Sutcliffe,
J. Urban, and S. Schulz, editors, Proceedings of the CADE-21 Workshop on Empirically Successful
Automated Reasoning in Large Theories, Bremen, Germany, 17th July 2007, volume 257 of CEUR
Workshop Proceedings. CEUR-WS.org, 2007.

Adam Pease, Geoff Sutcliffe, Nick Siegel, and Steven Trac. Large theory reasoning with SUMO
at CASC. AI Communications, 23(2-3):137-144, 2010.

Deepak Ramachandran, Pace Reagan, and Keith Goolsbey. First-orderized ResearchCyc: Expres-
sivity and efficiency in a common-sense ontology. In Shvaiko P.; editor, Papers from the AAAI
Workshop on Contexts and Ontologies: Theory, Practice and Applications, Pittsburgh, Penn-
sylvania, USA, 2005. Technical Report WS-05-01 published by The AAAI Press, Menlo Park,
California, July 2005.

Geoff Sutcliffe. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and A. Voronkov, editors,
Proceedings of the 2nd International Computer Science Symposium in Russia, number 4649 in
Lecture Notes in Computer Science, pages 7—23. Springer, 2007.

Geoff Sutcliffe. The TPTP problem library and associated infrastructure. Journal of Automated
Reasoning, 43(4):337-362, 2009.

Geoff Sutcliffe and Christoph Benzmiiller. Automated reasoning in higher-order logic using the
TPTP THF infrastructure. Journal of Formalized Reasoning, 3(1):1-27, 2010.

Geoff Sutcliffe, Christoph Benzmiiller, Chad Brown, and Frank Theiss. Progress in the develop-
ment of automated theorem proving for higher-order logic. In R. Schmidt, editor, Automated De-
duction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada,
August 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer Science, pages 116—130.
Springer, 2009.

Steven Trac, Geoff Sutcliffe, and Adam Pease. Integration of the TPTPWorld into SigmaKEE.
In B. Konev, R. Schmidt, and S. Schulz, editors, PAAR/ESHOL, volume 373 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf
http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-kif.pdf

	Introduction
	Background
	Examples and Challenges
	THF Translation
	System Implementation, Integration, and Initial Experiments
	Discussion

