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Abstract

Adding blocked clauses to a CNF formula can substantially speed up SAT-solving,
both in theory and practice. In theory, the addition of blocked clauses can exponentially
reduce the length of the shortest refutation for a formula [17, 19]. In practice, it has
been recently shown that the runtime of CDCL solvers decreases significantly for certain
instance families when blocked clauses are added as a preprocessing step [10, 22]. This
fact is in contrast to, but not in contradiction with, prior results showing that Blocked-
Clause Elimination (BCE) is sometimes an effective preprocessing step [14,15]. We suggest
that the practical role of blocked clauses in SAT-solving might be richer than expected.
Concretely, we propose a theoretical study of the complexity of Blocked-Clause Addition
(BCA) as a preprocessing step for SAT-solving, and in particular, consider the problem of
adding the maximum number of blocked clauses of a given arity k to an input formula F .
While BCE is a confluent process, meaning that the order in which blocked clauses are
eliminated is irrelevant, this is not the case for BCA: adding a blocked clause to a formula
might unblock a different clause that was previously blocked. This order-sensitivity turns
out to be a crucial obstacle for carrying out BCA efficiently as a preprocessing step. Our
main result is that computing the maximum number of k-ary blocked clauses that can be
added to an input formula F is NP-hard for every k ≥ 2.

1 Introduction

Redundant clauses (with respect to a formula F ) are defined by the fact that their addition
or removal does not affect the satisfiability of F . Nonetheless, adding or removing redundant
clauses can still dramatically affect how hard it is in practice to determine whether F is sat-
isfiable or not. Indeed, CDCL-based solvers often alternate between adding redundant clauses
(which can make future deductions easier) and removing redundant clauses (which makes the
formula smaller). Figure 1 shows an execution of the Kissat solver [4], and illustrates how re-
dundant clauses fluctuate throughout the solving process, sometimes reaching 80% of the total
clauses.

As checking for redundancy is a computationally expensive task in general (the empty clause
is redundant with respect to a formula F if and only if F is unsatisfiable!), significant attention
has been centered around particular forms of redundancy that can be efficiently checked [23].
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In this paper we focus on blocked clauses, a particular form of redundant clauses introduced
by Kullman in 1999 [19]. A definition of blocked clauses based on resolution is presented
in Section 3, but for now consider the following:

Definition 1 (Preliminary definition). A clause C is blocked with respect to a formula F on a
literal ℓ ∈ C if every clause C ′ ∈ F containing ℓ also contains a literal, different from ℓ, whose
negation is in C.

Importantly, blocked clauses are redundant [19], and their purely syntactical definition allows
us to efficiently check whether a clause is blocked with respect to a formula F . As a result,
given a formula F it is possible to efficiently eliminate some, or even all, blocked clauses from
it. This process is known as Blocked-Clause Elimination (BCE) [15], and can be used as a
preprocessing step in modern SAT-solvers such as CaDiCal [3], although we remark that BCE
is turned off by default. The efficiency of running BCE relies not only on clause blockedness
being an efficiently checkable property, but also on the fact that the order in which blocked
clauses are eliminated is irrelevant, a property known as confluence [15]. In this article, we will
study Blocked-Clause Addition (BCA), the converse of BCE. In a nutshell, we will use the lack
of confluence of BCA to derive hardness results. In particular, our main result is the following:

Theorem (Informal statement). For any k ≥ 2, given a formula F , it is NP-hard to compute
the largest set of k-ary blocked clauses that can be added to F .
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Figure 1: Evolution of the number of redundant and irredundant clauses over a 2-minute run
of the Kissat solver [4]. The notion of redundancy used by Kissat corresponds to RUP [18]. The
specific instance used for this plot is publicly available at https://pastebin.com/K6AnWuVx.

Organization. Section 2 discusses in more detail the role of blocked clauses in (Max)SAT-
solving, showing that both BCE and BCA can be helpful depending on the particular appli-
cation. Then, Section 3 presents the definitions required to state Maximum Blocked Clause
Addition as a computational problem whose complexity can be analyzed. In Section 4 we intro-
duce BC graphs, the directed graphs that capture the relevance of the order in which blocked
clauses can be added to an input formula F . Next, Section 5 presents a partial characterization
of BC graphs, describing classes of graphs that can arise as BC graphs. We leverage that char-
acterization to derive hardness results in Section 6, and also show that counting the number of
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models for a blocked set is #P-hard, thus answering an open question of Heule and Biere [2,12].
Section 7 presents a simple approximation algorithm that achieves a 1/6-factor of the maximum
number of binary blocked clauses that can be added to a formula. Then, Section 8 provides
further insight into BC graphs for k ≥ 4. Finally, we present concluding remarks and open
problems in Section 9.

2 Should they Stay or Should they Go?

The seminal paper of Kullmann [19, Lemma 8.10] showed that there are unsatisfiable formu-
las for which the addition of blocked clauses, even without any new variables, exponentially
reduces the length of the shortest resolution refutation. However, when introducing BCE as
a general preprocessing technique, Jarvisalo et al. [15, Section 4] remarked that despite the
theoretical results of Kullmann, running BCE often resulted in shorter and easier formulas in
practice. Reality seems to be more nuanced, as recent empirical evidence has revealed. In 2023,
Subercaseaux and Heule determined the packing chromatic number of the infinite square grid
through SAT-solving, and found that adding merely 85 blocked clauses to large formulas pro-
vided significant improvements in runtimes and proof sizes [22, Table 3]. Moreover, Fleury and
Kaufmann recently showed that BCE was detrimental in 12 out of 15 SAT competitions (2009–
2023) [10, Table 1]. We remark that the results reported by Fleury and Kaufmann also suggest
that BCA can be beneficial: if the runtime for F \BlockedClauses(F ) was longer than for F ,
that means that taking G := F \BlockedClauses(F ), and G′ := G∪BlockedClauses(F ),
the runtime for G′ was shorter than for G, and it is easy to show that any blocked clause w.r.t.
F is a blocked clause w.r.t. G, which implies that G′ is indeed a potential result of running
BCA over G.

Why should blocked clauses go? A simple argument for BCE is that as a rule of thumb,
smaller encodings are more efficient. Given that most SAT solvers iterate over clauses in their
main loop, each iteration becomes faster if the number of clauses is reduced. In simple words,
any clause that is not helping the solving process must be hurting it. A concrete example
in which BCE significantly improved runtimes is the Pythagorean Triples problem, where it
removed roughly 50% of the (occurring) variables and 20% of the clauses [14].

Why should we add more? The main reason for adding blocked clauses is that they can
help the solver make deductions. We have referred already to theoretical evidence [19] and
empirical evidence [10, 22], but we will now discuss a self-contained example illustrating the
power of adding blocked clauses. Consider the MinimumVertexCover problem, in which the
input is an undirected graph G = (V,E) and an integer k ≥ 0, and the question is to decide
whether there is a set S ⊆ V such that |S| ≤ k and for every edge {u, v} ∈ E at least one of
u or v is in S. A direct encoding for this problem consists of creating variables xv for every
vertex v ∈ V , representing whether v ∈ S or not, and then constructing the formula F :

(xu ∨ xv), for every edge {u, v} ∈ E (Covering Constraints)

∧
X⊆V,|X|=k+1

( ∨
u∈X

xu

)
(Cardinality Constraints)

Now consider the following graph G, depicted in Figure 2.
Then observe that the following clauses are blocked w.r.t. F : (x1∨x2), (x2∨x3), (x6∨x7). If

these clauses are added to F , then most solvers are quickly able to deduce that (x1∨x2)∧(x1∨x2)
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Figure 2: Illustration of the graph G used in the example for the MinimumVertexCover
problem.

imply that x1 = x2. As the literal x1 does not appear in any other clauses, the solver can
assign x1 = 0, x2 = 1 without loss of generality, which leads to eliminatating the variable x1

and the clauses containing it (Equivalent Literal Substitution [13]). This simplification would
be performed over all vertices of degree 1, therefore implying the solver would have quickly
deduced a well-known Vertex Cover preprocessing technique: “get rid of all vertices of degree
1 and add their neighbors to the cover” [1, 9].

3 Preliminaries

We start by introducing some notation and definitions required to formally state the problem
at hand. First, we understand a clause as a non-tautological disjunction of literals, which we
identify in turn with a set of literals that does not contain both ℓ and ℓ for any literal ℓ. Given
two clauses A = (a1 ∨ a2 ∨ . . . ∨ an) and B = (b1 ∨ b2 ∨ . . . ∨ bm), we use notation A ∨ B for
the clause (a1 ∨ a2 ∨ . . . an ∨ b1 ∨ b2 ∨ . . . bm). As a single literal matches our definition of a
clause, the previous notation will be used as well for the disjunction of a literal and a clause,
identifying {ℓ} with ℓ. Moreover, we identify CNF formulas with sets of clauses.

Definition 2 (Resolvent). Given clauses C1 = ℓ∨C ′ and C2 = ℓ∨C ′′, we define the resolvent
of C1, C2 according to ℓ as C1 ⊗ℓ C2 := C ′ ∨ C ′′.

Definition 3 (Blocked literal/clause). A literal ℓ blocks a clause C1 = ℓ ∨ C ′ with respect to1

a formula F when for every clause C2 ∈ F of the form ℓ∨C ′′, the resolvent C1⊗ℓC2 = C ′ ∨C ′′

is tautological (i.e., contains complementary literals). In such a case we say C is blocked on ℓ
w.r.t. F , and also simply that C is blocked w.r.t. F .

The following proposition follows directly from the previous definition and will be used
throughout the paper.

Proposition 1 (cf. Heule and Biere [12]). If G ⊆ F and a clause C is blocked w.r.t. F , then
C is blocked w.r.t. G.

From Definition 3 and Proposition 1 it follows that BCE, the process of eliminating all
blocked clauses from an input formula F , can be performed in polynomial time [15]. This
paper is centered around BCE’s opposite, blocked-clause addition (BCA), the preprocessing
technique introduced by Kullman [19].

Definition 4 (BCA). Given a formula F , and a sequence of distinct clauses Γ = (Γ1, . . . ,Γn)
over the variables of F , we say Γ is valid for blocked-clause addition (BCA) on F , which we
denote by F ⇝B Γ, if each clause Γi is blocked w.r.t. F ∪ {Γj | j ∈ {1, . . . , i− 1}}.

1We will use abbreviation w.r.t. from now on.
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We now have the notation and definitions required to state the computational problems at
the heart of this paper, followed by our main result.

PROBLEM: k-BCA
INPUT: A formula F and an integer t.
OUTPUT: Yes if there is a sequence Γ of t clauses of arity k over

the variables of F such that F ⇝B Γ, and No other-
wise.

Our main result, listed next, implies that blocked-clause addition is computationally hard
to maximize.

Theorem 2. k-BCA is NP-complete for every k ≥ 2.

We remark that the NP-hardness of k-BCA does not directly imply the NP-hardness of k′-
BCA for k′ > k. Indeed, we will have to explicitly prove a technical lifting lemma in Section 6
to show that this is the case.

4 BC Graphs and Related Problems

Given a formula F , we denote by BC(F ) the set of clauses that are blocked w.r.t. F and use
only variables from F . Moreover, we denote by BCk(F ) the restriction of BC(F ) to clauses of
arity k. Naturally, not all clauses in BC(F ) can belong to a valid BCA sequence on F , as adding
a clause C1 ∈ BC(F ) can make a clause C2 ∈ BC(F ) not blocked anymore. For example, if
F = (x1 ∨ x2) ∧ (x2 ∨ x3), then C1 = (x1 ∨ x3) ∈ BC(F ) and C2 = (x1 ∨ x2) ∈ BC(F ), but C2

is not blocked w.r.t. F ∪ {C1}. The following definitions capture the phenomenon at hand.

Definition 5 (Prevention). Given a formula F , and two clauses C1, C2 ∈ BC(F ). We say the
addition of C1 prevents the addition of C2 when C2 /∈ BC(F ∪ {C1}). We denote by C1 ⇝p C2

the fact that C1 prevents the addition of C2.

Definition 6 (BC graph). Given a formula F , we define its BC graph GBC(F ) as the directed
graph with vertex-set BC(F ), and directed edges C1 → C2 when C1 ⇝p C2. Naturally, GBCk(F )

denotes the subgraph induced by BCk(F ).

An example of a BC graph is illustrated in Figure 3. In order to prove Theorem 2 we will
only consider BC sets where each clause is blocked on exactly one literal.

Definition 7 (Singly-blocked clauses). A clause C is singly blocked w.r.t. a formula F if there
is exactly one literal ℓ such that C is blocked on ℓ w.r.t. F .

Remark 1. In the context of singly-blocked clauses, prevention can be seen more easily by the
following characterization. If C1 is singly blocked on ℓ w.r.t. F , then C2 ⇝p C1 if and only if
ℓ ∈ C2 and C1 ⊗ℓ C2 is not tautological.

Note that the definition of BCA does not require that the clauses in the sequence Γ to
be singly blocked; we will show that, even in formulas where every clause in their BC set is
singly blocked, the BCA problem is NP-hard, which will imply the general hardness. Let us
immediately see why we consider singly-blocked clauses.

Lemma 3. Given a formula F , and a sequence of singly-blocked clauses C1, . . . , Ct from BC(F ),
we have F ⇝B (C1, . . . , Ct) if and only if (Ci, Cj) ̸∈ E(GBC(F )) for every 1 ≤ i < j ≤ t.
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x1 ∨ x2

x2 ∨ x5

x2 ∨ x4

x3 ∨ x1

x4 ∨ x3

x5 ∨ x1

x5 ∨ x4

Formula F

(x1 ∨ x3)

(x3 ∨ x4)

(x5 ∨ x4)

(x1 ∨ x2)

(x1 ∨ x2 ∨ x4 ∨ x5)

(x1 ∨ x4 ∨ x5)

(x1 ∨ x2)

(x2 ∨ x3 ∨ x4 ∨ x5)

(x3 ∨ x4)

(x3 ∨ x4 ∨ x5)

Figure 3: Illustration of the BC graph restricted to k = 2 for a formula F . Directed cycles have
been colored, and notice that edges that belong to multiple directed cycles receive the colors
corresponding to all of them. A feedback vertex set of size 1 is colored in light orange, thus
implying by Lemma 6 that there is a valid 2-BCA sequence of length 7− 1 = 6 for F .

Proof. For the forward direction assume F ⇝B (C1, . . . , Ct) and let 1 ≤ i < j ≤ t. By definition
of⇝B , the clause Cj is blocked w.r.t. F∪{C1, . . . , Ci, . . . , Cj−1}, from where using Proposition 1
we deduce that Cj is blocked w.r.t. F ∪ {Ci}, and thus (Ci, Cj) ̸∈ E(GBC(F )).

For the backward direction we assume (Ci, Cj) ̸∈ E(GBC(F )) for every 1 ≤ i < j ≤ t and then
proceed inductively. The base case F ⇝B (C1) is immediate as C1 ∈ BC(F ). For the inductive
case, assume F ⇝B (C1, . . . , Cj−1), and let us show that F ⇝B (C1, . . . , Cj−1, Cj). Using
the inductive hypothesis it only remains to show that Cj is blocked w.r.t. F ∪ {C1, . . . , Cj−1}.
As Cj is singly blocked on a literal ℓ(Cj) w.r.t F , it only remains to show that Cj is blocked
on ℓ w.r.t. {C1, . . . , Cj−1}. Assume, expecting a contradiction, that Cj is not blocked w.r.t.
{C1, . . . , Cj−1}. Then, there must be a clause Ci ∈ {C1, . . . , Cj−1} such that Ci contains

ℓ(Cj) and Ci ⊗ℓ(Cj) Cj is not tautological. This implies, by Remark 1, that Ci ⇝p Cj , which
contradicts the assumption that (Ci, Cj) ̸∈ E(GBC(F )).

Example 1. For an example illustrating what could happen without the “singly-blocked”
restriction, consider the following scenario:

• F := (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4).

• C1 := (x1 ∨ x2 ∨ x4) is blocked on all x1, x2 and x4 w.r.t. F .

• C2 := (x1 ∨ x2 ∨ x3) is blocked on x2 and x3 w.r.t. F .

• C3 := (x1 ∨ x2 ∨ x3) is blocked on x1, x2, and x3 w.r.t. F .

• C4 := (x2 ∨ x3 ∨ x4) is blocked on all x2, x3 and x4 w.r.t. F .

• Neither C2, C3 nor C4 prevent C1.

• C1 is blocked on x4 w.r.t. F ∪ {C2, C3}, but is not blocked w.r.t. F ∪ {C2, C3, C4}.
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In this scenario, the prevention relation is not enough to properly capture valid sequences for
BCA, as neither C2, C3 nor C4 can prevent C1 but their union does. This is due to C1 being
blocked on multiple literals, as it is only when each of such literals is no longer blocked that C1

as a whole is no longer blocked. This can be achieved by the set {C2, C3, C4}, but not by any
clause Ci alone.

Next, we show that BCA corresponds naturally to a graph problem when every clause in
BCk(F ) is singly blocked. Given a directed graph G = (V,E), we say a sequence v1, . . . , vn of
its vertices is undominated if for every 1 ≤ i < j ≤ n we have (vi, vj) ̸∈ E. In other words, a
sequence S is undominated when there are no edges going “forward” in S. This leads to the
following computational problem.

PROBLEM: UndominatedSequence
INPUT: A directed graph G = (V,E), and an integer t ≥ 1.
OUTPUT: Yes if there is a sequence S = v1, . . . , vt ∈ V t such

that for every 1 ≤ i < j ≤ t we have (vi, vj) ̸∈ E.
No otherwise.

Lemma 4. Given a formula F , an integer t ≥ 1, and an integer k ≥ 2 such that every clause
in BCk(F ) is singly blocked, we have that (F, t) is a Yes-instance of k-BCA if and only if
(GBCk(F ), t) is a Yes-instance of UndominatedSequence.

Proof. Immediate from Lemma 3.

To make progress now, we will require another problem over directed graphs. Consider the
following problem, proven to be NP-hard in Karp’s seminal paper [16].2

PROBLEM: FeedbackVertexSet
INPUT: A directed graph G = (V,E), and an integer t ≥ 1.
OUTPUT: Yes if there is a set of t vertices S ⊆ V such that their

removal (including the edges touching them) leaves
G without directed cycles. No otherwise.

In general, we will say that a subset S ⊆ V is a feedback vertex set of G if G[V (G) \ S] is
acyclic. It turns out that UndominatedSequence and FeedbackVertexSet are comple-
mentary problems, as the next lemma shows.

Lemma 5. Given a directed graph G and a subset S of its vertices, the following statements
are equivalent: (i) there exists an undominated sequence OS consisting of an ordering of the
elements of S, (ii) G[S] is acyclic, (iii) V (G) \ S is a feedback vertex set of G.

Proof. To prove that (i) implies (ii), assume OS = v1, . . . , v|S| is an undominated sequence,
and let ≺ be the total order over S defined by vi ≺ vj ⇐⇒ i > j. By the definition of
undominated sequence, every edge (vi, vj) ∈ E(G[S]) must hold that i > j, and thus vi ≺ vj .
This implies that G[S] is a subgraph of (S,≺), and given (S,≺) is an acyclic graph as it
corresponds to an order, we conclude thatG[S] is acyclic. To see that (ii) and (iii) are equivalent,
note that S = V (G) \ (V (G) \ S). Finally, to prove that (ii) implies (i), assume G[S] is

2We remark that although some authors refer to FeedbackVertexSet as a problem over undirected graphs,
and use something like DirectedFeedbackVertexSet for the version over directed graphs, we adhere to Karp’s
initial presentation, which is over directed graphs.
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acyclic, and therefore it has a topological ordering π = v1, . . . , v|S|, which by definition of
topological ordering implies that all edges (vi, vj) ∈ E(G[S]) have i < j. By reverting π
into OS = v′1, . . . , v

′
|S| through the transformation v′i := v|S|−i+1, we obtain an undominated

sequence, as now all edges (v′i, v
′
j) ∈ E(G[S]) have i > j.

Combining Lemma 4 and Lemma 5, we immediately have the following.

Lemma 6. Given a formula F , an integer t ≥ 1, and an integer k ≥ 2 such that every clause
in BCk(F ) is singly blocked, we have that (F, t) is a Yes-instance of k-BCA if and only if
(GBCk(F ), |V (GBCk(F ))| − t) is a Yes-instance of FeedbackVertexSet.

Proof. Using Lemma 4 it suffices to show that GBCk(F ) has an undominated sequence of length
(at least) t if and only if it has a feedback vertex set of size |V (GBCk(F ))|− t. Indeed, if GBCk(F )

has an undominated sequence O of length t, and we denote SO := {v ∈ V (GBCk(F )) | v ∈ O},
then O is an ordering of SO and by Lemma 5 we have that V (GBCk(F ))\SO is a feedback vertex
set of GBCk(F ), whose length is exactly |V (GBCk(F ))| − t. The other direction is immediate by
using Lemma 5 again.

It is known that FeedbackVertexSet can be solved in polynomial time for restricted
classes of graphs, which in turn implies that UndominatedSequence can also be solved in
polynomial time for those classes, and therefore that BCA can be solved in polynomial time
as long as GBC(F ) belongs to any of said classes. The ISGCI project [7] lists over 600 such
classes of graphs. Furthermore, we remark that efficient parameterized algorithms deciding in
time nO(1) · f(t) whether a directed graph G has a feedback vertex set of size at most t are
well-known [6], which implies that on formulas F where all but a small number of clauses of
BCk(F ) can be added in a BCA sequence, then such a sequence can be computed efficiently.

On the other direction, however, we cannot yet use the hardness of FeedbackVer-
texSet (or of UndominatedSequence) to show hardness for k-BCA; such a reduction
would require taking a directed graph F as input and then constructing a formula FG such
that BCk(FG) = G. Unfortunately, not all directed graphs can arise as BC graphs. Next,
in Section 5, we will study the class of graphs that can arise as BC graphs, showing that it is a
rich enough class to derive hardness results.

5 Characterization of BC Graphs

In this section, we provide a partial characterization of BC(F )k graphs, which will be used
to derive complexity results. First, we attack the case of k = 2, which requires the following
definition.

Definition 8 (k-subdivision). For a positive integer k ≥ 2, the k-subdivision of a graph G
(directed or undirected) consists of replacing every edge (u, v) ∈ E(G) by a path of length k
from u to v.

An example of the 2-subdivision of a directed graph is illustrated in Figure 4.

Lemma 7. Given any graph G which is the 2-subdivision of a graph H, one can compute in
polynomial time (w.r.t. |G|) a formula F such that GBC2(F ) = G3, and moreover, every clause
in BC2(F ) is singly blocked.

3To be fully precise, we mean that GBC(F ) is isomorphic to G, as the vertices of GBC(F ) are clauses, whereas
G is an arbitrary graph. For the purpose of this paper we will not make this distinction.
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Figure 4: Example of the 2-subdivision of a graph G.

Proof. Let G = (VG, EG) be the 2-subdivision of a graph H = (VH , EH). Then, we create
variables xu for every u ∈ VH , and a variable wu for every u ∈ VH . For every u ∈ VH , create
the clause Cu := (xu∨wu). Note now that for every edge (u, v) ∈ EH , there is exactly one vertex
w ∈ VG such that (u,w), (w, v) ∈ EG. We thus can a create well-define clause Wu,v := (wu∨xv)
for every edge (u, v) ∈ EH . We will construct F so that

BC2(F ) = {Cu | u ∈ VH} ∪ {Wu,v | (u, v) ∈ EH}.

To achieve this, we create two new variables y and z, and then add the following sets of clauses
to the formula F :

1. (xy-clauses) For every vertex u ∈ VH , add to F the clauses (xu ∨ y), (xu ∨ y).

2. (wy-clauses) For every vertex u ∈ VH , add to F the clauses (wu ∨ y), (wu ∨ y).

3. (yz-clauses) Add to F the clauses (y ∨ z), (y ∨ z), (y ∨ z), (y ∨ z).

4. (xw-clauses) For every vertex u ∈ VH , add to F the clause (xu ∨ wu).

5. (out-clauses) For every vertex u ∈ VH , if v1, . . . , vm are the out-neighbors of u, then add
to F the clause (wu ∨ xv1 ∨ . . . ∨ xvm). Naturally, if u had out-degree 0, the resulting
clause will simply be (wu).

First, observe that every clause Cu indeed belongs to BC2(F ) as Cu is blocked on xu, which
can be seen as the only clauses in F where xu appears are the xw-clauses, and their resolvent is
tautological by construction. Similarly, every clause Wu,v belongs to BC2(F ) as Wu,v is blocked
on wu due to the out-clauses. We now claim that there are no other clauses in BC2(F ). Indeed,
let C ∈ BC2(F ) be arbitrary, and then see how the following steps prove that C = Cu for some
vertex u or Wu,v for some edge (u, v) ∈ EH .

1. The clause C cannot be blocked on y, as otherwise C ⊗y (y ∨ z) being tautological would
imply z ∈ C, but then C ⊗y (y ∨ z) being tautological would imply z ∈ C, which is a
contradiction. Similarly, C cannot be blocked on y, z, or z.

2. The clause C cannot be blocked on xu for any u ∈ VH , as otherwise C ⊗xu
(xu ∨ y) being

tautological would imply y ∈ C, but then C ⊗xu
(xu ∨ y) being tautological would imply

y ∈ C, which is a contradiction.
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3. The clause C cannot be blocked on wu for any u ∈ VH , as otherwise C⊗wu (wu∨y) being
tautological would imply y ∈ C, but then C ⊗wu

(wu ∨ y) being tautological would imply
y ∈ C, which is a contradiction.

4. From the previous steps, we either have that C is blocked on xu for some u ∈ VH , or on
wu for some u ∈ VH .

5. If C is blocked on xu, then because of the xw-clauses, we have that C must contain wu,
and thus C = Cu, given |C| = 2. Note that Cu is singly blocked due to step 3.

6. If C is blocked on wu, then given that |C| = 2, there is another literal ℓ ∈ C. Because of
the out-clause for u, we have that ℓ must be one literal of the form xv for some v that is
an out-neighbor of u, and thus C = Wu,v. Note that Wu,v is singly blocked due to step 2.

We have proved that BC2(F ) = {Cu | u ∈ VH} ∪ {Wu,v | (u, v) ∈ EH}, and thus |BC2(F )| =
|VG|. Note now that every edge e in EG corresponds to either (u,w) or (w, v) with w ̸∈ VH .
If e = (u,w), and its associated edge in EH is (u, v), then by Remark 1 we have Cu ⇝p Wu,v.
Similarly, if e = (w, v), and its associated edge in EH is (u, v), then e we have by Remark 1
that Wu,v ⇝p Cv. We thus have that the mapping φ : VG → BC2(F ) determined by

φ(a) =

{
Cu, if a = u for some u ∈ VH ,

Wu,v, if a = (u, v) for some e = (u, v) ∈ VG \ VH ,

is an isomorphism between GBC2(F ) and G, and thus concludes the proof.

We now prove a technical lemma that extends the previous characterization to every k ≥ 3.
We will use the following definition.

Definition 9 (Minimally blocked). We say a clause C is minimally blocked w.r.t. a formula F
if C is blocked w.r.t. F and for every literal ℓ ∈ C, the clause C \ {ℓ} is not blocked w.r.t. F .

Remark 2. Every clause C ∈ BC2(F ) for a formula F constructed as in Lemma 7 is minimally-
blocked.

Lemma 8 (Lifting). If C is a class of graphs such that for any graph G ∈ C one can compute
in polynomial time a formula F such that GBCk(F ) = G and every clause in BCk(F ) is both
singly blocked and minimally blocked, then for any graph G ∈ C one can compute in polynomial
time a formula F ′ such that GBCk+1(F ′) = G, with every clause in BCk+1(F

′) also being singly
blocked and minimally blocked.

Proof. We can assume that k ≥ 2, as if k = 1 then GBCk
(F ) is a collection of isolated vertices

and the result is trivial. Let G ∈ C be a graph satisfying the hypotheses of the lemma. As
a first step, the hypotheses allow us to construct in polynomial time a formula F such that
GBCk(F ) = G. For each clause C ∈ BCk(F ), we use notation ℓ(C) for the only literal ℓ ∈ C such
that C is blocked on ℓ w.r.t. F . Now, let y and z be new variables that are not present in F .
With these, we can construct F ′ by the following procedure:

1. (F -clauses) Add to F ′ every clause of F .

2. (yz-clauses) Add to F ′ the clauses (y ∨ z), (y ∨ z), (y ∨ z), (y ∨ z).

417



NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

3. (Lifting clauses) Add to F ′ the clauses (ℓ ∨ y ∨ z), (ℓ ∨ y ∨ z) for any literal ℓ that occurs
in F or whose negation occurs in F .

Note immediately that this construction takes polynomial time, and thus we only have to focus
on correctness. Before the details, let us give a high-level overview of the proof. We will prove
that BCk+1(F

′) consists exactly of the clauses of the form C ′ := (C ∨ y) for C ∈ BCk(F ).
Intuitively, the lifting clauses will force y to be in any clause C ′ ∈ BCk+1(F

′). From there and
the fact that no clause can be blocked on y w.r.t. in F ′ because of the yz-clauses, we will derive
that C1 ⇝p C2 w.r.t. F if and only if (C1 ∨ y) ⇝p (C2 ∨ y) w.r.t. F ′. This will imply that
GBCk+1(F ′) and GBCk(F ) are isomorphic, the desired result. Let us now proceed with the proof,
starting with an almost trivial but useful fact.

Fact 1. If a clause C1 is blocked on a literal ℓ w.r.t. F , then the clause C1 ∨C2 is also blocked
on ℓ w.r.t. F for any clause C2.

Proof of Fact 1. Follows immediately from the fact that C1 ⊗ℓ C
′ ⊆ (C1 ∨C2)⊗ℓ C

′, where C ′

is any clause containing ℓ.

With this, we are ready to prove one direction of the characterization of BCk+1(F
′).

Claim 1. For every C ∈ BCk(F ) we have (C ∨ y) ∈ BCk+1(F
′)

Proof of Claim 1. It suffices to argue that (C ∨ y) is blocked w.r.t. all (i) F , (ii) the yz-clauses,
and (iii) the lifting clauses. For (i), this follows by C being blocked w.r.t. F and Fact 1. For
(ii), this follows from the fact that ℓ(C) ̸∈ {y, y, z, z}, as the variables y, z do not occurr in F ,
and for (iii), observe that (C ∨ y)⊗ℓ(C) (ℓ(C) ∨ y ∨ z) is tautological as it contains both y and

y, and the same applies to (C ∨ y)⊗ℓ(C) (ℓ(C) ∨ y ∨ z).

Before we show the second and harder direction, we will another simple fact about blocked
clauses. For any clause C, and formula F̃ , let C↓F̃ denote the clause C restricted to the variables

of F̃ .

Fact 2. Let F̃ be any formula and let C be a clause that is blocked w.r.t. F̃ on a literal ℓ ∈ C↓F̃ .
Then C↓F̃ is also blocked on ℓ w.r.t. F̃ .

Proof of Fact 2. Let C ′ be any clause in F̃ that contains ℓ, and let C⋆ := C \ C↓F̃ . By
hypothesis, we have that C ⊗ℓ C

′ is tautological, and as C ⊗ℓ C
′ = C⋆ ∨ (C↓F̃ ⊗ℓ C

′), we have
that C⋆ ∨ (C↓F̃ ⊗ℓ C

′) is tautological. This implies in turn that (C↓F̃ ⊗ℓ C
′) is tautological,

since the set of variables of C⋆ is disjoint from that of C↓F̃ and that of C ′. We thus conclude

that C↓F̃ is blocked on ℓ w.r.t. F̃ .

Claim 2. Every clause C ′ ∈ BCk+1(F
′) is of the form C ′ = (C ∨ y) for some C ∈ BCk(F ).

Moreover, C ′ is minimally blocked w.r.t. F ′, and singly blocked on ℓ(C), the same literal on
which C is singly blocked w.r.t. F .

Proof of Claim 2. Let C ′ be an arbitrary clause in BCk+1(F
′). By the same argument as

in Lemma 7 we have that C ′ cannot be blocked on either y, y, z, or z. Then, let us see that
y ∈ C ′. Indeed, let ℓ be any literal such that C ′ is blocked on ℓ w.r.t. F ′. Given that by the
previous argument ℓ ̸∈ {y, y, z, z}, we have that C ′ ⊗ℓ (ℓ ∨ y ∨ z) must be a tautology. This
implies in turn that either y ∈ C ′ or z ∈ C ′. But by repeating the same argument with respect
to C ′ ⊗ℓ (ℓ ∨ y ∨ z) we obtain that either y ∈ C ′ or z ∈ C ′, from where it follows that y ∈ C ′.
We thus have that C ′ is of the form C ′′ ∨ y, with ℓ ∈ C ′′.
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Using Fact 2, we have that C ′↓F is blocked on ℓ w.r.t. F , and as C ′↓F ⊆ C ′′, we have that
C ′′ is blocked on ℓ w.r.t. F .

Let us now see that neither z nor z can belong to C ′′. Indeed, assume expecting a contra-
diction that z ∈ C ′′ (the analysis for z is analogous). Now, let C ′′ := C† ∨ z, and as ℓ ̸= z,
we have ℓ ∈ C†. Because C ′ = C† ∨ z ∨ y is blocked on ℓ w.r.t. F , we have by Fact 2 that
C ′↓F is blocked w.r.t. F , and as C ′↓F ⊆ C†↓F , we deduce that C†↓F is blocked on ℓ w.r.t. F .
Note that |C†| = k − 1, and thus

∣∣C†↓F
∣∣ ≤ k − 1. Then, adding literals of F to C†↓F until we

obtain a clause C⋆ ∈ BCk(F ) of size k produces a contradiction, since C⋆ will be blocked on
ℓ w.r.t. F (Fact 1), while C†↓F is a strict subset of C⋆ that is also blocked on ℓ w.r.t F , thus
contradicting the minimality of C⋆. We thus deduce that neither z nor z belong to C ′′.

We now verify that C ′ = (C ′′ ∨ y) is minimally blocked w.r.t. F ′. Indeed, assume expecting
a contradiction that C† is a proper subset of C ′ that is blocked w.r.t F ′. As any clause in
BC(F ′) must contain y by the argument above, we have C† = (C△ ∨ y) for some C△ ⊊ C ′′.
Using Fact 1 and Fact 2 we obtain that C△ is blocked w.r.t. F , which contradicts the minimality
of C ′′ ∈ BCk(F ).

Similarly, if C ′ were not singly blocked on ℓ(C ′′), given that C ′ cannot be blocked on y, we
would have that C ′′ is not singly blocked w.r.t. F , contradicting the hypothesis of C ′′ ∈ BCk(F )
being singly blocked.

We now claim the desired graph isomorphism.

Claim 3. We have that C1 ⇝p C2, with C1, C2 ∈ BCk(F ), if and only if (C1 ∨ y)⇝p (C2 ∨ y)
in F ′.

Proof of Claim 3. We will use Remark 1 for both directions. For the forward direction, assume
C1 ⇝p C2. Then, given that C2 is blocked on ℓ(C2) w.r.t. F , we have that ℓ(C2) ∈ C1 and
that no literal l ∈ C2 with l ̸= ℓ(C2) has l ∈ C1. This implies that (C1 ∨ y) ⇝p (C2 ∨ y), as

ℓ(C2) ∈ (C1 ∨ y). The backward direction follows from the fact obtained in Claim 2 stating
that (C2 ∨ y) is blocked w.r.t. F ′ on ℓ(C2), the only literal on which C2 is blocked w.r.t. F .
Indeed, if (C1 ∨ y) ⇝p (C2 ∨ y), we have ℓ(C2) ∈ C1, and no literal l ∈ C2 with l ̸= ℓ(C2) has
l ∈ C1, from where Remark 1 directly implies C1 ⇝p C2.

Combining Claim 1, Claim 2, and Claim 3, we get the desired isomorphism between GBCk(F )

and GBCk+1(F ′), where the conditions of single-blockedness and minimal-blockedness are verified
in Claim 2. Given the construction of F ′ from F takes polynomial time, we conclude the
proof.

6 Hardness Results

In this section we prove that k-BCA is NP-hard for every k ≥ 2. As a first step, we will show
that the FeedbackVertexSet problem is no less hard for 2-subdivision graphs, which arise
thanks to Lemma 7.

Proposition 9. FeedbackVertexSet is NP-hard when restricted to 2-subdivision graphs.

Proof. The reduction is directly from FeedbackVertexSet over general directed graphs. Let
G = (V,E) be an arbitrary directed graph, and t ≥ 1 and integer. Then, let G2 be the
2-subdivision of G. We have that V (G2) = V (G) ∪ {ve | e ∈ E}, and

E(G2) = {(ve, u), (u, ve) | e = (u, v) ∈ E}.
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Note that G2 is bipartite under L := V (G), R := {ve | e = (u, v) ∈ E}. Clearly, if C is a
directed cycle in G, then its 2-subdivision C ′ is a directed cycle in G2. Conversely, we claim
that if C is any directed cycle in G2, then C is the 2-subdivision of a directed cycle C ′ in G,
which we denote by f−1(C). Indeed, let C = (v1, v2, . . . , vn) be a directed cycle in G2. Let
vi ∈ C be such that vi ∈ L. Then, let J = {i, i+ 2, i+ 4, . . . , i+ 2n}, and as

(vj , v(j+2)%2) ∈ E(G), ∀j ∈ J,

we have that C ′ = f−1(C) = {vj%n | j ∈ J} ⊆ C is a directed cycle in G. Now, if G has a
feedback vertex set S of size t, then S is also a feedback vertex set of G2, as otherwise if we
assume expecting a contradiction that there is a directed cycle C such that C ∩ S = ∅, then
f−1(C) ∩ S = ∅ as f−1(C) ⊆ C, thus implying that C is present in G \ S, which contradicts
S being a feedback vertex set. On the other hand, let S be a feedback vertex set of size t in
G2. We claim that from S we can easily construct a feedback vertex set S′ for G2, but such
that S′ ⊆ V (G). For this, it is enough to replace every vertex ve in S corresponding to an
edge e = (u, v) by u. Indeed, if C is a directed cycle in G2, we must have that S ∩ C ̸= ∅. If
u ∈ S ∩ C for some vertex u, then u ∈ S′ as well, and thus G2 \ S′ also avoids C. Otherwise,
ve ∈ S ∩C for some edge e = (u, v), and thus u ∈ S′, which also implies that G2 \ S′ avoids C.
As this is true for every directed cycle C in G2, we concldue that S′ is a feedback vertex set of
G2. Moreover, we clearly have |S′| = |S| = t. By the argument above, we have that S′ is also
a feedback vertex set for G, and thus we conclude the proof.

We now have all the ingredients to prove our main result, stating that k-BCAis NP-hard.

Proof of Theorem 2. The reduction is from FeedbackVertexSet over 2-subdivision graphs,
proved NP-hard in Proposition 9. Let G = (V,E) be a 2-subdivision graph, and let (G, t) be
an instance of FeedbackVertexSet. By Lemma 7, we can construct in polynomial time a
formula F such that GBC2(F ) = G. Next, using Lemma 8 exactly (k − 2) times, we obtain
a formula F ′ such that GBCk(F ′) = G. Given k is fixed, this takes polynomial time. Then,
using Lemma 6, (G, t) is a Yes-instance of FeedbackVertexSet if and only if (F ′, |V (G)|− t)
is a Yes-instance of k-BCA. As the reduction has been carried out in polynomial time, this
concludes the proof.

We finish the section by addressing a conjecture of Heule and Biere [12]. It is well-known
that if Γ = (Γ1, . . . ,Γn) is a valid sequence for BCA on a formula F , then FΓ := Γ1 ∧ . . . ∧ Γn

is always satisfiable [12], but can we count the number of satisfying assignments of FΓ in
polynomial time? Heule and Biere conjectured a positive answer, and this conjecture was
mentioned again by Balyo et al. [2]. Unfortunately, it turns out that this is not the case.

Proposition 10. Counting the number of satisfying assignments of a formula FΓ is #P-hard.
Equivalently, counting the number of satisfying assignments of a blocked set (see [12]) Γ is
#P-hard.

Proof. It is well-known that counting the number of vertex covers of a graph G is #P-hard [20].
We reduce from this problem by defining F as an empty formula, and letting

FΓ =
∧

{u,v}∈E(G)

(xu ∨ xv).

Note that Γ is indeed a valid sequence for BCA on F , as all clauses in FΓ are trivially blocked
w.r.t F , and there are no preventions between clauses of FΓ since all literals are positive.
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Clearly each distinct satisfying assignment of FΓ corresponds to a distinct vertex cover of G,
which implies that the number of satisfying assignments of FΓ is equal to the number of vertex
covers of G, and thus the result follows.

7 Approximation Algorithms

In this section we prove that, at least for k = 2, the BCA problem is inside the APX complexity
class. This is in sharp contrast with FeedbackVertexSet, which does not admit constant
factor approximation algorithms unless P = NP [8, 11]. To be precise, given an input formula
F , we denote by OPT(F ) the maximum number of binary blocked clauses that can be added
to F . Then, for an algorithm ALG computing valid BCA-sequences, we denote by ALG(F )
the length of the valid BCA-sequence output by ALG on input F . We say that ALG is a
ρ-approximation algorithm for the 2-BCA problem if, for every input formula F , we have
ALG(F ) ≥ ρ · OPT(F ). Before we jump into the proof, note that as opposed to the hardness
reesults presented in Section 6, we cannot focus now only on singly-blocked clauses, but rather
a positive result must hold for any formula F .

Theorem 11. The 2-BCA problem admits a 1/6-approximation algorithm that runs in poly-
nomial time.

Proof. Let F be an input formula with variables x1, . . . , xn. We will split BC2(F ) into 6 sets:

S1 := {C is blocked on xi w.r.t. F | C = (xi ∨ xj)}, (1)

S2 := {C is blocked on xi w.r.t. F | C = (xi ∨ xj)}, (2)

S3 := {C is blocked on xi w.r.t. F | C = (xi ∨ xj) with i < j}, (3)

S4 := {C is blocked on xi w.r.t. F | C = (xi ∨ xj) with i > j}, (4)

S5 := {C is blocked on xi w.r.t. F | C = (xi ∨ xj) with i < j}, (5)

S6 := {C is blocked on xi w.r.t. F | C = (xi ∨ xj) with i > j}. (6)

Note that this sets can clearly be computed in polynomial time. We now claim that it suffices
to output the largest of these sets. Because

∑6
i=1 |Si| = |BC2(F )| we have max6i=1 |Si| ≥

1
6 |BC2(F )|. Let us now show that each of the graphs GBC2(F )[Si] is acyclic. First, it is easy to see
that GBC2(F )[S1] and GBC2(F )[S2] are acyclic, as they in fact contain no edges (recall Remark 1).
Let us now show that GBC2(F )[S3] is acyclic, as the remaining cases are analogous. By Remark 1,
any edge C1 → C2 in GBC2(F )[S3] must correspond to

C1 := (xi ∨ xj)⇝p (xj ∨ xk) =: C2,

where by definition i < j and j < k. Therefore, any cycle C1 → C2 → · · · → Cm in GBC2(F )[S3]
must correspond to a sequence

(xi ∨ xj)⇝p (xj ∨ xk)⇝p (xk ∨ xl)⇝p · · ·⇝p (xm−1 ∨ xm)⇝p (xm ∨ xi),

from where we would deduce i < j < k < l < · · · < m < i, a contradiction. There-
fore, GBC2(F )[S3] is acyclic, and the same argument applies to GBC2(F )[S4], GBC2(F )[S5], and
GBC2(F )[S6].

Note that it is not straightforward to extend this algorithm for k ≥ 3, as the sets Sm in
which one could hope to partition BCk(F ) become much more complicated. For example, for
k = 3, consider the set Sm containing blocked clauses of the form (xi ∨ xj ∨ xk), blocked on xi,
with i > j but i < k. How could we argue that GBC3(F )[Sm] is acyclic, or at least that we can
easily obtain a large fraction of it? This is left as an open problem.
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8 Further Characterization of BC Graphs

Even though Lemma 7 and Lemma 8 provide a partial characterization of BC graphs that was
enough to derive a hardness result, we now provide a tighter partial characterization for k ≥ 4.
Let us first introduce two standard graph theory definitions. We will say a directed graph G
is C2-free if it does not contain edges (u, v) and (v, u) for any pair of vertices u, v, and we will
say G is k-out-regular if the out-degree of every vertex is exactly k.

Lemma 12. Given any C2-free k-out-regular directed graph G, one can compute in polynomial
time a formula F such that GBC(k+1)(F ) = G.

Proof. In order to simplify the presentation of the proof, let us present it only for k = 3, as
its generalization to k = 3 does not change the proof but makes the notation heavier. Let
G = (V,E) be a C2-free 3-out-regular graph. We start by creating a variable xu for every
vertex u ∈ V . Then, for every vertex u, create a clause Cu defined as

Cu =

xu ∨

 ∨
(u,v)∈E

xv

 = (xu ∨ xv1 ∨ xv2
∨ xv3) ,

where we used xvi to denote the variable xv for the i-th out-neighbor v of u in G. We will now
construct F to ensure that BC4(F ) = {Cu | u ∈ V }. We create two new variables y and z, and
then add the following sets of clauses to the formula F :

1. (xy-clauses) For every vertex u, add to F the clauses (xu ∨ y), (xu ∨ y).

2. (yz-clauses) Add to F the clauses (y ∨ z), (y ∨ z), (y ∨ z), (y ∨ z).

3. (E-clauses) For every edge (u, v) ∈ E, add to F the clause (xu ∨ xv).

First, observe that every clause Cu indeed belongs to BC4(F ) as Cu is blocked on xu, which
can be seen as the only clauses in F where xu appears are the E-clauses, and their resolvent is
tautological by construction. We now claim that there are no other clauses in BC4(F ). Indeed,
let C ∈ BC4(F ) be arbitrary, and then see how the following steps prove that C = Cu for some
vertex u.

1. The clause C cannot be blocked on y, as otherwise C ⊗y (y ∨ z) being tautological would
imply z ∈ C, but then C ⊗y (y ∨ z) being tautological would imply z ∈ C, which is a
contradiction. Similarly, C cannot be blocked on y, z, or z.

2. The clause C cannot be blocked on xu for any u ∈ V , as otherwise C ⊗xu (xu ∨ y) being
tautological would imply y ∈ C, but then C ⊗xu

(xu ∨ y) being tautological would imply
y ∈ C, which is a contradiction.

3. From 1. and 2., we deduce that C must be blocked on a literal xu⋆ for some u⋆ ∈ V .

4. Let v1, v2, v3 be the out-neighbors of u⋆ in G. Then, as C⊗xu⋆ (xu⋆ ∨xv1
) is tautological,

we must have xv1 ∈ C. Similarly, we deduce xv2 ∈ C and xv3 ∈ C.

5. From the previous steps, and recalling that |C| = 4, we conclude that C = Cu⋆ .
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Having proved that BC4(F ) = {Cu | u ∈ V }, we now claim that Cu ⇝p Cv if and only
if (u, v) ∈ E. To see this, first note that if (u, v) ∈ E, and we denote by w1, w2, w3 the
out-neighbors of v, and by v1, v2, the out-neighbors of u that are not v, then

Cv ⊗xv Cu = (xu ∨ xv1 ∨ xv2 ∨ xw1 ∨ xw2 ∨ xw2),

which is tautological if and only if u ∈ {w1, w2, w3}, which would imply (v, u) ∈ E and thus
contradict G being C2-free. For the other direction, if (u, v) /∈ E, then xv ̸∈ Cu, and thus Cu

cannot prevent Cv which is blocked on xv. This concludes the proof.

But do C2-free k-out-regular graphs exist? The previous result will be vacuously true
otherwise! We now show that not only do they exist but also that is easy to construct them.

Lemma 13. For every k ≥ 3, there exists a C2-free k-out-regular graph Gk, and moreover,
such a graph can be computed in time Ok(1).

Proof. The idea of this lemma is fairly standard (cf. [5, 21]). Let n = 2k + 1, and let Kn be
the complete graph on n vertices, which is clearly 2k-regular. As every vertex in Kn has even
degree, we have that Kn admits an Eulerian cycle C = e1, . . . , em, where m =

(
n
2

)
, which can

be computed in time O(n2). We construct G as the orientation of Kn according to C, which
we describe formally next. For every i ∈ {1, . . . ,m}, let ei = {ui, vi}, and let πi be the single
vertex in ei \

(
ei ∩ e(i+1)%m

)
. This way, we identify C with the sequence π1, π2, . . . , πm. Then,

to an empty graph on n vertices, add directed edges (πi, π(i+1)%m) for every i ∈ {1, . . . ,m}.
Note that the resulting graph G is an orientation of Kn, and thus it is C2 free. As G is also
a directed Eulerian graph, the in-degree of each vertex equals its out-degree, and as those two
amounts add up to 2k, it follows that G is k-out-regular. As the construction of G takes O(n2)
time, and n = Ok(1), we conclude the proof.

9 Conclusion

We started by showing how the role of blocked clauses in SAT-solving is nuanced, and further
research will be required to have a better understanding of the impact of adding blocked clauses
as a preprocessing step. In particular, a promising direction of future research is to identify
subclasses of blocked clauses that are likely to be helpful during solving time, and thus restrict
BCA to those clauses. Similarly, identifying subclasses of blocked clauses that are not helpful
during solving might result in better BCE. For a concrete example, in the Pythagorean Triple
problem [14], BCE is able to eliminate variables, which has a significant impact on solving
time. This suggests that one could perform BCE with the hope of eliminating variables, but
re-introduce some of the eliminated blocked clauses afterwards.

In terms of complexity, we have shown a fundamental asymmetry between BCE and BCA,
proving that BCA is NP-hard for every arity k ≥ 2. In doing so, we have related BCA to
different problems in graph theory, which we hope can result in identifying tractable cases for
BCA. Moreover, we have shown a very simple approximation algorithm obtaining a constant
factor approximation for 2-BCA. It might be possible that a more clever algorithm can obtain
an even better approximation factor. We have shown as well that model counting over blocked
sets is computationally hard, answering a question of Heule and Biere [12]. This arguably
represents a drawback of BCA, as it can alter the number of models of the original formula in
a way that is hard to track.

423



NP-hardness of Maximum Blocked-Clause Addition Subercaseaux

In terms of open problems, while Sections 5 and 8 provide a decent characterization
of BC graphs that is sufficient to derive hardness results, it would be interesting to fully char-
acterize them. In other words, what graphs can arise as BC graphs?

Another interesting open problem is to show that computing a maximum length sequence
for BCA, without any restriction on the arity of the blocked clauses, is NP-hard. Finally, a last
open question is whether k-BCA admits a constant factor approximation algorithm for k ≥ 3.
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