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Abstract

We introduce and study alternating reachability games with tolls (ARGTs). An ARGT
is a multi-player game played on a directed graph. Each player has a source vertex and a
set of target vertices. The vertices of the graph are partitioned among the players. Thus,
each player owns a subset of the vertices. In the beginning of the game, each player places
a token on her source vertex. Whenever a token reaches a vertex v, the owner of the
token pays a toll to the owner of vertex v, who directs the token to one of the successors
of v. The objective of each player combines a reachability objective with a minimal-cost
maximal-profit objective. For the first, the token of the player needs to reach one of her
target vertices. For the second, the player aims at decreasing the toll she pays to other
players and increasing the toll paid to her due to visits in vertices she owns. ARGTs model
settings in which the vertices are owned by entities who also use the network; for example,
communication networks in which service providers own the routers and send messages.
ARGTs also offer an extension of rational synthesis with rewards to actions. To the best
of our knowledge, this model is the first to combine behavioral and revenue objectives.

We study different instances of the game, distinguishing between various network
topologies and various levels of overlap among the reachability objectives of the players.
We analyze the stability of ARGTs, characterizing instances for which a Nash equilibrium
is guaranteed to exist, and studying its inefficiency. We also analyze the problems of finding
optimal strategies for the players and for the society as a whole.

1 Introduction

Synthesis is the automated construction of a system from its specification. In the late 1980s,
several researchers realized that the classical approach to system synthesis, where a system
is extracted from a proof that the specification is satisfiable, is well suited to closed systems,
but not to open (also called reactive [14]) systems [1, 10, 23]. In reactive systems, the system
interacts with the environment, and a correct system should then satisfy the specification with
respect to all environments. The right way to approach synthesis of reactive systems is to
consider the situation as a game between the system and the environment.

The game is played on a directed graph. When the game starts, a token is placed on a
vertex that corresponds to the initial configuration of the system. Some of the vertices in the
graph, these that correspond to configurations in which the system sets the values of the output
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signals, are owned by the system, and a strategy for the system determines how to direct tokens
that visit these vertices. The other vertices are owned by the environment, and a strategy for
the environment determines how to direct tokens that visit them. The strategies of the players
induce a single trace for the token in the graph. From a technical point of view, while synthesis
of closed systems corresponds to solving a 1-player game, namely to solving a reachability query
in a graph, the transition to open systems involved a transition to 2-player games, and to the
problem of alternating reachability [15].

In the last years, researchers have studied enriched settings of the synthesis problem. Two
notable enrichments are a transition to a multi-player setting, where the interaction involves
not just a system and its environment, but an arbitrary number of components [4], and to
an objective-based interaction (also known as rational synthesis [11, 16, 3]), where each of the
interacting components has its own specification. From a technical point of view, the vertices of
the corresponding graph are now partitioned among the players, their interaction induces a trace
in the graph, and the objective of each player is that this trace would satisfy her specification.1

Rational synthesis is strongly related to mechanism design, studied in game theory and
economy [19, 20]. There, the goal is to design a game whose outcome determines real-valued
utilities to the participating players. Typical questions about games in traditional game-theory
applications concern their stability — whether the players reach an equilibrium, and their social
welfare — maximizing the total players’ utility [29]. The most common criterion for stability
is the existence of a Nash equilibrium (NE, for short) [18]: A profile of strategies, one for each
player, is an NE if no (single) player can benefit from unilaterally changing her strategy.

The formal-verification community has already adapted many concepts from classical game
theory. Beyond the transition to the rational setting, researchers have studied an extension
of rational synthesis to quantitative specifications [11, 16], studied the stability of games with
Borel winning conditions [9, 7], and studied repair of rational-synthesis games, where repair
amounts to making the game stable [2]. Still, the utility of a player in all these games depends
only on the trace generated during the game and the level of satisfaction of her objective in
this trace.

In this work we introduce and study multi-player games in which the utility of a player
combines the satisfaction of her objective in the generated trace with a revenue associated with
the trace. This revenue involves payments among the players. We define alternating reachability
games with tolls (ARGTs, for short). An ARGT is played on a directed graph. The vertices of
the graph are partitioned among the players. That is, each player owns a subset of the vertices.
In addition, each player has a source vertex and a set of target vertices. In the beginning of the
game, each player places a token on her source vertex. Whenever a token reaches a vertex v,
that is not a target, the owner of the token pays a toll to the owner of vertex v, who directs the
token to one of the successors of v. All tokens passing through v must be directed to the same
successor. The objective of each player combines a reachability objective with a minimal-cost
maximal-profit objective. For the first, the token of the player needs to reach one of her target
vertices. For the second, the player aims at decreasing the toll she pays to other players and
increasing the toll paid to her by other players due to visits in vertices she owns.

To the best of our knowledge, ARGTs are the first model to combine behavioral and rev-
enue objectives. Some research on synthesis does take into account the cost of generating the
synthesized system, say when the system is composed from a library of components [6], or when
the system has a limited budget for sensing the environment [8] or for dealing with a dishonest

1Different specification formalisms induce different winning conditions. In particular, starting with specifi-
cations in LTL, the game graph is induced by a deterministic parity automaton for the specification, and the
winning condition is the ω-regular parity condition [23]. See Section 6 for a discussion on our choice of the
reachability winning condition and other technical choices.
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environment [17]. In our model, however, the revenue is generated by payments among the
players and captures dependencies among them.

Beyond the extension of rational synthesis, ARGTs model settings in which vertices in
networks are owned by entities who also use the network, and suggests a formal model for
“incentive-aware” routing. Computer networks support an enormous number of applications
and services such as access to the World Wide Web, shared-use storage servers, email and
instant-messaging applications, among many others. The primary purpose of a network is
to provide reachability among the applications running on its end hosts. The users specify
their reachability objectives, and a routing protocol assigns to every user a path along which
it traverses the network [22, 25]. The emergence of the Internet gives rise to the analysis of
the above applications using non-cooperative game-theoretic tools [20]. Indeed, the Internet
is used and managed by many agents with conflicting incentives, each aiming to maximize its
own utility. In particular, Internet service providers (ISPs) typically provide both Internet
transit, web hosting, and Usenet service. Thus, the utilities of ISPs combine various objectives
that reflect both the quality of service they provide to their clients as well as their revenue.
Our model of ARGT captures such combined utilities. Finally, many applications in AI and
planning are modeled by multi-agent games that capture the interaction among the underlying
components of a system. Extensive research is carried in order to formally specify and reason
about these games [4]. Our work here adds to the picture cost and stability considerations.

We first study the problem of finding the social optimum of a given ARGT, which amounts
to maximizing the number of players that fulfill their reachability objectives. We show that
the problem, which corresponds to rational alternating reachability, is NP-complete in general,
but can be solved efficiently for ARGTs where the players share the set of target vertices or
ARGTS whose underlying graph is a directed acyclic graph (DAG), with a constant number of
players.

Next, we analyze the stability of the game, namely, the existence of an NE and its ineffi-
ciency. We show that general ARGTs need not have an NE. We characterize ARGTs that are
guaranteed to have an NE, namely symmetric ones (the reachability objectives of all players
coincide) whose graph is a DAG. Moreover, we show that the problem of deciding whether a
given ARGT has an NE is ΣP2 -complete. We then turn to analyze the inefficiency caused by
the selfish behaviour of the players. We show that there are ARGTs for which all the players
can fulfill their reachability objective, yet the only stable profiles are those in which no player
does. Thus, the price of stability (PoS) is generally unbounded. Still, we point to classes in
which some social optimum is stable (that is, PoS=1).

Finally, we consider the best-response problem, in which a single player needs to calculate an
optimal strategy given the strategies of the other players. Once again, we distinguish between
general ARGTs for which we show that the problem is NP-complete, and symmetric games
played on a DAG, for which we present an efficient algorithm.

2 Preliminaries

2.1 Alternating Reachability Games with Tolls

An alternating reachability game with tolls (ARGT) is N “ xk, V1, . . . , Vk, E, xsi, TiyiPrks, γy,
where k is the number of players, V “

Ť

iPrks Vi is a set of vertices, partitioned into k sets,

and E Ď V ˆ V is a set of edges. For each i P rks, the pair xsi, Tiy P V ˆ 2V describes the
reachability objective for Player i, namely forming a path from her source si to some target
vertex in Ti. Finally, γ P N is a reward. We say that Vi is the set of vertices owned by Player i.
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For every v P V , let succpvq “ tv1 : xv, v1y P Eu. Let GN “ xV,Ey.
A strategy for Player i is a function fi : Vi Ñ V YtKu such that for all v P Vi, if succpvq ‰ H,

then fipvq P succpvq, and otherwise fipvq “ K. Intuitively, we assume that the players move
tokens along the graph. Before the game starts, Player i places her token on si. The strategies
of the players describe how each player directs tokens that reach the vertices she owns. The
objective of each player is twofold. First, she wants her token to reach one of her target vertices.
Second, whenever a token visits a vertex on its way to a target vertex, the owner of the token
pays the owner of the vertex. Accordingly, each player wants to minimize the number of vertices
owned by other players that her token visits, and to maximize the number of visits of tokens
of other players in vertices she owns. Below we formalize this intuition.

A profile in N is a tuple P “ xf1, . . . , fky of strategies for the players. For a player i P rks,
let EPi Ď E be the set of edges that Player i chooses in P . Thus, EPi “ E X

Ť

vPVi
txv, fipvqyu.

Note that the intersection with E is required for the vertices in Vi that have an empty set of
successors. For a profile P , let EP “

Ť

iPrksE
P
i , and let GPN “ xV,EP y be the subgraph of N

induced by the strategies in P . Thus, GPN consists of all the edges chosen by the players in
their strategies in P . Note that each vertex in V has at most one successor in GPN . That is,
GPN is a directed graph in which every vertex with succpvq ‰ H has out-degree 1.

For i P rks, Player i fulfills her reachability objective in P if the graph GPN includes a path
from si to a vertex in Ti. Note that GPN includes a single path πPi “ v0, v1, v2, . . . with v0 “ si.
Player i fulfills her reachability objective in P iff πPi reaches Ti. Then, let mi ě 0 be the
minimal index such that vmi

P Ti, and let visitpi, P q “ tv0, v1, . . . , vmi´1
u be the set of vertices

that Player i traverses in order to fulfill her reachability objective, namely the set of vertices in
the prefix of πPi up to and excluding the first vertex in Ti. Note that a player may not fulfill
her reachability objective in P , in which case visitpi, P q “ H.

For a vertex v P V , let loadpv, P q denote the number of players that traverse the vertex v
in their paths to their target vertices in P . Formally, loadpv, P q “ |ti : v P visitpi, P qu|. For a
player i P rks, we define costpi, P q “ |visitpi, P q| and profitpi, P q “

ř

vPVi
loadpv, P q. Finally,

let rewardpi, P q “ γ if Player i fulfills her reachability objective in P and rewardpi, P q “ 0,
otherwise. The total utility of Player i in P combines her behavioral objective, measured by
rewardpi, P q, and her revenue objective, where revenuepi, P q “ profitpi, P q ´ costpi, P q, sums
the tolls she pays and collect. Formally, utilitypi, P q “ rewardpi, P q ` revenuepi, P q. Note that
if Player i fulfills her objective, then she gets a reward γ, pays the other players for passing
through their vertices, and is paid by players that pass through her vertices. If Player i does
not fulfill her objective, then she only gets paid by players that pass through her vertices. The
rationale behind this is that in this case, the player will not use the network as a client. In
practice, γ is big enough to incentivize a fulfillment of the reachability objectives. Note that if
a player owns a vertex in visitpi, P q, then she pays to herself, and the associated cost and profit
cancel each other in the revenue calculation.

For a profile P , we define the utility of P as the sum of the utilities of the players. Thus,
utilitypP q “

ř

iPrks utilitypi, P q. The following simple observation follows from the fact that in
all profiles, the sum of profits of all players is equal to the sum of costs. Thus, only the rewards
given to players that fulfill their reachability objectives are not cancelled in the calculation of
utilitypP q.

Observation 1. For every profile P , we have that utilitypP q “ xγ, where x ď k is the number
of players that fulfill their reachability objective in P .

An ARGT N is a DAG-ARGT if the graph GN is a DAG. It is symmetric, if all players
share the same reachability objective, and is common-target, if they only have the same set of
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target vertices. We use SYM and CT to denote the symmetric and common-target instances.
If, in addition, the target sets are singletons, we add 1 to the description. So, for example, a
DAG-CT1-ARGT is an ARGT whose graph is a DAG and in which all players have the same
single target vertex. Beyond the theoretical interest in these classes, DAG instances correspond
to systems in which edges reflect progress in time or precedence constraints. SYM and CT
instances arise in applications servicing clients with uniform or partially-uniform objectives.

Example 1. Consider the DAG-CT1-ARGT N presented in Figure 1piq. In this game,
k “ 2, and we denote the two players by a and b. Let Va “ tsa, sb, wu and Vb “ tu, v, tu.
This partition is illustrated in the figure by round (Player a) and rectangle (Player b) ver-
tices. The players objectives are xsa, ty and xsb, ty, respectively. Let P0 be the profile de-
scribed by the bold edges, thus, bold edges are in EP0 . For example, f0

a psaq “ u and
f0
b puq “ t. In this profile, both players fulfill their reachability objective, πP0

a “ xsa, u, ty,

and πP0

b “ xsb, u, ty, In addition, visitpa, P0q “ tsa, uu, and visitpb, P0q “ tsb, uu. Thus,
loadpsa, P0q “ loadpsb, P0q “ 1, loadpu, P0q “ 2, and for every vertex v1 P tv, w, tu, we have that
loadpv1, P0q “ 0. Accordingly, costpa, P0q “ costpb, P0q “ 2, profitpa, P0q “ profitpb, P0q “ 2,
and utilitypa, P0q “ utilitypb, P0q “ γ.

sa sb

u v

t w

sa sb

u v

t w

sa sb

u v

t w

piq piiq piiiq

Figure 1: The ARGT N : piq the profile P0, piiq the profile P1, and piiiq the NE P2.

2.2 Game Theory, Definitions and Notations

Consider an ARGT N , profile P of N , a player i P rks, and a strategy f 1i for Player i. We
use pP´i, f

1
iq to denote the profile obtained from P by replacing the strategy of Player i by

f 1i . For a given profile P , a best response (BR) for Player i is a strategy f 1i that maximizes
utilitypi, pP´i, f

1
iqq. In the BR problem, we are given an ARGT N , a profile P , and a player

i P rks, and we want to find a strategy f 1i such that the utility of Player i in pP´i, f
1
iq is maximal.

A profile P is said to be a (pure) Nash equilibrium (NE)2 if none of the players in rks can
benefit from an unilateral deviation from her strategy in P . In other words, for every i P rks
and every strategy f 1i , it holds that utilitypi, pP´i, f

1
iqq ď utilitypi, P q. The set of NEs of the

game N is denoted by ΓpN q.
A social optimum (SO) of an ARGT N is a profile that attains the maximal utility. We

denote by OPT pN q the utility of an SO profile; i.e., OPT pN q “ maxP utilitypP q. By Obser-
vation 1, we have that OPT pN q is xγ, where x is the maximal number of players that can

2Throughout this paper, we consider pure strategies. Unlike mixed strategies, pure strategies may not be
random or drawn from a distribution.
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simultaneously fulfill their reachability objectives. In the SO problem, we are given an ARGT
N and a threshold κ ě 0, and we need to decide whether OPT pN q ě κ.

A social optimum may be achieved by a centralized authority and need not be an NE. The
following parameters measure the inefficiency caused as a result of the players’ selfish interests.
First, the price of anarchy (PoA) [21] of N is the ratio between the utility of a social optimum
and the utility of a worst NE. That is, PoApN q “ maxPPΓpN qOPT pN q{utilitypP q. Then, the
price of stability (PoS) [5] of an ARGT N is the ratio between the utility of a social optimum
and the utility of a best NE. That is, PoSpN q “ minPPΓpN qOPT pN q{utilitypP q.

Example 2. Consider again the ARGT presented in Example 1. The profile P0 described
in the example is not an NE. Figure 1piiq presents the profile P1 resulting from a deviation
of Player a from P0. By changing her strategy in the source vertices, specifically, by setting
f1
a psaq “ f1

a psbq “ v, Player a forces Player b to visit in vertex w and increases her revenue. In
P1, we have that utilitypa, P1q “ γ ` 1, while utilitypb, P1q “ γ ´ 1.

The profile P1 is not an NE either. Figure 1piiiq presents the profile P2 resulting from a
deviation of Player b from P1. By changing her strategy in v, specifically, by setting f2

b pvq “ t,
Player b can avoid the visit in w and reduces her cost. In P2, we have that utilitypa, P2q “

utilitypb, P2q “ γ. The profile P2 is an NE. Note that fbpuq does not affect the players’ utilities,
as no path from the source vertices in GP2

N visits u.

We note that N would converge to a different NE if Player b is the first to respond to P0. By
setting fbpuq “ v, Player a is forced to visit both u and v on her way to t. However, Player a
will then respond by setting fapsaq “ fapsbq “ v. Finally, Player b will respond by setting
fbpvq “ t, and save the visit in w. The resulting profile is an NE that differs from P2 in fbpuq.

3 The Social-Optimum Problem

In this section we study the SO problem. By Observation 1, in the SO problem we only care
for the behavioral objectives, and solve a rational alternating reachability problem. That is,
the problem of maximizing the number of players fulfilling their reachability objective. More
formally, given a graph and a set of reachability objectives, assign a single successor to each
vertex in a way that maximizes the number of reachability objectives fulfilled in the induced
graph. Some of the algorithmic challenges arising in our setting are closely related to the
problem of finding k disjoint paths in directed graphs. This problem is known to be NP-
complete for every k ě 2 [12]. However, for DAGs, an Op|E||V |q-time algorithm for k “ 2 was
given in [27], and was generalized later for every k ě 2 to an Op|E||V |k´1q-time algorithm [12].

Theorem 1. The SO problem for ARGT is NP-complete. NP-hardness holds already for gen-
eral graphs with 2 players and for DAG-ARGTs with Op|V |q players.

Proof: Membership in NP is easy, as given a witness profile P , it is possible to calculate the
number of players that fulfill their reachability objectives in P in polynomial time.

We turn to prove the hardness result for 2 players. Consider a directed graph G “ xV,Ey
and two vertices u, v P V . By [12], the problem of deciding whether there are vertex-disjoint
paths from u to v and from v to u (that is, except for u and v, the two paths share no vertex) is
NP-hard. We describe a reduction from this problem to the SO problem in a 2-player ARGT.
Given G “ xV,Ey, we define N “ x2, V,H, E, txu, vy, xv, uyu, 1y. Thus, all the vertices belong to
Player 1, her reachability objective is to form a path from u to v, and the reachability objective
of Player 2 is to form a path from v to u.
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We prove that OPT pN q ě 2 iff there are vertex-disjoint paths from u to v and from v
to u. First, if such paths exist, then the function f1 : V Ñ V that assigns to each vertex
that participate in one of the paths its successor in the single path it belongs to and map
other vertices to arbitrary successors, if a strategy for Player 1, and every profile P in which
Player 1 follows f1 is such that both players fulfill their reachability objectives in P . Hence, by
Observation 1, we have utilitypP q “ 2 and OPT pN q ě 2.

For the other direction, assume that OPT pN q ě 2, and let f1 be a strategy of Player 1
in a profile P with utilitypP q “ 2. By Observation 1, both players fulfill their reachability
objectives in P . Thus, EP includes a path form u to v and from v to u. We prove that these
paths are vertex disjoint. Assume by way of contradiction that there is a vertex w P V ztu, vu
that participate in both paths. The graph GPN has a single path from w. If without loss of
generality, this path reaches v, then GPN includes a cycle from v back to itself via w, and thus
GPN does not contain a path from u to v, contradicting the assumption.

To prove NP-hardness for DAG-ARGTs, we describe a reduction from SAT. Given a CNF
propositional formula θ with m clauses, we construct a DAG-ARGT Nθ with m ` 1 players
such that OPT pNθq ě m iff θ is satisfiable. Let X “ tx1, . . . , xnu be a set of variables and let
θ “

Ź

1ďiďm Ci, with Ci “ l1i _ l
2
i _¨ ¨ ¨ l

mi
i , where lji , for 1 ď i ď m and 1 ď j ď mi, is a literal,

namely a variable in X or its negation.

The ARGT Nθ (see Figure 2) consists of m ` 3n vertices. There are n “variable vertices”
x1, . . . , xn, with vertex xi branching into two “literal vertices” xTi and xFi , associated with the
literals x1 and xi, respectively. Player m` 1 owns the variable vertices, thus a strategy for her
corresponds to a truth assignment to the variables. In addition, there are m “clause vertices”
C1, . . . , Cm, with Ci being owned by Player i. A clause vertex Ci branches into the variable
vertices of variables that appear in its literals. For example, in the figure, C2 “ x1 _ x2 and
the vertex C2 branches into the vertices x1 and x2. The source of Player i is Ci, and her set
Ti of target vertices is the set of literal vertices associated with the literals in Ci. For example,
T2 “ tx

T
1 , x

F
2 u. Finally, the reward for fulfilling a reachability objective is 1. For simplicity, we

assume that Player m`1 does not have a reachability objective (alternatively, we could proceed
with an objective satisfied by an empty path, say xx1, tx1uy, or an objective that is equal to an
objective of one of the clause players, and then require OPT pNθq to be at least m` 1).

We prove that θ is satisfiable iff OPT pNθq ě m. Assume that θ is satisfiable. Consider a
profile in which Player m` 1 chooses a satisfying assignment in her strategy from the variable
vertices and the clause players each choose a variable in a satisfied literal. It is easy to see
that all the clause players fulfill their reachability objectives. Thus, by Observation 1, we have
OPT pNθq “ m. Assume that OPT pNθq ě m, thus there is a profile P in which all m clause
players fulfill their reachability objectives, thus in EP there are paths from Ci to one of its
literals for all 1 ď i ď m. By the construction of Nθ, these paths have to go via variables
vertices, and the strategy of Player m` 1 in these vertices induce a satisfying assignment to θ.

In Theorem 2 below, we show that combing the two classes for which we could show NP-
hardness in Theorem 1 results in a class for which the SO problem can be solved in polynomial
time. In Theorem 3, we point to another class of ARGTs, namely CT-ARGTs, for which the
problem can be solved efficiently. The proof is based on detecting all source vertices from which
some target vertex is reachable.

Theorem 2. The SO problem for DAG-ARGT and a constant number of players can be solved
in polynomial time.
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C1 C2 C3 C4 C5

x1 ∨ x2 x1 ∨ x2 x1 ∨ x2 ∨ x3 x1 ∨ x3 x2 ∨ x3

x1 x2 x3

xF
1 xT

1 xF
2 xT

2 xF
3 xT

3

Figure 2: The DAG-ARGT Nθ for θ “ px1_x2q^px1_x2q^px1_x2_x3q^px1_x3q^px2_x3q.

Proof: For simplicity, we assume that the set of target vertices of all players are singletons;
that is Ti “ ttiu, for all i P rks. The general case can then be reduced to ΠiPrks|Ti| executions
of the algorithm.

Given N and an integer κ, we check whether OPT pN q ě κ as follows. First, as k is a
constant, so is κ. Hence, so is the number of subsets W Ď rks of size κ. Our algorithm goes
over all subsets W Ď rks of size κ, and checks whether all the players in W can fulfill their
objectives. That is, if Π “ txsi1 , ti1y, . . . , xsi|W |

, ti|W |
yu is the set of objectives of the players in

W , then we need to check whether there are paths that fulfill Π such that all the vertices in
the induced subgraph of GN have out-degree at most 1.

By [12], the problem of finding a constant number of vertex-disjoint paths in a DAG can be
solved in polynomial time. Specifically, the algorithm in [12] gets as input a DAG G and a set
txu1, u

1
1y, . . . , xuq, u

1
qyu of q source-target pairs, and decides whether there are q vertex-disjoint

paths in G that connect each source with its target. Our problem is similar, except that the
paths fulfilling Π need not be disjoint, but their union form a forest of in-trees (directed trees
in which internal nodes have out-degree 1).

In order to reduce our problem to the one in [12] we go over all possible ways to describe
a forest of in-trees satisfying Π as a collection of at most q vertex-disjoint paths. Formally, let
S “ tsi1 , . . . , si|W |

u and T “ tti1 , . . . , ti|W |
u. Then, a scheme for Π is a revised set of objectives

Π1 “ txsi1 , t
1
i1
y, . . . , xsi|W |

, t1i|W |
yu such that for every j PW , we have that t1ij P S Y T , and Π is

fulfilled iff Π1 is fulfilled. Intuitively, t1ij is the first vertex in S Y T that the path from sij to
tij visits. Consequently, there are paths that fulfill Π such that all induced subgraph of GN is
a forest of in-trees iff there is a scheme Π1 for Π such that there are |W | vertex-disjoint paths
in GN that connects its sources and targets. Clearly, since |W | is fixed, so is the number of
schemes for Π. Our algorithm goes over all these schemes and apply the algorithm in [12] for
each of them.

Theorem 3. The SO problem for CT-ARGTs can be solved in linear time.

Proof: Given GN , add a new “dummy-target” vertex t1, and |T | edges connecting every
vertex in T to t1. Now, by performing BFSpt1q on the graph with reverse edge directions,
we can identify all sources si from which t1 is reachable. The set of edges forming the BFS
tree, in their original direction, induces a valid strategy in which all the players for which the
reachability objective can be fulfilled, are directed to some target.
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4 Stability of ARGTs

In this section we study the stability of ARGTs. First, in Section 4.1, we show that general
ARGTs need not have an NE. We give a precise characterization of ARGTs that are guaranteed
to have an NE, namely DAG-SYM-ARGTs. Indeed, we describe a linear-time algorithm for
calculating an NE in such ARGTs, and we also show that non-symmetric ARGTs need not
have an NE, even when their graph is a DAG, and that so do ARGTs that include cycles, even
when they are symmetric. Moreover, we show that the problem of deciding whether a given
ARGT has an NE is ΣP2 -complete. Then, in Section 4.2, we study the PoA and Pos of ARGTs
and show that they are both unbounded in the general case.

4.1 An NE and its Existence

Theorem 4. ARGTs need not have an NE. In fact, there is a 2-player DAG-CT1-ARGT with
no NE, as well as a 2-player SYM1-ARGT with no NE.

Proof: We start with an example of a DAG-CT1-ARGT with no NE. Consider the ARGT
N1 described in Figure 3. Players a and b, each own her source vertex sa and sb, respectively,
and has to reach the target vertex t. The identity of the owner of the vertex t is not important,
and so is the reward γ for fulfilling reachability objectives. For simplicity of presentation, edges
in the figure correspond to chains of vertices in N1: each edge is labeled by a word over ta, bu,
indicating the owners of the vertices in the chain. For example, the edge labeled a2b2 from sa
to t stands for a chain consisting of four edges with the first two vertices owned by Player a
(the first of them being sa), followed by two vertices owned by Player b, and then the vertex t.

Player a has to choose between two strategies, corresponding to choosing the left or the right
chain leaving sa. Player b has to choose between two strategies, corresponding to choosing the
top or the bottom chain connecting sb to t. Thus, the game has four possible profiles. Table 1
describes the utility of the players in the possible profiles. In all four profiles, both players fulfill
their reachability objectives. However, their revenues vary. It can be verified that no NE exists,
as players benefit from moving among the profiles in the table in a counter-clockwise direction.
For example, in the (left,top)-profile, every player pays 1 to the other player (for using the
ba chain). Therefore, they both have utility γ. By deviating to the (left,bottom)-profile,
Player b increases her profit to 3 and her cost to 2, resulting in utility γ ´ 1 for Player a and
γ ` 1 for Player b.

sa

sb t

a a2b2

ba

b3a2

Figure 3: A 2-player DAG-CT1-ARGT with
no NE.

bza left right

top γ, γ γ ` 1, γ ´ 1
bottom γ ` 1, γ ´ 1 γ, γ

Table 1. Players utilities. Every entry
describes the utility of Player b followed by
the utility of Player a.

We continue to an example of a SYM1-ARGT with no NE. Consider the ARGT N2 presented
in Figure 4. As in Figure 3, edges in the figure correspond to chains of vertices and each edge
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is labeled by a word over ta, bu, indicating the owners of the vertices in the chain. Note that
s P Va and tu, vu Ď Vb. Also, t is a sink and all other vertices have out-degree 1. Thus, a
strategy is for Player a is fully defined by fapsq, and a strategy for Player b is fully defined by
fbpuq and fbpvq. Table 2 presents the players’ utilities in the possible profiles. For simplicity,
we denote a strategy by the edges each player selects to EP . Note that if Player b’s strategy
is pu, vq, pv, uq, then the players do not fulfill their reachability objective and their utility is
0. Every other profile induces one of the following ps, tq-paths: p1 “ xs, u, v, ty, p2 “ xs, v, ty,
p3 “ xs, v, u, ty, and p4 “ xs, u, ty.

The path p1 “ xs, u, v, ty consists of 7 edges, out of which Player a owns 3, and Player b
owns 4. Therefore, in the corresponding profile, the utility of a is γ ´ 1 and the utility of b is
γ ` 1. The calculation is similar for the other paths.

It is easy to verify that N2 has no NE. If Player b’s strategy is pu, vq, pv, uq, she can deviate
to a strategy that includes either pu, tq or pv, tq – in which the reachability objective is fulfilled.
For every other profile, note that Player a will deviate from p1 to p2 and from p3 to p4, while
Player b will deviate from p2 to p3 and from p4 to p1. Thus, N2 does not have a NE profile.

s

v

u

t

b3b

ba2

a

a
b

Figure 4: A 2-player SYM-ARGT
with no NE.

bza ps, uq ps, vq

pu, vq, pv, tq p1 : pγ ` 1, γ ´ 1q p2 : pγ ´ 2, γ ` 2q
pu, vq, pv, uq none :p0, 0q none :p0, 0q
pu, tq, pv, uq p4 : pγ, γq p3 : pγ ` 1, γ ´ 1q
pu, tq, pv, tq p4 : pγ, γq p2 : pγ ´ 2, γ ` 2q

Table 2. Players utilities in N2. Every entry specifies
the path induced by the strategy, the utility of Player b,
and the utility of Player a.

The examples in Theorem 4 leave open the question of the existence of an NE in an ARGT
that is both DAG and symmetric. For this class we have some good news: We show that in
DAG-SYM-ARGT, an NE always exists, and can be calculated efficiently.

Theorem 5. Every DAG-SYM-ARGT has an NE, which can be calculated in linear time.

Proof: Consider a DAG-SYM-ARGT N “ xk, V1, . . . , Vk, E, xs, T y, γy. Let v1, . . . , vn be a
topological sort of V , thus for all indices 1 ď i ă j ď n, we have that vi is not reachable from
vj . We assume that all the vertices in V are reachable from s, as non-reachable vertices can
be removed. Also, vn P T , as otherwise, all vertices that appear after the last target vertex in
the sort can be removed. Accordingly, we assume that the sort is such that v1 “ s and vn P T .
For 1 ď ` ď n, let N` be the ARGT obtained from N by restricting its graph to the subgraph
of GN induced by tv`, . . . , vnu, and defining the reachability objective to be xv`, T y. Starting
with ` “ n, we proceed by induction on ` and construct an NE in the ARGT N`. In particular,
an NE in N1 is an NE in N .

The calculation of the NE for N` proceeds as follows. First, for ` “ n, since vn P T , a profile
in which the strategies induce an empty path is an NE in the game Nn, where s “ vn. For the
induction step, assume that an NE was already calculated for each of the ARGTs Nn, . . . ,N``1.
We proceed to calculate an NE for N`. Let i be the player who owns v`, that is, v` P Vi. For
every edge xv`, uy, the topological sort implies that the ARGT Nu was analyzed already. Let
Pu be the NE calculated for Nu. Let u1 be the vertex for which xv`, u

1y P E and the utility of
Player i in the game Nu1 is maximal. We claim that the profile in which fipv`q “ u1, and in all
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other vertices all players follow their strategies in Pu1 is an NE in N`. To see this, note that a
beneficial deviation of Player j from her strategy fjpv`1q in Pu1 , for `1 ą `, induces a beneficial
deviation for her in Pu1 , contradicting the stability of Pu1 . Finally, a deviation of Player i from
fipv`q is not beneficial, as fipv`q was selected to be most profitable for her.

The time analysis is straightforward. The topological sort takes time Op|V | ` |E|q. Then,
in the NE calculation every vertex and every edge are considered once, and the whole process
takes linear time.

The fact an ARGT need not have an NE gives rise to the problem of deciding whether a
given ARGT has an NE. We show that the problem is complete in ΣP2 , namely the class of
problems that can be solved by a nondeterministic polynomial Turing machine that has an
oracle to some NP-complete problem.

Theorem 6. The problem of deciding whether an NE exists in a given ARGT is ΣP2 -complete.
Hardness in ΣP2 holds already for DAG-ARGTs.

Proof: We start with the upper bound. Consider an ARGT N and a profile P in N . Checking
whether P is not an NE can be done in NP. Indeed, the check can be done by guessing a beneficial
deviation of one of the players and checking that it is indeed beneficial (in Theorem 10, we
formalize this further, by means of the complexity of the BR problem). Consequently, as P can
be guessed, deciding whether an NE exists can be done by a nondeterministic polynomial-time
Turing machine with an NP oracle.

We continue to the lower bound and describe a reduction from QBF2: satisfiability for quan-
tified Boolean formulas with 2 alternations of quantifiers, where the most external quantifier is
“exists”. Let θ be a Boolean propositional formula in CNF over the variables X “ tx1, . . . , xn1

u

and Y “ ty1, . . . , yn2
u, and let ψ “ Dx1 . . . Dxn@y1 . . .@ylθ. We construct an ARGT Nψ such

that Nψ has an NE iff ψ is satisfiable.
Recall the reduction from SAT to the SO problem described in the proof of Theorem 1.

There, a single player determines the assignment to the variables. In the reduction here, we
have one player, referred to as Player X, that determines the assignment to the variables
x1, . . . , xn and one player, referred to as Player Y , that determines the assignment to the
variables y1, . . . , yl. The ARGT Nψ contains m “no-NE gadgets”, N1, . . . ,Nm, one for each
clause, in which no NE exists. The construction of Nψ is such that when ψ is not satisfiable,
Player Y has an incentive to deviate to a profile in which the utility of at least one clause
players goes below the utility she can get if she changes her strategy to one that proceed to her
no-NE gadget.

We now describe the reduction in more detail (see Figure 5). Given ψ, there are 2m ` 2
players: m clause players C1, . . . , Cm, as in Theorem 1, Player X, Player Y , and m dummy
players D1, . . . , Dm, who play in the no-NE gadgets. In addition to the literal vertices that
correspond to literals in Ci, the set of target vertices for Player Ci contain the vertices ti and
t, explained below.

A clause player Ci may proceed to the no-NE gadget, where her utility is γ ´ 2 or γ ´ 3.
The gadgets are similar to the game described in the proof of Theorem 4, except that the game
on Ni is played between Ci and Di (hence the c and d labels on the edges), and is preceded
by a chain of 2 vertices owned by Player Di. Accordingly, the utility of the players have as in
Theorem 4, with an increase of 2 to Di and a decrease of 2 to Ci. Hence, the utility of Ci if she
takes the transition to Ni is γ´ 2 or γ´ 3, depending on the strategy of the dummy player Di.
As in Theorem 4, the objective of the dummy player is to get to ti from the vertex below it. A
clause player may also proceed to one of the variables in its literals, hoping that Player X or
Y would proceed to one of the literal vertices in her targets.
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All the literal vertices yF1 , y
T
1 , . . . , y

F
l , y

T
l are owned by Player Y , and have an edge to a

chain of length 3, leading to the vertex t, which is in the target set of all clause players. That
is, when a clause player Ci hopes to fulfill her reachability objective by choosing a Y variable y,
and Player Y does not assign to y a value that satisfies the clause Ci, then Player Ci still fulfills
her reachability objective, but she does so by traversing the chain to t, paying 4 to Player Y .
The incentive of Player Y is then to maximize the number of clause players that reach t. Once,
however, a clause player reaches t, making her utility γ ´ 4, she has an inventive to deviate to
her no-NE gadget, where her utility is γ ´ 2 or γ ´ 3.

C1 C2 C3 C4 C5

N1 N2 N3 N4 N5

x1 x2 y1

xF
1 xT

1 xF
2 xT

2 yF
1 yT

1

t

ti

Ci

Ni

c

c2d2

dc d3c2

c2d2

d

d

c

Figure 5: The DAG-ARGT Nψ for ψ “ Dx1Dx2@y1px1_x2q^ px1_x2q^ px1_x2_ y1q^ px1_

y1q ^ px2 _ y1q. The “no-NE gadget” Ni appears on the right.

We prove that Nψ has an NE iff ψ is satisfiable. Assume first that ψ is satisfiable, and
let P be a profile in which Player X assigns to the variables in X an assignment such that
for every assignment to the variables in Y , the formula θ holds. Since ψ is satisfiable, such an
assignment to the variables in X exists. Also, the clause players proceed to the variable vertices
that appear in the literal that is satisfied in their clause, and all dummy players Di take the
dc chain to ti. We claim that P is an NE. The utilities in the profile P are as follows: each of
the clause players gets the reward γ, pays 1 to Player X or Y , and is being paid 1 from her
dummy player. Then, Players X or Y get revenues according to the number of clause players
that satisfy their reachability objectives via variables in X or Y . This revenue is between 0
to m. Deviating from this strategy is not beneficial, as no matter how Player Y deviates, the
clause players continue to satisfy their reachability objective without getting to the vertex t.
Finally, as Player Ci is not aiming for ti, the dummy players have no incentive to change their
strategies, which gives them utility γ ´ 1.

Assume now that ψ is not satisfiable. We argue that Nψ has no NE. Consider a profile
P . We distinguish between two cases. First, if some clause player Ci proceeds up to Ni, then,
as in the proof of Theorem 4, the players Ci and Di would perform an infinite BR dynamics,
and P is not an NE. Assume then that all clause players proceed to variable vertices. Let g
be the assignment to the variables in X Y Y that is induced by the strategies of Player X
and Player Y . If g does not satisfy θ, then at least one clause player Ci does not fulfill her
reachability objective of fulfills it by reaching the target vertex t, paying 4 to Player Y . Thus,
at least one clause player has utility at most γ ´ 4, and would deviate to her no-NE gadget,
where her utility is γ ´ 3 or γ ´ 2. Thus, P is not an NE. Now, if g does satisfy θ, then, as ψ
is not satisfiable, there is an assignment g1 that does not satisfy θ and is obtained from g by
changing only the assignment of variables in Y . By deviating to a strategy that corresponds to
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g1 Player Y causes at least one clause player Ci to fulfill her reachability objective by reaching
t, increasing the payment of Ci to Player Y . Thus, Player Y would deviate, and again P is not
an NE.

4.2 Stability Inefficiency

In this section we study the price of anarchy (PoA) and price of stability (PoS) in ARGTs.
Our news is bad, showing that they are both unbounded. Since in all games we have that PoA
ě PoS, the PoA analysis is redundant. However, since the PoS analysis is complicated, and
includes the network achieving unbounded PoA as a component, we present both. The PoA
analysis also completes our analysis of DAG-SYM-ARGTs for which we show that PoS “ 1.

Theorem 7. The PoA in ARGTs is unbounded. For every integer k and reward γ, there is a
k-player DAG-SYM1-ARGT N such that OPT pN q “ kγ, yet the utility of some NE is 0.

Proof: Consider the DAG-SYM1-ARGT depicted in Figure 6 (left). Let V1 “ ts, z, tu, V2 “

tuu, and Vi “ H, for all 2 ă i ď k. In the SO P , we have f1psq “ u and f2puq “ t. Thus, all
players fulfill their reachability objectives and utilitypP q “ kγ. On the other hand, the profile
P 1 in which f 11psq “ z and f 12puq “ z is an NE, as no path to t can be formed if only one player
changes her strategy. For P 1, we have utilitypP 1q “ 0.

Theorem 8. The PoS in ARGTs is unbounded. For every integer k and reward γ, there is a
k-player DAG-CT1-ARGT N such that OPT pN q “ kγ, yet the utility of the best NE is 0.

Proof: We first describe a game for k “ 2 players, then we show how additional players can
be added in a way that preserves the analysis. Consider the DAG-CT1-ARGT N in Figure 6
(right). The ARGT starts with the “no-NE” ARGT from the proof of Theorem 4. While there
the target vertex is v, here, once v is reached, the players still have to reach t, thus traversing
the ARGT from the proof of Theorem 7. Accordingly, the space of strategies of each player
combines space of strategies she has in the two underlying ARGTs.

s

u

z

t

sa

sb

v

u

z

t

a

a2b2

ba

b3a2

a

a

b

b

a

a

b

b

Figure 6: ARGTs with unbounded PoA (left) and unbounded PoS (right).

In more details, Player a has four different strategies: choosing left or right from sa, and
choosing u or z from v. Similarly, Player b has four strategies: choosing top or bottom from
sb, and choosing t or z from u.

Note that t is reachable from both sa and sb, thus OPT pN q “ 2γ. We show that in every NE
of N , both players choose to direct tokens to z, resulting in no player fulfilling her reachability
objective and total utility 0. First, observe that every profile in which fapvq “ fbpuq “ z is an
NE.
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Consider now a profile in which fapvq “ z and fbpuq “ t. Independent of fapsaq and fbpsbq,
by setting fapvq “ u, both players reach t and gain the reachability reward; therefore, Player a
has a beneficial move. Similarly, if fapvq “ u and fbpuq “ z, then Player b has a beneficial
move. We conclude that there is no NE of N in which only one of the players directs the tokens
to z.

Now, consider a profile in which fapvq “ u and fbpuq “ t, that is, the subpath xv, u, ty is
valid. In every such profile, as in the ARGT from the proof of Theorem 4, every player has
two strategies for her source vertex. Moreover, since the subpath xv, u, ty includes exactly one
vertex owned by each of the players, the utilities of the player as a function of their strategies
in sa and sb are identical to those given in Table 1, and thus no NE exists. We conclude that
the only NEs are these in which fapvq “ fbpuq “ z, whose total utility is 0.

For k ą 2 players, the game can be extended by adding dummy players whose reachability
objective is xv, ttuy, and who do not own any vertex in the game. These players do not affect
the above stability analysis. Their reachability objectives are all fulfilled in the SO, yet none
of them is fulfilled in any NE.

As shown in Theorem 7, the PoA in DAG-SYM1-ARGTs is unlimited. We now show that,
on the positive side, every DAG-SYM-ARGTs has a stable optimal profile:

Theorem 9. The PoS in DAG-SYM-ARGT is 1.

Proof: Let P be an SO profile of a DAG-SYM-ARGT N . Recall that in SYM-ARGTs, we
have that OPT pN q P t0, kγu, and is 0 iff there is no path from s to any target vertex t P T .
If OPT pN q “ 0, then clearly, PoSpN q “ 1. Otherwise, consider the NE produced by the
algorithm presented in the proof of Theorem 5. We claim that this NE has utility kγ. Recall
that v1, . . . , vn is a topological sort of V , and the algorithm keeps, for every 1 ď ` ď n, an NE
for the ARGT N` induced by tv`, . . . , vnu, where the reachability objective is xv`, T y.

In the NE calculation, every player selects for fipv`q the successor that maximizes her
utility. Since this utility depends on the existence of a path that fulfills the players’ reachability
objective, every player selects a successor from which such a path exists. In particular, the
source vertex selects the first edge of an ps, tq-path in GN , and the NE produced has utility kγ,
implying that the PoS is 1.

5 The Best-Response Problem

In this section we study the computational complexity of the the BR problem.

Theorem 10. The BR problem is NP-complete. NP-hardness holds already for 2-player SYM1-
ARGTs.

Proof: Membership in NP (for the corresponding decision problem, namely deciding whether
there is a strategy f 1i for Player i such that utilitypi, pP´i, f

1
iqq ě κ, for a given threshold κ) is

easy, as given a witness strategy f 1i , we can calculate utilitypi, pP´i, f
1
iqq in polynomial time.

For hardness in NP we describe a reduction from the Hamiltonian-path problem. Given a
graph G “ xV,Ey and two vertices s and t in G, the Hamiltonian path problem is to decide
whether there exists a simple ps, tq-path in G that visits all |V | vertices. Consider the symmetric
ARGT N “ x2, V1, V2, E, xs, ty, γy in which V1 “ V and V2 “ H, and arbitrary γ. Thus, the
revenue of Player 1 in a profile P is the length of the single ps, tq-path in GP . It is not hard to
prove that Player 1 has a strategy leading to profile P in which utilityp1, P q “ γ ` |V | ´ 1 if
and only if the graph G has a Hamiltonian path from s to t.
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Theorem 11. The BR problem can be solved in linear time in DAG-SYM-ARGTs.

Proof: Consider a strategy P . Since there is only one source, the set of edges EP induced by
the strategies in P includes exactly one path from s. W.l.o.g. we assume that for every v P T ,
we have succpvq “ H.

Let πP be the ps, tq-path the players use in a profile P . Since all the players use the same
path, then for all v P V , it holds that loadpv, P q P t0, ku. If t R T then for every player i,
utilitypi, P q “ 0. Assume t P T , then, since the game is symmetric, profitpi, P q “ k ¨ |Vi X π

P |,
costpi, P q “ |πP |, and utilitypi, P q “ γ ` k ¨ |Vi X π

P | ´ |πP |. Recall that GPN “ xV,EP y is the
subgraph of GN induced by the strategies in P . Let E1 “ EP zEPi be the set of edges selected
by all players but i, and let Ei “ pVi ˆ V q X E be the set of edges leaving vertices in Vi.

We reduce the problem of finding a best-response strategy for Player i to the problem of
finding the longest path in a weighted DAG. Consider the DAG GPi “ xV,E

1 YEiy. The edges
of GPi are weighted as follows: For every edge e P E1, set wpeq “ ´1. For every edge e P Ei, set
wpeq “ k ´ 1.

Claim 1. For every t P T , the weighted DAG GPi includes a path from s to t whose weight is
W , iff Player i can respond to P´i by a strategy f 1 such that utilitypi, pP´i, f

1
iqq “ γ `W .

Proof: Recall that the edge set of GPi is defined such that for every vertex v R Vi, exactly one
edge leaves v and for every vertex v P Vi, all the edges outgoing from v in GN are in GPi . Let π
be an ps, tq-path in GPi whose weight is W . For every edge pv, uq P π XEi, let f 1ipvq “ u. That
is, Player i respond to P´i in a way that leads all the players to use the path π. In the resulting
profile, the revenue of Player i is k ¨ |πXEi| and its cost is|π|. The edge weights are defined such
that the weigh of π is W “ pk´1q¨|πXEi|´1¨|πXE1| “ k ¨|πXEi|´|π|. Adding the reachability
reward, we conclude that Player i has a strategy f 1i such that utilitypi, pP´i, f

1
iqq “ γ `W .

For the other direction, assume that Player i can respond to P´i by a strategy f 1 such that
utilitypi, pP´i, f

1
iqq “ γ`W . Such a strategy corresponds to an ps, tq-path π for some t P T . The

utility of Player i consists of the reachability reward γ, and cost and revenue of total value W .
Every edge in πXEi contributes revenue k, and every edge in πXE1 incurs cost 1. These edge
correspond to edges in GPi having weights k ´ 1 and ´1 respectively. Thus, π is an ps, tq-path
in GPi whose weight is W .

In particular, the claim implies that by solving the longest path problem onGPi , and selecting
the target vertex t P T achieving the longest ps, tq-path, we get an optimal strategy for Player i.
If no vertex from T is reachable from s in GPi , then Player i does not have a unilateral deviation
from P that improve her, and all other players’, utilities.

6 Discussion

We introduced and studied ARGTs – a formal model for reasoning about interactions in which
the underlying components have both behavioral and revenue objectives. We showed that this
combination of objectives makes the games less stable and more complex to reason about. Thus,
the news is mostly bad, yet we were able to point to interesting and practical classes for which
the games are stable and reasoning about them can be done efficiently.

Different types of games can model different schemes of interaction among the components.
One distinction is between turn-based and concurrent games. In the first, a single player chooses
an action and determines the successor vertex in each step of the interaction. In the second, all
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players choose actions in all steps [4]. Different specification formalisms induce different winning
conditions. In particular, in the context of nonterminating on-going behaviors, much research
is focused on ω-regular winning conditions [13]. Finally, games may also involve incomplete
information [24] or stochastic transitions or strategies [26]. This work studies a setting in which
the winning condition is reachability, the scheduling mechanism is turn-based, strategies are
not stochastic, and players have full observability. One clear future work is to extend ARGTs
to other schemes of interaction.

Additional interesting extensions of ARGTs consider the players’ utility scheme. First,
it is natural to allow weighted tolls by adding weights to vertices or edges. The weighs can
correspond to actual expenses or prioritize different actions. This extension is of particular
interest in the context of rational synthesis. Indeed, there, the turn-based setting typically
schedules the players in some round-robin fashion, balancing the profits of the players. Second,
it is natural to consider models in which a congestion on an edge affects the cost of players
traversing it. ARGTs with weighted edges and cost-sharing are of great relevancy also in the
context of network-formation – a well-studied game used for the analysis of Internet applications,
such as routing in computer networks [5, 28].

Our negative results about stability motivate a study of ARGTs’ repair: the ability to
achieve stability or lower the PoS by an authority that restricts the strategies of the players.
It is not hard to see that all ARGTs can be repaired to achieve the social optimum. Indeed,
an aggressive repair may leave available only strategies that constitute an SO. It is interesting
to study the trade-offs between the aggressiveness of the repair and the utility of the NE it
achieves.

Finally, different types of strategies for the players can capture additional settings. In our
ARGTs, a strategy fi : Vi Ñ V for Player i describes, for each vertex v P Vi, how the player
extends a path that reaches v. The extension is independent of the identity of the player whose
token visits v. In a setting with identified tokens, a strategy for Player i is fi : Viˆrks Ñ V that
describes, for each vertex v P Vi and player j P rks, how the player extends a path of Player j.
Our initial results indicate that the identified-token setting is more stable, and reasoning about
it is less complex. For example, the SO problem can be solved in PTIME.
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