

An O(nlogn/logw) Time Algorithm for Ridesharing

Yijie Han ${ }^{1}$ and Chen Sun ${ }^{2}$
School of Computing and Engineering, University of Missouri-Kansas City, U.S.A.

${ }^{1}$ hanyij@umkc.edu, ${ }^{2}$ scvnq@umsystem.edu

Abstract

In the ridesharing problem different people share private vehicles because they have similar itineraries. The objective of solving the ridesharing problem is to minimize the number of drivers needed to carry all load to the destination. The general case of ridesharing problem is NP-complete. For the special case where the network is a chain and the destination is the leftmost vertex of the chain, we present an O (nlogn/logw) time algorithm for the ridesharing problem, where w is the word length used in the algorithm and is at least logn. Previous achieved algorithm for this case requires O(nlogn) time.

Keywords: data engineering, efficient algorithms, ridesharing, time complexity

1 Introduction

A road network is expressed by a (undirected) graph G connecting a set $\mathrm{V}(\mathrm{G})$ of vertices and a set $E(G)$ of edges. Each edge (u, v), where u, v are vertices represents a road between u and $v . G$ is weighted if each edge is assigned a weight (distance of the road). When G is unweighted we assume that each edge has weight 1 . A path is a sequence of edges $e_{1}, e_{2}, \ldots, e_{k}$, where $e_{i}=\left(v_{i-1}, v_{i}\right) \in(G), 1 \leq i \leq k$ and no vertex is repeated in the sequence (i.e. there is no loops), where k is for v_{k}, the source. The length of the path P is the sum of the weights of its edges.

In our case we consider the situation that the road network is one line $\mathrm{v} 0, \mathrm{v}_{1}, . ., \mathrm{v}_{\mathrm{n}}$ and the left most vertex v_{0} is the destination for all trips. A trip t is from v_{i} for some i to v_{0}, i.e. $v_{i}, v_{i-1}, \ldots, v_{0}$.

A trip t from v_{i} to v_{0} has load load(i) (which is a nonnegative number) at v_{i} and capacity capacity(i) (which is a nonnegative number) at v_{i}. capacity(i) is the maximum load the driver can carry from v_{i} to vo. Thus load(i) \leq capacity(i). free(i)=capacity(i)-load(i) is called the free load for trip t. When free(i) > 0 then on the path from v_{i} to v_{0} the driver of trip t can carry additional free(i) load from other trips at v_{i} $1, \mathrm{v}_{\mathrm{i}}-2, \ldots, \mathrm{v}_{1}$. When all the load at v_{i} is carried by other trips with sources $\mathrm{v}_{\mathrm{k}}, \mathrm{k}>\mathrm{i}$, then the trip from v_{i}
to v_{0} can be canceled. This is to say, when a driver at source $v_{j}, j>i$, pass by v_{i} and is not fully loaded, he can carry some of the load at vi. If all load at v_{i} are carried by such drivers, then the trip from v_{i} to v_{0} can be canceled. The objective is to remove as many trips as possible and to minimize the number of trips and thus keep the number of drivers needed at minimum.

This version of the ridesharing problem has been studied by Gu, Liang and Zhang [2, 3, 4]. In [4] they obtained $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time algorithm for the problem but in [2] they achieved $\mathrm{O}(\mathrm{nlogn})$ time.

As an example, the following Table 1 shows the initial situation of a ridesharing problem :

source, $\mathrm{v}:$	0	1	2	3	4	5	6	7
free :	2	4	1	3	5	1	1	
load :	7	2	10	5	5	4	2	

Table 1:Initial situation of a ridesharing problem
For example, in Table 1 shows that at v_{2} the load is 2 and the free is 4 . This means when the driver at v_{2} can carry the load 2 and also can add additional load 4 when he drives to the destination v_{0}. If he pick additional load 4 at v_{1}, then at v_{1} the load becomes 3 and the free becomes $2+4=6$.

In this paper we show an $\mathrm{O}(\mathrm{n} \log \mathrm{n} / \log \mathrm{w})$ algorithm for the ridesharing problem, where w is the word length, i.e. the number of bits used in a word. w is at least logn and therefore our algorithm has complexity no worse than $\mathrm{O}(\mathrm{n} \operatorname{logn} \mathrm{l} / \log \operatorname{logn})$. Thus we improve the result achieved by Gu.et al.

2 Preliminary

As an example, following Table 1 shows a case in which the load at some sources can be removed :
In this system, we can let the trip from v_{3} carry load 1 from the load at v_{2} and the trip from v_{4} carry additional load 1 from v2 and thus the load at V_{2} can be carried by the trips starting at v_{3} and V_{4}. The modified situation is shown here.

source, $\mathrm{v}:$	0	1	2	3	4	5	6	7
free :	2	6	0	2	5	1	1	
load :	7	0	11	6	5	4	2	

Table 2 : As modified in Table 1

Thus the trip from v_{2} can be removed. Now the load 7 at v_{1} can be carried by trips starting at v_{3} and vs. The modified situation is shown here.

source, $\mathrm{v}:$	0	1	2	3	4	5	6	7
free :	9	6	0	0	0	1	1	
load :	0	0	11	8	10	5	2	

Table 3 : As modified in Table 2
Thus we reduced 7 trips in the initial input to 5 trips.

3 How This Works in Previous Papers

In [3] it shows that there is an algorithm to reduce the number of trips to minimum in $O\left(n^{3}\right)$ time. This algorithm was improved to $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time in [4]. Here we describe the algorithm in [3] and explain how it works as some principles used in [3] are also used in our algorithm.

The algorithm in [3] computes $\operatorname{GAP}(i, j)$. $\operatorname{GAP}(i, j)$ is the remaining load after redistributing load at vertex $\mathrm{i}: \operatorname{load}(\mathrm{i})$, to vertices $\mathrm{k}, \mathrm{i}<\mathrm{k}<\mathrm{j}$, provided that $\operatorname{load}(\mathrm{k})>0$.

$$
G A P(i, j)=\left|S_{j}\right|-\sum_{a \in S t, j<a<i} \text { free }(a)
$$

Find out the minimum GAP.
In our previous example, following Table 1.
$\operatorname{GAP}(2,3)=2$, this is because when we redistribute load 2 at v_{2} to v_{3} and when we arrive at v_{3} the load coming from v_{2} is 2 . And $\operatorname{GAP}(2,4)=1$, this is because when we redistribute load 2 at v_{2} all the way to v_{4} we can distribute load 1 from 2 to v_{3} as v_{3} has free 1 , thus when we arraive at v_{4} we have load 1 remaining.

In our previous example, following Table 2.
$\operatorname{GAP}(1,3)=7($ note that $\operatorname{load}(2)=0), \operatorname{GAP}(1,4)=7, \operatorname{GAP}(1,5)=5, \operatorname{GAP}(1,6)=0$, this is because load 7 at v_{1} can be redistributed to V_{4} (redistribute load 2 as v_{4} has free 2) and redistribute to v_{5} (redistribute load 5 as vs has free 5).

The algorithm in [2] has a loop iterating through $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$. When working on v_{j}, the minimum of $\operatorname{GAP}(\mathrm{i}, \mathrm{j}), 1 \leq \mathrm{i}<\mathrm{j}$, is found. Let $\mathrm{G}\left(\mathrm{i}_{\mathrm{j}}, \mathrm{j}\right)$ be the minimum, if $\mathrm{G}\left(\mathrm{i}_{\mathrm{j}}, \mathrm{j}\right) \leq$ free (j) then $\operatorname{load}\left(\mathrm{i}_{\mathrm{j}}\right)$ will be redistributed to $v_{i_{j}+1}, v_{i_{j}+2}, \ldots, v_{j}$ to make free $\left(i_{j}+1\right)$, free $\left(i_{i}+2\right), \ldots$, free $(j-1)$ to 0 's. If $G\left(i_{j}, j\right)>$ free (j) no redistribution of load will happen as redistribution, if taken, cannot remove any driver. Thus if $\mathrm{G}(\mathrm{i}, \mathrm{j})>$ free(j) then the loop will iterate to $\mathrm{j}+1$.

Because $\operatorname{GAP}(\mathrm{i}, \mathrm{j})$ takes $\mathrm{O}(\mathrm{j}-\mathrm{i})$ time and therefore the computation of $\operatorname{GAP}(\mathrm{i}, \mathrm{j}), 1 \leq \mathrm{i}<\mathrm{j}$, takes $\mathrm{O}\left(\mathrm{j}^{2}\right)$ time. Because the loop has n iterations and therefore the algorithm has $O\left(n^{3}\right)$ time.

4 Our Algorithm

We speed up the algorithm using the dynamic integer set and redesigned the algorithm so that dynamic integer set operations can be applied. Our algorithm time complexity is $\mathrm{O}(\mathrm{n} \operatorname{logn} / \operatorname{logw})$, where $\mathrm{w} \geq$ logn. We use dynamic integer sets [5] that support insert, delete, min operations among other operations in $\mathrm{O}(\operatorname{logn} / \log w)$ time. The reason we can use dynamic integer sets because load and capacity are integers (they are seats on the vehicle). We will name such a dynamic integer set as set H .

We intend to compute
$\mathrm{S}_{0}=\sum_{i=1}^{n} \operatorname{free}(i)=2+4+1+3+5+1+1=17$
$S_{1}=S_{0}-$ free $(1)=17-2=15, S_{2}=S_{1}-$ free $(2)=15-4=11, S_{3}=S_{2}-$ free $(3)=11-1=10$
$S_{4}=S_{3}-$ free $(4)=10-3=7, S_{5}=S_{4}-$ free $(5)=7-5=2, S_{6}=S_{5}-$ free $(6)=2-1=1$
And use load(i)-S S_{i} as a key. After put keys in a dynamic integer set and find the minimum key we can identify $\operatorname{GAP}(\mathrm{i}, \mathrm{j})$ which is minimum.

In our case, following Table 1.
Our algorithm precedes as follows:
Precomputation: Compute $\mathrm{S}_{0}=17$ in our case) in $\mathrm{O}(\mathrm{n})$ time.
Step 1: Works on v_{1}. Compute $\mathrm{S}_{1}=\mathrm{S}_{0}-$ free(1) $(=17-2=15$ in our case $)$. Enter key ${ }_{1}=\operatorname{load}(1)-\mathrm{S}_{1}(=7-$ $15=-8$ in our case) into set H.

Step 2 : Works on v_{2}. Compute $S_{2}=S_{1}-$ free(2$)(=15-4=11$ in our case). Find min in set H which is key $_{1}$. Compare load(1) (1 here because key ${ }_{1}$) with $S_{1}-S_{2}$ (1 because of key y_{1} and 2 because of v_{2}) which is free(2). In our case $\operatorname{load}(1)=7>4=\mathrm{S}_{1}-\mathrm{S}_{2}$ therefore load(1) cannot be redistributed. Thus we enter $\mathrm{key}_{2}=\operatorname{load}(2)-\mathrm{S}_{2}(=2-11=-9$ in our case) into set H.

Step 3 : Works on v_{3}. Compute $S_{3}=S_{2}-$ free (3$)(=11-1=10$ in our case). Find min in set H which is key $_{2}$. Compare load(2) (2 here because key ${ }_{2}$) with $\mathrm{S}_{2}-\mathrm{S}_{3}$ (2 because of key_{2} and 3 because of v_{3}) which is free(3). In our case $\operatorname{load}(2)=2>1=S_{2}-S_{3}$ therefore load(2) cannot be redistributed. Thus we enter $\operatorname{key}_{3}=\operatorname{load}(3)-\mathrm{S} 3(=10-10=0$ in our case) into set H.

Step 4: Works on V_{4}. Compute $\mathrm{S}_{4}=\mathrm{S}_{3}$-free(4) $(=10-3=7$ in our case). Find min in set H which is key $_{2}$. Compare load(2) (2 here because key ${ }_{2}$) with $\mathrm{S}_{2}-\mathrm{S}_{4}$ (2 because of key ${ }_{2}$ and 4 because of v_{4}) which is free(3)+free(4). In our case $\operatorname{load}(2)=2 \leq 4=S_{2}-S_{4}$ therefore load(2) can be redistributed. After redistribution the situation becomes Table 2.

Note up so far it works fine as when we are working on v_{j} and find min k_{i} in set H then $\operatorname{GAP}(i, j)$ is the minimum among all $\operatorname{GAP}(\mathrm{k}, \mathrm{j})$ for $\mathrm{k}<\mathrm{j}$. However, it does not take us $\mathrm{O}\left(\mathrm{j}^{2}\right)$ time to find the minimum GAP, it takes us only $\mathrm{O}(\operatorname{logn} / \log w)$ time to find the \min in set H to find the minimum GAP.

However, after redistribution, the S_{i} values have been changed and thus it looks like that we have to recompute the key values for the keys already in set H . What we do instead is:

Because load(2)=0, it can be removed. We used 1 from free(3), 1 free(4) to carry the load at v_{2}.

Since now free(3) is decremented by 1 and free(4) is decremented by 1 , we should increase key1 by 2. However, to change the value for the keys already in the dynamic integer set will make the $\mathrm{O}(\mathrm{nlogn} / \operatorname{logw})$ time for our algorithm unachievable. What we do is to decrement 2 for all the keys entered starting form v_{4}. That is for every key starting from key4, we will subtract 2 from the key value before entering it into set H . Here we call $-\operatorname{load}(2)=-2$ as the adjusting value.

Redistributed as Table 2.
V_{2} is removed. Since free(4) has been decremented by 1 , we need to change value of key3. We continue working on Step 4. Because v_{2} is removed we need change adjusting value=adjusting value free (2) $=-2-4=-6$

Step 4 (continued): All vertices v with free(v) set to 0 needs to be worked on. Therefore we work on v_{3}. Remove key_{3} from set H. $\mathrm{key}_{3}=\mathrm{key}_{3}+\operatorname{load}(2)$-free(3) (before load(2) and free(3) were set to 0 , $\operatorname{load}(2)$ because load(2) is redistributed, free(3) because load(2)-free(3) is the value taken out from the free's starting from V_{4}) + adjusting value $=0+2-1-6=-7$. Insert key ${ }_{3}$ into set H .

Find \min in set H again, which is key ${ }_{1}=-8 . \mathrm{S}_{1}-\mathrm{S}_{4}+$ adjusting value $=15-7-6=2<\operatorname{load}(1)=7$, thus no redistribution can happen. Thus we put $\mathrm{key}_{4}=\operatorname{load}(4)-\mathrm{S}_{4}+$ adjecting value $=6-7-6=-7$ into set H .

Step 5 : Working on V_{5}. Computing $\mathrm{S}_{5}=\mathrm{S}_{4}-\mathrm{free}(5)=7-5=2$. Find min in set H which is $\mathrm{key}_{1}=-8 . \mathrm{S}_{1-}$ $\mathrm{S}_{5}+$ adjusting value $=15-2-6=7 \geq 7=\operatorname{load}(1)$. Thus redistribute load(1). After redistribution the situation becomes :

source, $\mathrm{v}:$	0	1	2	3	4	5	6	7
free :	9	0	0	0	1	1		
load :	0	11	8	10	4	2		

Table 4 : As modified in Table 2 (use our algorithm redistribution the situation)
In the remaining steps redistribution cannot happen. Thus our algorithm ends up with 5 drivers.
In general, suppose the first time we redistribute load it is to redistribute load(i) to $v_{i+1}, v_{i+2}, \ldots, v_{i+j}$. Then free $(\mathrm{i}+1)$, free $(\mathrm{i}+2), \ldots$ free $(\mathrm{i}+\mathrm{j}-1)$ all become 0 's. load(i$)=0$ and v_{i} can be removed. The adjusting value $=-\operatorname{load}(i)$-capacity(i) (capacity(i)=load(i)+free(i)). We will remove key ${ }_{i+1}$, key $_{i+2}, \ldots$, key $_{i+j-1}$ from set H and build another dynamic integer set H_{i} with capacity $(\mathrm{i}+1)$, capacity($\mathrm{i}+2$), \ldots, capacity $(\mathrm{i}+\mathrm{j}-1)$ inserted in to set H_{i}. Here capacity $(\mathrm{i}+\mathrm{k})$ is equal to load $(\mathrm{i}+\mathrm{k})$ as free $(\mathrm{i}+\mathrm{k})=0,1 \leq \mathrm{k}<\mathrm{j}$. In our algorithm the new $\operatorname{key}(\mathrm{i}+\mathrm{k})=$ capacity $(\mathrm{i}+\mathrm{k})-\mathrm{S}_{\mathrm{i}+\mathrm{j}-1}+\left(\operatorname{load}(\mathrm{i})\right.$ (before redistribution) $\left.-\left(\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}+\mathrm{j}-1}\right)\right)$ (this is the free value amount at free $(\mathrm{i}+\mathrm{j})$ that is used for redistributing load(i))+adjusting value, $1 \leq \mathrm{k}<\mathrm{j}$. In this quantity the only value relevant to k is capacity $(\mathrm{i}+\mathrm{k})$. We will call $\mathrm{S}_{\mathrm{i}+\mathrm{j}-1}+\left(\operatorname{load}(\mathrm{i})\right.$ (before redistribution) $-\left(\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}+\mathrm{j}-}\right.$ 1))+adjusting value as the adjusting value for H_{i}. Thus we build H_{i} and insert the min key min(k) in H_{i} into H . If $\min (\mathrm{k})$ in H is deleted then we delete $\min (\mathrm{k})$ from H_{i} and find the new $\min (\mathrm{k})$ in H_{i} and insert it into H . We also have to build a set T_{i} and put vertices $v_{i}, v_{i+1}, \ldots, v_{i+j-1}$ into from T_{i} in $\mathrm{O}(\mathrm{j}-\mathrm{i})$ time The use T_{i} is to let every vertex $v_{i-1}, v_{i}, \ldots, v_{i+j-1}$ to find v_{i+j} quickly. Here every vertex $v_{i-1}, v_{i}, \ldots, v_{i+j-1}$ can find the set T_{i} which is pointing to v_{i+j}. Because if a load $(k), i-1 \leq k \leq i+j-1$, is to be redistributed, we have to jump through $v_{k+1}, v_{k+2}, v_{i+j-1}$ without visiting each of them (to keep the $\mathrm{O}(\operatorname{logn} / \log w)$ time for each vertex), tree T_{i} will allow us find v_{i+j} from v_{k} in $O(\alpha(n))$ time, where $\alpha(n)$ is the inverse Ackermann function, because we will use Union-Find algorithm [1] to implement it.

We then start working on $\mathrm{v}_{\mathrm{i}+\mathrm{j}}$, and we compute $\mathrm{key}_{\mathrm{i}+\mathrm{j}}=\operatorname{load}(\mathrm{i}+\mathrm{j})-\mathrm{S}_{\mathrm{i}+\mathrm{j}}+$ adjusting value.
Suppose we are going to do another redistribution from v_{1} to v_{m}. Consider the following cases :

1. $1>=\mathrm{i}+\mathrm{j}$. This is the most simply case. Because key values for keyk, $\mathrm{k}<\mathrm{i}+\mathrm{j}$, need not be changed and we need only add adjusting values to later keys. Note if $1>i+j$ then we will build another dynamic integer set H_{1} for the nodes v_{1} to $\mathrm{v}_{\mathrm{m}-1}$. v_{1} will be removed. The new adjusting value=adjusting value-load(1)-capacity(1). The adjusting value for H_{1} is $\mathrm{S}_{\mathrm{m}}+\left(\mathrm{load}(\mathrm{l})\right.$ (before redistribution) $-\left(\mathrm{S}_{\mathrm{l}}-\mathrm{S}_{\mathrm{m}}-\right.$ $\left.{ }_{1}\right)$)+adjusting value. If $1>i+j$ we will build set T_{1} in $O(m-l)$ time. If $l=i+j$ we will build set T_{1} in $O(m-l)$ time and then union T_{i} and T_{1} into one set with the Union-Find algorithm [1] and name it T_{i}.
$2.1<\mathrm{i}$. In this case we will redistribute load(1) to $\mathrm{v}_{1+1}, \mathrm{v}_{1+2}, \ldots, \mathrm{v}_{\mathrm{i}-1}$, then jump over from v_{i} to $\mathrm{v}_{\mathrm{i}+\mathrm{j}-1}$ and then start redistribute at $\mathrm{v}_{\mathrm{i}+\mathrm{j}}, \mathrm{v}_{\mathrm{i}+\mathrm{j}+1}, \ldots, \mathrm{v}_{\mathrm{m}}$. capacity $(\mathrm{l}+1)$, capacity $(\mathrm{l}+2), \ldots$, capacity $(\mathrm{i}-1)$, capacity $(i+j)$, capacity $(i+j+1), \ldots$, capacity $(m-1)$ will be entered as keys into H_{i}. The original min $(k e y)$ in H_{i} that was entered into H will be withdrawn from H . We then rename H_{i} as H_{l} and find min(key) in H_{1} and insert it into $\mathrm{H} . \mathrm{v}_{1}$ will be removed. The new adjusting value is updated as adjusting value -load(l)-capacity(l). The adjusting value for H_{l} is $\mathrm{S}_{\mathrm{m}}+\left(\right.$ load(l) (before redistribution) $-\left(\mathrm{S}_{\mathrm{l}}-\mathrm{S}_{\mathrm{i}}+\mathrm{S}_{\mathrm{i}+\mathrm{j}-1}-\mathrm{S}_{\mathrm{m}}-\right.$ 1)) + adjusting value. We will build a set for $\mathrm{v}_{1}, \mathrm{v}_{\mathrm{l}+1}, \ldots, \mathrm{v}_{\mathrm{i}-1}$ in $\mathrm{O}(\mathrm{i}-1)$ time, and set for $\mathrm{v}_{\mathrm{i}+\mathrm{j}}, \mathrm{v}_{\mathrm{i}+\mathrm{j}+1}, \ldots, \mathrm{v}_{\mathrm{m}-1}$ in $\mathrm{O}(\mathrm{m}-\mathrm{i}-\mathrm{j})$ time. Then union these two sets with T_{i} and then rename T_{i} to T_{1}.
2. $\mathrm{i} \leq 1<\mathrm{i}+\mathrm{j}$. In this case redistribute load(1) to $\mathrm{v}_{\mathrm{i}+\mathrm{j}}, \mathrm{v}_{\mathrm{i}+\mathrm{j}+1}, \ldots, \mathrm{v}_{\mathrm{m}}$. capacity $(\mathrm{i}+\mathrm{j})$, capacity $(\mathrm{i}+\mathrm{j}+1), \ldots$, capacity $(\mathrm{m}-1)$ will be entered into set H_{i}. vl will be removed. New adjusting value=adjusting value load(l) -capacity(l). The new adjusting value for H_{i} is $\mathrm{S}_{\mathrm{m}}+\mathrm{y}$ (load(l) (before redistribution) $-\left(\mathrm{S}_{\mathrm{i}+\mathrm{j}-1}-\mathrm{S}_{\mathrm{m}}\right.$ 1))+adjusting value. We build a set for $v_{i+j}, v_{i+j+1}, \ldots, v_{m-1}$ in $\mathrm{O}(m-i-j)$ time and then union this set with T_{i}.

Thus in our algorithm, each vertex v_{i} and load(i) is processed at most twice. Once is load(j) redistribute to free(i) for $j<i$. We count vi as processed for this time only if free(i) changed from nonzero to zero. If part of load(i) is redistributed to free(i) but free(i) did not become 0 then v_{i} is the last vertex for the distribution. In this case we attribute the time for processing v_{i} to the time for v_{j}. Another time v_{i} and load(i) is processed is when load(i) is redistributed and therefore v_{i} is removed. The remaining time for v_{i} is insert key into dynamix integer set and delete key from dynamic integer set. It is known that these operation has time $\mathrm{O}(\operatorname{logn} / \operatorname{logw})$ for processing each vertex.

Because we spend $\mathrm{O}(\operatorname{logn} / \log w)$ time per vertex and therefore the time complexity of our algorithm is $\mathrm{O}(\mathrm{nlogn} / \log w)$.

Main Theorem : There is an $\mathrm{O}(\mathrm{n} \operatorname{logn} / \operatorname{logw})$ time algorithm that finds the minimum number of drivers for the ridesharing problem.

5 Conclusion

We proposed an $\mathrm{O}(\mathrm{nlogn} / \log w)$ time algorithm to minimize the number of drivers for the ridesharing problem. It is also worth developing algorithms for rider cases and exploring the algorithmic complexity of other simplified variants of this problem.

Note that the load and capacity in the algorithm are nonnegative integers and therefore we can use the dynamic integer set for them. If load and capacity are real values then a different algorithm has to be designed.

References

[1] T.H. Corman, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to Algorithms. Third Edition, The MIT Press. 2009.
[2] Q.-P. Gu, J. L. Liang, G. Zhang. Efficient algorithms for ridesharing if personal vehicles. Theoretical Computer Science 788, 79-94(2019).
[3] Q.-P. Gu, J. L. Liang, G. Zhang. Algorithmic analysis for ridesharing of personal vehicles. Theoretical Computer Science 749, 36-46(2018).
[4] Q.-P. Gu, J. L. Liang, G. Zhang. Efficient algorithms for ridesharing of personal vehicles. Proceedings of COCOA'2017, LNCS 10627, 340-354(2017).
[5] M. Phtra`cu, M. Thorup. Dynamic integer sets with optimal rank, select, and predecessor search. Proc. 2014 IEEE Foundations of Computer Science. 166-175(2014).

