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Abstract

This paper introduces a new technique for reasoning with quantifiers and theories. Traditionally, first-order
theorem provers (ATPs) are well suited to reasoning with first-order problems containing many quantifiers and
satisfiability modulo theories (SMT) solvers are well suited to reasoning with first-order problems in ground theories
such as arithmetic. A recent development in first-order theorem proving has been the AVATAR architecture which
uses a SAT solver to guide proof search based on a propositional abstraction of the first-order clause space. The
approach turns a single proof search into a sequence of proof searches on (much) smaller sub-problems. This work
extends the AVATAR approach to use an SMT solver in place of a SAT solver, with the effect that the first-order
solver only needs to consider ground-theory-consistent sub-problems. The new architecture has been implemented
using the Vampire theorem prover and Z3 SMT solver. Our experimental results, and the results of recent theorem
proving competitions, show that such a combination can be highly effective.

1 Introduction
Many applications of automated deduction, such as program analysis and verification, require efficient
reasoning with quantifiers and theories. Such problems can be viewed as existing on a scale from
theory-light / quantifier-heavy to theory-heavy / quantifier-light. Automated theorem provers (ATPs)
are successful at the former end of the scale, largely via the inclusion of theory axioms. SMT (Satisfi-
ability Modulo Theories) solvers are successful at the latter end of the scale via heuristic instantiation
techniques such as E-matching [15, 11] and model-based quantifier instantiation [15, 11], followed by
applying decision procedures to sets of ground clauses. This work aims to combine the two successes to
provide a technique that not only covers both previous approaches, but complements them by targeting
the ‘middle end’ of the scale where we have non-trivial usage of both quantifiers and theories.

The new approach utilises the AVATAR architecture [34] for saturation-based theorem proving. The
idea behind AVATAR is to use a SAT solver to guide proof search by making decisions over a proposi-
tional abstraction of the clause search space and iteratively selecting a sub-problem for the saturation-
based theorem prover to tackle. This approach is lifted to be modulo theories by replacing the SAT
solver by an SMT solver, ensuring that the sub-problem is theory-consistent in the ground part. The
result is that the ATP and SMT solver deal with the parts of the problem to which they are best suited.

We have implemented this approach using the first-order ATP VAMPIRE [19] and the SMT solver
Z3 [13]. This combination employs VAMPIRE for non-ground reasoning via the superposition calculus
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and Z3 for ground reasoning over theories of uninterpreted functions, arithmetic and arrays. This paper
describes how the transition from a SAT based solver to an SMT based solver influences design choices
in AVATAR and we summarize experimental findings with the resulting system.

The rest of this paper is organised as follows. Section 2 gives a brief overview of the VAMPIRE
system. Section 3 reviews the AVATAR architecture and extends it to reason modulo theories. Section 4
discusses how the extension is realised using the Z3 SMT solver. Section 5 presents a comparative
evaluation. Section 6 gives related work. Section 7 concludes.

2 Overview of Vampire
VAMPIRE [19] is an automated first-order theorem prover. For the last 15 years it has led the first-order
theorem division of the CASC competition [32]. Its main mode of operation implements saturation
with the ordered binary resolution calculus [1] and, for handling equality, the superposition calculus
[22]. This is what we briefly describe below. It also implements instance-based and finite-model finding
techniques that we do not discuss here as they are not relevant to AVATAR. Nevertheless, they may be
utilised during the proof attempts reported in Section 5. We review relevant aspects of the VAMPIRE
system here before discussing the AVATAR architecture in detail in the next section.

General Design. VAMPIRE implements a given-clause algorithm which operates on first-order clauses,
therefore VAMPIRE implements preprocessing and clausification techniques that translate general first-
order formulas into this form. Preprocessing is important as it can dramatically alter characteristics of
the problem that effect proof search. VAMPIRE handles input in both TPTP and SMT-LIB formats.

The given-clause algorithm works with an inference system I1 as follows. Initially, all clauses are
added to a passive set and a loop is executed until a contradiction is found or the passive set becomes
empty. On each iteration of the loop a given clause is selected from passive and added to an active set.
Then, all generating inferences of I are performed between the given clause and clauses in the active
set. Generated clauses are added to passive and the loop repeated. If at any point the empty clause is
derived then the initial input is unsatisfiable. If the passive set is emptied, the proof search strategy was
complete and no contradiction is found then the initial input is satisfiable. Note that VAMPIRE can make
effective use of many incomplete strategies that remove heavy clauses from the search space [27] or
perform arbitrary literal selection [17].

For proof search to be effective it is necessary to remove redundant clauses from the search space.
VAMPIRE implements redundancy elimination techniques such as tautology deletion, condensation, sub-
sumption and global subsumption.

Theory Reasoning in VAMPIRE. For dealing with linear and non-linear theories of integer and real
arithmetic, and the theory of polymorphic arrays (see [18]), VAMPIRE adds theory axioms. Clearly this
is an incomplete method in general, but can be effective and allows VAMPIRE to directly use existing
techniques. To see which theory axioms are automatically added for a problem, run VAMPIRE in output
mode (--mode output), which will print the input problem along with any added axioms. This can be
turned off using --theory axioms off.

VAMPIRE will evaluate ground theory terms (e.g. evaluate 2 + 2 = 5 to false) and rewrite some
equations (e.g. rewrite 2x− 4 = 2 to x = 3). This has the advantage that many theory-equivalent terms
will be represented by the same term. It can also avoid the need to apply axioms to show that 1 + 1 = 2.
However, it has the disadvantage that the term 2 + 4 = a will never be present and able to unify with a
term such as x + y 6= a.

1This refers to generating inferences only, simplifying inferences are handled separately.

40



AVATAR Modulo Theories Nikolaj Bjøner, Giles Reger, Martin Suda and Andrei Voronkov

Adding theory axioms may seem to be inefficient. For example, using these axioms superposition
provers may derive a large number of theory tautologies. However, in practice it turns out to be surpris-
ingly effective on many problems. For example, in the CASC 25 competition of theorem provers [33]
on problems with quantifiers and theories (the TFA division of the competition), VAMPIRE using theory
axiomatizations was very close to the top SMT solver CVC4.

Finally, VAMPIRE uses a term ordering that gives high precedence to uninterpreted operations and
totally orders interpreted constants. This means that rewritings will try to rewrite terms involving un-
interpreted operations into ones containing fewer (or no) uninterpreted operations and to rewrite terms
containing numbers into those with smaller numbers, where possible. More concretely, the term order-
ing orders integers absolutely (e.g.5 > 0 and −5 > 0) and rationals n

d are ordered absolutely by n + d
with n breaking ties.

Congruence Closure. For reasoning with the theory of equality and uninterpreted functions (EUF)
VAMPIRE implements an extension of the AVATAR architecture that utilises a congruence closure
method [20] to check that the SAT model is ground-consistent with respect to EUF. This could be
viewed as an SMT solver for this particular theory (see [34]).

3 AVATAR Modulo Theories
AVATAR [24, 34] is based on the concept of splitting. The idea is that the inconsistency of a set of
clauses S ∪ {C1 ∨ C2}, for variable-disjoint sub-clauses C1 and C2, is equivalent to the inconsistency
of both S ∪ {C1} and S ∪ {C2}. A splitting technique will split the proof search into two branches, try
to separately establish the inconsistency of each and finally combine the results. AVATAR differs from
previous techniques such as splitting with backtracking [35] and splitting without backtracking [26] as
it uses a SAT solver to make splitting decisions, as described below.

3.1 Preliminaries
Our setting is that of many-sorted first-order predicate logic with equality in clausal form.

A signature Σ is a set of predicate and function symbols with associated arities. Terms are of the
form f(t1, . . . , tn), c or x where f is a function symbol of arity n ≥ 1, t1, . . . , tn are terms, c is a zero
arity function symbol (i.e. a constant) and x is a variable. Atoms are of the form p(t1, . . . , tn), q or
t1 ' t2 where p is a predicate symbol of arity n, t1, . . . , tn are terms, q is a zero arity predicate symbol
and ' is the equality symbol.

A clause is a disjunction of literals L1 ∨ . . . ∨ Ln for n ≥ 0. We disregard the order of literals and
treat a clause as a multiset. When n = 0, we write ⊥ and speak of the empty clause, which is always
false. When n = 1 a clause is called a unit clause. Variables in clauses are considered to be universally
quantified. Standard methods exist to transform an arbitrary first-order formula into clausal form.

Given clause C ∨D, the subclause D is a component of C ∨D if it is non-empty, variable-disjoint
with C and minimal (i.e. there is no proper subset of D variable-disjoint with the rest of the clause). For
example, given clause x + 1 = a ∨ p(x, y) ∨ q(5) there are two components x + 1 = a ∨ p(x, y) and
q(5); as x + 1 = a and p(x, y) share the variable x they cannot be split further.

An interpretation I interprets terms over a given universe and assigns boolean values to atoms. An
interpretation is a model for a set of clauses if for each clause L1∨ . . .∨Ln it assigns true to at least one
literal Li. A theory T constraints the set of viable interpretations by fixing interpretations for some part
of the signature. For theory T we refer to this part of the signature ΣT and call such symbols interpreted.
For example, the theory of arithmetic may fix the interpretation for {+,−, <,>, ∗} ∈ ΣArith . An
interpretation is consistent with a theory if it satisfies that theories constraints and is consistent with a
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Splitting Interface

Base (SAT or SMT) solver

FO solver
Update model
New clause C splittable into C1 ∨ . . . ∨ Cn

New contradiction using [C1], . . . , [Cn]

Assert component C depending on [C]
Remove component C

Solve
Insert split clause [C1] ∨ . . . ∨ [Cn]
Insert contradiction clause ¬[C1] ∨ . . . ∨ ¬[Cn]

Model or
Unsatisfiable

Figure 1: The AVATAR architecture.

combination of theories if it satisfies the constraints of each theory. We call such interpretations theory
consistent. Note that we generally assume the theory of uninterpreted functions.

3.2 The Architecture
The AVATAR architecture (see Fig. 1) consist of three parts: the first order solver FO, the base (SAT
or SMT) solver, and the intermediate Splitting interface. The steps that each part can take are given in
Figure 2. This describes the AVATAR architecture as a set of rewrite rules where one of three configu-
rations 〈S,N,L,X,M〉1, 〈S,L,X,M〉2, or 〈S,L,X,Mold,Mnew〉3 is rewritten by the different parts.
The configurations are made up of:

• S the set of first-order clauses with assertions (see below) held by the FO part

• N the new first-order clauses with assertions derived from S

• L a set of locks, mapping each assertion to a set of clauses with assertions (see below)

• X a set of abstracted clauses where the abstraction depends on the base solver

• M,Mold,Mnew models over abstracted components

Below we explain each of the parts and the steps they can take in further detail.

FO solver. This deals with clauses with assertions (A-clauses) C ← A where C is a disjunction of
literals and A is a conjunction of assertions. The assertions of an A-clause capture the sub-problem that
it belongs to. Later we will see that assertions denote abstracted components but for now consider them
as propositional symbols.

For the purpose of this explanation we assume that the FO solver makes use of a set of sound
inference rules I of the form

C1 ← A1 . . . Cn ← An

D ← A1 ∧ . . . ∧An

i.e. the assertion of the conclusion is the union of the assertions of the premises. This implies that if
C2 ← A2 is derived from C1 ← A1 then A1 ⊆ A2. We write S `I N if the clauses N can be derived
from S by the inference rules in I.

As illustrated in Figure 2, the FO solver can make two kinds of step. Firstly, see rule (1), it can derive
a set of new clauses that follow from the current clauses using I. Secondly, it can attempt to delete an
existing clause if it is subsumed by another existing clause.2 There are two cases to consider here. If

2 The AVATAR architecture can deal with any standard redundancy elimination rule. To simplify the exposition, we only use
subsumption as an example here.
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(1) 〈S,N,L,X,M〉1 ⇒FO 〈S,N ∪N ′, L,X,M〉1
where S ∪N `I N ′,

(2) 〈S ∪ {C ← A}, N, L,X,M〉1 ⇒FO 〈S,N,L,X,M〉1
where C ′ subsumes C for some C ′ ← A′ ∈ S and A′ ⊆ A,

(3) 〈S ∪ {C ← A}, N, L,X,M〉1 ⇒FO 〈S,N,L′ = L[Ai 7→ L(Ai) ∪ {C ← A}], X,M〉1
where C ′ subsumes C for some C ′ ← A′ ∈ S and Ai ∈ A′\A,
and L′ is obtained from L by adding C ← A to L(Ai),

(4) 〈S,N,L,X,M〉1 ⇒SI 〈S,L,X ∪ {[D1]B ∨ . . . ∨ [Dk]B ← A | C ← A ∈ N},M〉2
where Di are the components of C; note that it is possible that C = ⊥,

(5) 〈S,L,X,M〉2 ⇒B ⊥
where 6�B X,

(6) 〈S,L,X,Mold〉2 ⇒B 〈S,L,X,Mold,Mnew〉3
where Mnew �B X,

(7) 〈S,L,X,Mold,Mnew〉3 ⇒SI 〈kept ∪ new ∪ unlocked , {}, L′, X,Mnew〉1
where

kept = {C ← A ∈ S |Mnew �B A},
new = {C ← [C] | (. . . ∨ [C] ∨ . . .)← A ∈ X ∧Mold 6�B [C] ∧Mnew �B [C]},
unlocked = {C ← A | C ← A ∈ L(Ai) ∧Mnew 6�B Ai},
L′ = {Ai 7→ L(Ai) |Mnew �B Ai}.

Figure 2: The AVATAR rules.

the subsuming clause will be present whenever the subsumed clause is present (i.e. if the assertions of
the latter include those of the former) then the deletion is unconditional; see rule (2). Otherwise, as in
rule (3), there exist circumstances (where an assertion belonging to the former but not the latter is false)
where the subsumption will no longer hold. Therefore, it is necessary to store subsumptions that should
be undone. This is done using the set of locks mentioned previously. L associates an assertion with a
set of A-clauses that must be reinserted if that assertion becomes false.

Base solver. The base solver works with abstracted clauses. As we discuss below, in the case of SAT
these abstract clauses are propositional and in the case of SMT they are first-order ground clauses over
theories. The base solver uses an abstraction function [.]B which will be specified later for each base
solver we consider. The result of abstraction is a set of abstracted clauses X .

The base solver is asked to build a model of these clauses. The rules (5) and (6) in Figure 2 cor-
respond to the two possible outcomes. The base solver can either find the X is unsatisfiable and thus
fail to to build a model. As the abstracted clauses follow from the first-order clauses, if the former is
unsatisfiable then so are the latter. In this system this is the only method for establishing unsatisfiability.
Alternatively the base solver can construct a model, which can then be queried. We write M �B A if
assertion A (which denotes an abstract component) is true in the model.
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Splitting Interface. This is the core of the AVATAR architecture and can make two steps. Firstly, it
can perform the abstraction of the newly derived clauses for the base solver; see rule (4). Secondly, it
can update the set of first-order clauses S using a newly generated model. This second step is complex
and deserves further explanation; see also rule (7).

When the model is updated three things need to happen. Firstly, A-clauses whose assertions are not
true in the new model need removing. All others remain in the kept set. Secondly, any components
which have been newly asserted needed adding, this is the new set. This is the point where we see that
assertions denote abstracted components. Lastly, if an A-clause was locked based on an assertion Ai

(see above) and that assertion has become false then this means that the A-clause should be unlocked.
To preserve the invariant that locked assertions are true in the current model, all assertions that are not
true in the new model are also removed from L.

This presentation has left out some optional alternatives for ease of explanation. For example,
clauses may not be splittable (i.e. if they consist of a single component) and then there is question-
able utility in adding them to the abstraction (unless they are ground in the SMT case). See [24] for a
further discussion.

Proof Search. Proof search begins with the configuration 〈∅, S, ∅, ∅, ∅〉1 where S is the problem in
clausal normal form, formally a set of A-clauses with empty assertions. This implies, we begin by
assuming that these clauses have been newly derived and immediately consider splitting them.

3.3 The SAT Abstraction
The definition of a component means it is either (i) non-ground and of arbitrary size, e.g. p(x) or
s(x, y) ∨ r(y), or (ii) ground and a unit, e.g. p(f(a)) or a > f(1).

The SAT abstraction does not differentiate between the two kinds of components. We construct
[.]SAT as an injective mapping from components to propositional variables such that components that
are equivalent up to literal reordering, variable renaming, and symmetry of equality are mapped to the
same propositional literal. This literal is always positive for non-ground components (i). For the ground
components (ii), we maintain that [¬L]SAT = ¬[L]SAT. This ensures the FO solver is never asked to
work on a problem containing both ¬L and L, thus being trivially inconsistent.

Example 1. Consider the clause

C = x > (y + 1) ∨ y = 2 ∨ a < 5 ∨ z > a

the components are D1 = x > (y + 1) ∨ y = 2, D2 = a < 5, and D3 = z > a. Therefore the
abstraction [C]SAT = p1 ∨ p2 ∨ p3 where pi are propositional variables not assigned to any other
components.

3.4 The SMT Abstraction
The SMT abstraction [.]SMT works the same way as the SAT one for the non-ground components of kind
(i). Ground components of kind (ii), however, are not abstracted i.e. their first-order form is preserved
with the following caveats. Given an SMT solver for a theory (or a combination of theories) T we treat
all symbols not in ΣT as uninterpreted for the SMT solver. We therefore assume that T includes the
theory of uninterpreted functions.

Example 2. Let us revisit the above clause C. The abstraction is now [C]SMT = p1 ∨ (a < 5)∨ p3 i.e.
only components of kind (ii) are treated differently.
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Changing the base solver from a SAT solver to an SMT solver only changes what is required of the
translation, the rest of the architecture remains the same. The model of the base solver is only queried
for the truth of translated components. This means that if a ground component is a > 5 and the SMT
solver has decided that a = 10 in the model, we only learn that a > 5 is true and not more.

The advantage of using an SMT solver as a base solver is that all models will be theory-consistent in
their ground part. This should reduce the number of models that need to be considered in order to find a
contradiction. However, this is not always the case as selecting a different model can cause proof search
to take a significantly different direction, missing useful clauses that may otherwise have been quickly
derived.

Finally, we note that the SMT solver can select more than one component in a clause. In some
cases this may be necessary i.e. to satisfy all clauses. Previous work [24] considers the minimisation of
models to (greedily) use as few components as possible.

3.5 Examples
We give a brief artificial example that demonstrates the advantage of using an SMT solver as a base
solver. Consider the following problem over three integer constants.

(a0 > 1) ∧ (a0 > 0⇒ a1 > a0) ∧ (a1 > a0 ⇒ a2 > a1) ∧ (∀x)(p(x)⇔ x > a2) ∧ p(4)

The ground part of the problem forces 1 < a0 < a1 < a2, meaning that 3 < a2. The non-ground part
defines a predicate p to be true when its input is greater than a2. The ground assertion p(4) then leads
to the inconsistency 3 < a2 ∧ a2 < 4. This is difficult to solve when using the SAT abstraction but
straightforward when using the SMT abstraction as the SMT solver can rule out all but one model.

However, the above example is simply solved by the MBQI technique of Z3 [15, 11]. Indeed,
small problems where this combination outperforms SMT-based methods are difficult to find as we are
targeting problems with non-trivial quantifier usage and non-trivial theory usage. However, it can be the
case that small problems are solved much faster using this approach.

The problem NRA/keymaera/vsl.proof-node2228 from SMT-LIB, for example, consists of a single
assertion over 10 constants and a single variable. However, it takes Z3 159.75 seconds to solve this
problem whilst VAMPIRE finds a solution in 0.169 seconds. Interestingly, the proof consists of some
non-trivial theory reasoning with theory axioms followed by a single call to Z3 which finds the resulting
ground abstraction unsatisfiable.

4 Implementation
In this section we describe how we implemented the AVATAR modulo theories approach using the Z3
SMT solver.

4.1 Overview of Z3
Z3 [13] is a Satisfiability Modulo Theories (SMT) solver [21] developed at Microsoft research. We
focus on Z3 as a black box theory solver, as that is how it is integrated into VAMPIRE, rather than
considering its architecture.

Theories. Z3 can handle various theories but the ones we use here correspond to those supported
by VAMPIRE i.e. theories of linear and non-linear real and integer arithmetic, uninterpreted functions
and extensional arrays. Z3 can decide ground problems involving combinations of linear arithmetic,
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uninterpreted functions and extensional arrays. However, non-linear integer arithmetic is undecidable
and in this case Z3 may return unknown as its verdict.

Quantifiers. Whilst Z3 has support for quantifiers they are not currently used in this work as the un-
derlying hypothesis is that methods such as superposition and resolution are more effective at dealing
with quantified formulas. There may be scope in the future to consider situations where Z3’s E-matching
mechanisms could be utilised to produce useful instantiations. Earlier versions of Z3 contained an inte-
gration of superposition and theory reasoning [12] and the approach we take here revisits this direction
through the lens of AVATAR.

Incremental API. We make use of the C++ API provided for Z3 that allows for the creation of solver
objects that can incrementally be passed formulas and asked if the current set of formulas is consistent.
If the formulas are consistent the solver can be queried for a model, which can be used to evaluate terms
in the signature of the original problem.

4.2 Implementing the Abstraction.
The implementation of [.]Z3 is straightforward. Predicates are represented as boolean functions, inter-
preted operations are mapped to their counterparts, numbers are translated directly, new sorts are created
where necessary and uninterpreted functions are mapped to uninterpreted functions. Some interpreted
functions from the TPTP arithmetic theory needed careful translation to the corresponding functions in
Z3. For example, the $round(t) function with the semantics that the number is rounded to the nearest
integral (with even numbers breaking ties) must be translated as

ite(t > (t + 1/2), t + 1, ite(t == 1/2, ite(mod(t, 2) == 0, t, t + 1), t))

where ite is a native conditional operator in the SMT language. Furthermore, we chose to add functions
such as quotient t and remainder t as uninterpreted and include additional axioms. For example,

b 6= 0→ ((b ∗ quotient t(a, b)) + remainder t(a, b)) = a

Non-ground components are translated abstracted by boolean variables as in the SAT abstraction.

Models. For each component we record the associated Z3 expression. Then, when a model is com-
puted, we evaluate this expression in the model. For example, if the clause a > 5 ∨ b > 5 is added to
Z3 and Z3 builds a model where a = 1 and b = 10 we will evaluate the expressions a > 5 and b > 5
when deciding whether this components should be asserted.

Underspecified Operations. The previous approach does not work for underspecified functions such
as division and modulo by zero. For example, if the unit clause 5/c = 2 ∨ c = 0 is added to Z3 and Z3
builds a model where c = 0 then asking Z3 to evaluate 5/c = 2 will result in unknown. Therefore, we
introduce fresh names for expressions possibly containing underspecified operations, i.e. we would add
p = (5/c = 2) as an additional clause and p as a unit clause. Then we can query the model for the value
of p, which must be true or false.

4.3 Incompleteness
In the original implementation of AVATAR using a SAT solver, either a model of the SAT clauses is
found and splitting can occur, or it is not, which implies that the original clauses are unsatisfiable. In
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this new organisation with an SMT solver there is a third option: the SMT solver fails to find a model or
a contradiction. This can happen when the ground problem is from an undecidable theory. For example,
consider a problem that has the formula

(a > 0) ∧ (b > 0) ∧ (c > 0) ∧ (a ∗ a ∗ a) + (b ∗ b ∗ b) = (c ∗ c ∗ c)

as an axiom, where a, b, c are integer constants, i.e. we ask the SMT solver to solve Fermat’s last
theorem.

Although an SMT solver may support undecidable theories, such as non-linear integer arithmetic, in
a limited way, we cannot expect the solver to recognise (in)consistency of every statement in the logic.
The above axiom is an example of a inconsistent formula the status of which is hard to recognise for
obvious reasons.

In the standard AVATAR theory no progress can be made without a model. Therefore, if no model
or refutation can be found, VAMPIRE will give up on proof search for this reason. This is clearly
undesirable.

To deal with this potential issue, VAMPIRE implements an option that runs a SAT solver alongside
the SMT solver (–sat fallback for smt). All clauses that would have been passed to the SAT solver in
the original AVATAR framework would be given to this fallback solver. However, the SAT solver is
not used until the SMT solver returns Unknown. In this case a model is taken from the SAT solver and
proof search proceeds. The next time a model is required the SMT solver is asked again, because further
generated clauses could have caused the undecidability to be resolved.

In our experiments described in the next section this fallback mechanism is used rarely. Only four
problems from TPTP required the mechanism, using between 1 and 65 fallbacks.

5 Comparative Evaluation
We compare VAMPIRE to other first-order ATP systems and SMT solvers on problems from the TPTP
library [31] and SMT-LIB library [4]. Evaluation was carried out on the StarExec cluster3.

5.1 Evaluated Solvers
We compare VAMPIRE to competitive versions of other solvers.

Other ATP systems. We consider the following other ATP systems taken from the CASC repository
on StarExec [30]:

• Beagle (0.9.22) [5] implements hierarchic superposition calculus with weak abstraction [6].

• Princess (20150706) [28, 29] implements a free-variable tableau calculus for linear integer arith-
metic with some extensions for non-linear arithmetic.

• SPASS+T (2.2.22) [23, 36] is a combination of saturation-based theorem prover SPASS [35] and
an SMT solver.

• ZenonArith (0.1.0) [9] and ZenonModulo (0.4.1) [14] extend the tableaux-based Zenon [7] to
linear arithmetic and deduction modulo [16], respectively.

• Zipperposition (0.4) [10] is a superposition-based prover implementing an extension of the calcu-
lus for integer linear arithmetic.

3https://www.starexec.org
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Table 1: Results for TPTP problems (- means unsuitable for the solver).
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IL 461 213 361 355 359 358 426 305 149 101 281
IN 173 45 97 141 129 73 145 109 61 43 114
QL 121 34 120 121 121 118 120 58 116 81 -
QN 38 5 37 37 35 37 37 17 36 25 3
RL 116 66 115 115 115 115 114 114 112 78 -
RN 39 6 39 36 34 37 37 38 37 25 -
IRL+N 9 6 8 8 9 5 9 9 0 0 -
IQRL 8 0 2 2 2 0 2 0 0 0 -
IQRN 3 1 2 3 2 2 3 2 0 0 -
Total 968 376 787(1) 824 812 745 899(37) 652(2) 511 353 398(3)

SMT solvers. We consider three SMT systems taken from the CASC and SMT-COMP repository on
StarExec. Firstly, Z3 as described in Section 4.1 from Microsoft Research (4.4.2), secondly CVC4 (1.5
for CASC and SMT-COMP 2016) [3], and lastly veriT [8] (SMT-COMP 2015).

Strategy Scheduling. Both VAMPIRE and CVC4 makes use of strategy scheduling. In both systems
this approach is necessary for full coverage of the problems solved. We are not aware if other systems
make use of strategy scheduling.

5.2 TPTP Problems
Experiments with TPTP problems were run for 5 minutes as this is (usually) the time limit used in the
CASC competition. Table 1 presents the results comparing the systems on 968 relevant (not satisfi-
able) benchmarks taken from the TPTP library. These have been split into categories where I=integer,
Q=rational, R=real, L=linear and N=non-linear4. We have included all TPTP problems, even those of
rating 0.0 (those supposedly solved by all provers). Table 1 reports the total number of and the number
of easy problems in each category, the number of solved problems per system, and the total number of
problems solved across all categories with unique solutions in brackets.

There are 53 problems unsolved by any system, almost all of which are from the IL category. This
is unsurprising as the majority of problems from TPTP are from the IL category. VAMPIRE performs
best in the IL and IN categories and solves the most problems overall, being comparable in most other
categories. We note that the top two systems (VAMPIRE and CVC4) are relatively close each other in
performance. It is interesting to note that even systems such as Zipperposition, which solve relatively
few problems overall, solve some problems uniquely.

5.3 SMT-LIB Problems
Experiments with SMT-LIB problems were run for 30 minutes as this is (usually) the time limit used in
the SMT-COMP competition. Table 2 presents the results comparing systems on all relevant problems

4By non-linear we mean non-linear operations such as multiplication, not the theory of non-linear arithmetic. This means
that they do not correspond to any SMT-LIB category.
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Table 2: Results SMT-LIB problems (- means unsuitable for the solver).

Size CVC4 VAMPIRE veriT Z3
ALIA 41 41 40 27 41
AUFLIA 3 3 2 1 2
AUFLIRA 19,914 19,761 (11) 19,777 (9) 19,259 19,751
AUFNIRA 1,491 1,041 1,085 (45) - 1,034 (3)
LIA 380 86 (21) 65 159 24
LRA 605 344 (6) 331 78 339
NIA 8 3 4 - 5 (1)
NRA 3,813 3,735 3,802 (4) - 3,806 (8)
UFIDL 74 62 66 (4) 57 62
UFLIA 12,114 8,536 (79) 8,479 (151) 6,738 7,815 (3)
UFLRA 20 20 20 20 20
UFNIA 3,351 1,373 (28) 1,777 (371) - 1,235 (12)
Total 41,814 35,390 (145) 35,448 (584) 27,844 34,386 (27)

(i.e. problems containing quantifiers and theories but not using bit-vectors) from the SMT-LIB library
that are not known to be satisfiable (problems with unknown status were included). The table uses the
divisions of SMT-LIB to report the number of unsat results found in each division.

VAMPIRE performs well in divisions that include Arrays or the Uninterpreted Functions. Indeed, for
many (not all) of the other divisions the SMT solvers implement decision procedures and it would be
surprising to see VAMPIRE outperforming these. We note that ATP systems outperforming SMT solvers
in the other cases should not be surprising as these are non-ground problems where SMT solvers must
perform instantiation to deal with quantifiers. It is not surprising that Z3 has unique solutions as, whilst
the AVATAR modulo theories architecture makes use of Z3 it does not utilise its quantifier instantiation
procedures.

VAMPIRE solves 584 problems uniquely. We believe this is because VAMPIRE is utilising a funda-
mentally different approach to solving these problems. Whereas the three SMT solvers are based on the
DPLL(T ) architecture, VAMPIRE’s usage of superposition allows it to derive first-order consequences
and ground instances that cannot be derived by SMT solvers.

6 Related Work
There are a number of approaches that attempt to combine quantifier and SMT-based theory reasoning.

SMT solvers such as Z3 and CVC4 implement E-matching [15, 11], model based quantifier instan-
tiation [15, 11] and conflict instantiation [25] techniques to deal with quantifiers. These all take the
form of instantiation and are generally heuristic, although for some fragments they can form a decision
procedure.

The work of DPLL(Γ) [12] combines a superposition prover with an SMT solver (Z3) in a similar
way to that described in this paper. In this combination the ground literals decided and implied by the
SMT solver were used as hypotheses to first-order clauses. Therefore, the main difference with our
approach is that (i) we use arbitrary components rather than ground literals; and (ii) we treat the SMT
solver as a black box whilst DPLL(Γ) interleaves the architectures. The effect of this interleaving is
that backtracking in DPLL(Γ) is more similar to splitting with backtracking.

SPASS+T [23, 36] is based on the idea of hierarchic superposition [2]. Whilst VAMPIRE relies
on the AVATAR architecture to communicate with the SMT solver, in SPASS+T the two systems are
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more loosely coupled. SPASS+T simply passes the derived ground formulas to the SMT solver, which
may detect inconsistency (of this ground part, and thus implicitly of the whole input formula) using its
decision procedures.

7 Conclusion and Further Work

We have described an extension to the AVATAR architecture that allows it to reason modulo theories
by replacing the SAT solver with an SMT solver. The implementation of the resulting architecture
within the VAMPIRE theorem proving using Z3 was described, highlighting practical issues that were
overcome. Experimental results demonstrated that this combination can be highly effective, often out-
performing both ATP systems and SMT solvers.

This is a first step in exploring this novel combination of ATP systems and SMT solvers and there are
many avenues for further investigation. For example, we would like to consider whether more useful
information could be extracted from the SMT solver. For example, the SMT solver may be able to
derive bounds on constants that could be used in first-order reasoning. Currently we do not utilise any
quantifier reasoning capabilities of Z3. Another extension to this work would be to explore whether
(limited applications of) such techniques could complement the quantifier-reasoning carried out in the
first-order part in a useful way and thus help to improve the performance of the combined system.
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