
EPiC Series in Computing

Volume 94, 2023, Pages 405–456

Proceedings of 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning

Cartesian Reachability Logic: A Language-Parametric

Logic for Verifying k-Safety Properties

Jan Tušil1, Traian Florin S, erbănut, ă2, and Jan Obdržálek1

1 Masaryk University, Brno, Czech Republic
jan.tusil@mail.muni.cz,obdrzalek@fi.muni.cz
2 University of Bucharest, Bucharest, Romania

traian.serbanuta@unibuc.ro

Abstract

We introduce a language-parametric calculus for k-safety verification - Cartesian Reach-
ability logic (CRL).

In recent years, formal verification of hyperproperties has become an important topic
in the formal methods community. An interesting class of hyperproperties is known as
k-safety properties, which express the absence of a bad k-tuple of execution traces. Many
security policies, such as noninterference, and functional properties, such as commutativity,
monotonicity, and transitivity, are k-safety properties. A prominent example of a logic that
can reason about k-safety properties of software systems is Cartesian Hoare logic (CHL).
However, CHL targets a specific, small imperative language. In order to use it for sound
verification of programs in a different language, one needs to extend it with the desired
features or hand-craft a translation. Both these approaches require a lot of tedious, error-
prone work.

Unlike CHL, CRL is language-parametric: it can be instantiated with an operational
semantics (of a certain kind) of any deterministic language. Its soundness theorem is
proved once and for all, with no need to adapt or re-prove it for different languages or
their variants. This approach can significantly reduce the development costs of tools and
techniques for sound k-safety verification of programs in deterministic languages: for exam-
ple, of smart contracts written for EVM (the language powering the Ethereum blockchain),
which already has an operational semantics serving as a reference.

1 Introduction

Recent years have witnessed an increased interest in formal verification of hyperproperties [12].
Unlike properties, whose validity depends on a single execution trace, hyperproperties can
relate multiple program executions. A particularly interesting class of hyperproperties are
k-safety (hyper-)properties [17, 28, 1, 12] (first introduced in [12]). A k-safety property is
a hyperproperty whose violation can be witnessed by a k-tuple of execution traces. Many
security policies - for example, noninterference (requiring that sensitive or privileged data
do not influence insensitive or unprivileged computations) or observational determinism - are
k-safety hyperproperties [10, 11, 12]. Similarly, many functional correctness properties are

R. Piskac and A. Voronkov (eds.), LPAR 2023 (EPiC Series in Computing, vol. 94), pp. 405–456

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

actually k-safety hyperproperties; for example, transitivity (which needs to be satisfied, e.g., by
comparators when managing data in collections), associativity (important in the map/reduce
paradigm), or monotonicity [28].

Techniques and tools for verifying hyperproperties of (finite-state) hardware [13, 18], as well
as (infinite-state) software systems have been developed. For verification of software systems
in particular, Cartesian Hoare logic (CHL), introduced in [28], extends Hoare logic to allow
reasoning about k-safety hyperproperties. In [28], the authors not only managed to give CHL
a sound and relatively complete proof system but also successfully used their logic to analyze
several natural k-safety properties of Java programs. (The verification algorithm was even
implemented in a fully automated tool.) To formalize Cartesian Hoare Logic, [28] uses a simple
imperative language, whose looping constructs are while-loops with breaks. However, extending
the approach of [28] to other constructs affecting control flow, or indeed other programming
languages, can be both highly non-trivial and time-consuming.

On the other hand, there have been recent developments in the area of language-parametric
software verification. Reachability logic (RL) [26, 27, 32] is a formalism for reasoning about par-
tial correctness of software in the spirit of Hoare logics. Being implemented in the K framework
[7], its biggest advantage is that reachability logic is language parametric: its proof system can
be used unchanged to reason about programs in any language, as long as the language has a
formal semantics in RL. Therefore, researchers no longer need to think about a particular lan-
guage construct three times (once for the operational semantics, once for axiomatic, and once
for the correspondence); additionally, a single researcher or an architect of a tool does not need
to understand both the precise (and often intricate) semantics of a programming language and
formal verification techniques, which makes division of labor possible. Through K, reachability
logic has been used to build verifiers for real-world languages, such as C ([19]), Java ([30]),
JavaScript ([30]), and EVM ([24]).

In this paper, we argue that we can indeed have the best of both worlds. We propose a
new logic called Cartesian Reachability logic (CRL), which properly extends reachability logic
to allow reasoning about k-safety hyperproperties. Similarly to CHL, CRL has a sound and
relatively complete proof system. A major advantage of CRL against CHL is that it works
with any deterministic language for which RL works; that is, with any deterministic language
which has a RL-based formal semantics. This makes CRL applicable for programs (aka “smart
contracts”) running on a blockchain since the languages used there are typically deterministic
and because many of them (e.g., EVM [20] powering the Ethereum blockchain, IELE [21]
integrated into the Cardano blockchain) already have a RL-based formal semantics.

CRL does not extend CHL, because the two logics give different semantics to properties
of nondeterministic programs; despite this distinction, CRL extends CHL on the deterministic
fragment of the CHL-supported language. We elaborate on this relation in Section 5. We draw
our inspiration from the literature on language-independent verification of partial correctness
([26, 27, 32]) and program equivalence ([9, 8]).

Contributions The approach of our paper can be summarized as follows:

• We propose Cartesian Reachability Logic, an extension of reachability logic for reasoning
about k-safety properties along the lines of Cartesian Hoare Logic.

• We define a language-parametric alternative to self-composition ([2, 14]) (Section 3.3) and
establish a relation between CRL validity of the original and RL validity of the composed
system.

406

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

• We give CRL a sound and relatively complete proof system (Section 3.4). The proofs
in this proof system can be translated to ordinary RL proofs of the composed system
(for soundness), but also such that it allows relatively high-level reasoning about circular
behavior and lockstep execution (for ease of verification and simplicity of invariants).

2 Preliminaries

2.1 Cartesian Hoare logic

Introduced in [28], Cartesian Hoare Logic is a formalism for specifying and reasoning about
k-safety properties, in a similar way as Hoare logic is used to reason about (safety) properties.
In Hoare logic, properties are specified by means of so-called Hoare triples. These have the
shape {φ}S{ψ}, with the meaning that the formula ψ holds in any state after the termination
(if any) of the program S, executed from a state satisfying φ. In Cartesian Hoare logic, the
situation is similar: one can specify a triple ⟨Φ⟩ S1 ⊛ · · ·⊛ Sk ⟨Ψ⟩ with the following meaning:
for any k-tuple (σ1, . . . , σk) of states satisfying the formula Φ, if we execute each program Si

in the respective state σi and they all terminate, then the k-tuple (σ′
1, . . . , σ

′
k) of the resulting

program states satisfies Ψ 1.
As an example, consider the program P (x, y) ≡ while(x > 0) { x--; y++; } and the 2-

safety property of monotonicity stating, intuitively: with growing inputs x and y, the resulting
y also grows. In CHL, this can be formalized as

⟨x1 ≤ x2 ∧ y1 ≤ y2⟩ P (x1, y1)⊛ P (x2, y2) ⟨y1 ≤ y2⟩ . (1)

The main idea here is that the formulas in the precondition and postcondition can relate vari-
ables from different executions. Cartesian Hoare logic is equipped with a proof system that
allows one to prove the validity of CHL triples. This proof system contains rules2 like

⟨Φ ∧ c⟩ (B1; S)⊛R ⟨Ψ⟩ ⟨Φ ∧ ¬c⟩ (B2; S)⊛R ⟨Ψ⟩
⟨Φ⟩ ((if (c) B1 else B2); S)⊛R ⟨Ψ⟩ (2)

that replicate standard Hoare-logic reasoning, and is sound and complete. However, what is
more interesting, the proof system allows one to perform lockstep reasoning, even for loops.
This is achieved by means of the following rule (version for two executions):

Φ ⇒ I ⟨I ∧ c1 ∧ c2⟩ B1⊛ B2 ⟨I⟩ ⟨I ∧ ¬c2⟩ while(c1)B1 ⟨Ψ⟩ ⟨I ∧ ¬c1⟩ while(c2)B2 ⟨Ψ⟩
⟨Φ⟩ (while (c1) B1)⊛ (while(c2) B2) ⟨Ψ⟩

Note that the invariant I, assumed by this rule, can relate variables from both executions.
The rule breaks reasoning about a pair of loops into three cases: the case where both loop
conditions hold and two cases where one of the conditions does not hold. In the first case,
both loops are executed “in lockstep”, performing one iteration each, and their execution must
preserve the invariant. In the remaining two cases, only one of the loops executes (in a state
satisfying the invariant and negation of the other loop condition), resulting in a state satisfying
the postcondition.

1An important technical assumption here is that every program Si operates on its own set of program
variables, distinct from variables of other programs Sj (for i ̸= j) - otherwise, the formulas Φ and Ψ would not
be able to distinguish between program variables of different programs.

2We have changed the notation slightly compared to the original paper.

407

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

This lockstep reasoning is a powerful tool because the required invariants (relating different
executions) are often very simple. For example, consider the program P (x, y) and the formula
(1) above. In this case it is enough to choose the invariant to be the same as the precondition
(i.e. I ≡ x1 ≤ x2 ∧ y1 ≤ y2). To prove the above example without lockstep reasoning, one must
find (non-relational) loop invariants strong enough to summarize the whole loop.

Unfortunately, lockstep reasoning rules become more complicated as one adds other features
into the language – for example, the break statement (as done in [28]). It is not immediately
obvious how to extend this approach to handle, e.g., recursion, continue, or goto. We also
observe that a single language feature (while loops) needed to be considered five times in order
for CHL to support it soundly: the semantics of while is present in the operational semantics
of the target language, in the Hoare logic for that language, in the Cartesian Hoare logic for
that language, and in the proofs of soundness for both of the logics.

This paper aims to make the above ideas available for any deterministic language. Therefore,
we review some tools from recent literature on language-parametric program verification in the
following subsections.

2.2 Matching Logic

Before introducing reachability logic, we must first talk about matching logic, on top of which
reachability logic is built. We work with the variant of matching logic described in [32, 27].
(There are other variants of matching logic, e.g. [6, 5], which are of no particular interest for
this paper.)

A matching logic formula (commonly known as a pattern) is a first-order logic (FOL) formula
which additionally allows terms (with variables) over some signature Σ as nullary predicates
(we refer to these as “terms-as-predicates”). To enable reasoning about programming language
syntax and semantics, the signature often contains the syntactical constructs of a programming
language of interest. A typical example of a matching logic formula is φexample , defined as3

φexample ≡ ≪ x--; | x 7→ X ≫ ∧ (X >Int 1 = true) (3)

which, when interpreted in a model of a particular programming language, denotes the set
of program configurations in which “x--;” is the code to be executed next, and the program
variable x has a value X that is greater than 1. In this example, the subformula ≪ x--; |
x 7→ X ≫ is a nullary term used as a predicate (term-as-predicate), with X being the only
free FOL variable. (x is not a FOL variable but a constant symbol from the signature of the
programming language.) The subterm x 7→ X states that the program variable x has value
X, and the X >Int 1 = true part then says that the realization of the function symbol “>Int”
returns the boolean value true (another constant symbol from the signature) when given X and
1 as arguments.

A matching logic Σ-model T is a Σ-algebra with non-empty carrier sets. The satisfaction
relation (M,γ, ρ) |= φ for a model M , a model element γ ∈ M , an M -valuation ρ : Var → M ,
and a pattern φ, is defined inductively on the structure of φ. The definition is as in FOL; the
main difference is the semantics of terms-as-predicates, which is given as

(M,γ, ρ) |= t ⇐⇒ γ = ρ(t) if t is a term

(where ρ(t) is the homomorphic extension of ρ applied to the term t). For example, we might
have a matching logic model M containing (concrete) program configurations of a particular

3In the syntax of the K framework this formula would look more like <k>x--<k><st>x |-> X</st> ∧
(X >Int 1 = true).

408

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

programming language. One such configuration might be:

γexample ≡ ≪ x--; | x 7→ 3 ≫

Then, we have that (M,γexample , ρ) |= φexample for any valuation ρ satisfying ρ(X) = 3, and
we say that φexample matches γexample in ρ.

A pattern φ is valid in M , written M |= φ, iff (M,γ, ρ) |= φ for every γ and ρ. We observe
that the validity of a structureless pattern (a pattern without terms-as-predicates) does not
depend on the selected model element. Also, the validity of any pattern does not depend on
those variables the pattern does not mention. A more formal treatment of matching logic is to
be found in Appendix A.

2.3 One-path Reachability Logic

Reachability logic [26, 32] (RL) is a formalism for both a) defining formal semantics of pro-
gramming languages, and b) specifying and reasoning about partial correctness properties of
programs in those languages. On the formal semantics side, a programming language is modeled
as a reachability system S = (T , S), where T is a matching logic model (that is, a Σ-algebra)
and S is a set of reachability rules of the shape φ ⇒∃ φ′, where φ and φ′ are matching logic
patterns over Σ describing sets of source and target program configurations.

Each reachability system naturally induces a transition system (TCfg ,⇒S), whose states are
program configurations and transitions ⇒S are defined as follows: for γ, γ′ ∈ TCfg we have
γ ⇒S γ′ iff there is some rule φ ⇒∃ φ′ ∈ S and some valuation ρ : Var → T such that
(T , γ, ρ) |= φ and (T , γ′, ρ) |= φ′.

As an example, consider the following reachability rule

≪ if (true) then P1 else P2 | S ≫ ⇒∃ ≪ P1 | S ≫ (4)

saying that the if construct of the particular language takes the first branch (P1) whenever
the condition is true. (Typically, there would be additional rules governing the evaluation of
the condition.) This rule induces (among others) the transition

≪ if (true) then x++ else x-- | x 7→ 3 ≫ ⇒S ≪ x++ | x 7→ 3 ≫ . (5)

On the partial correctness side, RL reuses the concept of reachability rules. For example,
one can specify that the program while(x > 0) do x--; may, if it terminates at all, reach a
configuration where nothing remains to be executed (represented by “·”) and where the program
variable x has a non-positive value, by means of the following reachability rule

≪ while (x>0) do x--; | x 7→ V ≫ ⇒∃ ∃V ′. ≪ · | x 7→ V ′ ≫ ∧(V ′ ≤Int 0 = true)

Assuming the language is deterministic, this is equivalent to saying that if the program
terminates, the resulting configuration will have a non-positive value of x. Formally, we say
that a configuration γ ∈ TCfg terminates in (TCfg ,⇒S) iff there is no infinite chain γ ⇒S γ1 ⇒S
γ2 ⇒S A rule of the shape φ ⇒∃ φ′ is satisfied in a reachability system S = (T , S),
written S ⊨RL φ⇒∃ φ′, iff for every γ ∈ TCfg such that γ terminates in (TCfg ,⇒S) and for any
valuation ρ : Var → T such that (T , γ, ρ) |= φ, there exists some γ′ ∈ TCfg such that γ ⇒∗

S γ
′

and (T , γ′, ρ) |= φ′.
Reachability logic is equipped with a proof system that derives sequents of the shape

A, C ⊢RL φ ⇒∃ φ′ (where A is a reachability system and C is introduced below). The proof

409

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

system is sound and complete: an RL claim is satisfied in S iff S, ∅ ⊢RL φ ⇒∃ φ′. The set
C, initially empty, contains so-called circularities, which are claims postulated to hold but not
justified yet. Circularities, which correspond to the notion of loop invariants of Hoare logic,
enable one to reason about repetitive behavior of programs. The proof system contains a rule

A, C ∪ {φ⇒∃ φ′} ⊢RL φ⇒∃ φ′
Circularity

A, C ⊢RL φ⇒∃ φ′

which adds the current claim to the set of circularities. When progress is made (by means
of other rules, essentially performing symbolic execution), the claim is moved from the set of
circularities to A (using the Transitivity rule – see Appendix B.2) and can be reused, similarly
to the way one assumes a loop invariant in order to prove it again. We refer the interested
reader to [26] for more details.

Remark 1. Following the original reachability logic literature ([26, 32]), we restrict the class
of reachability systems we work with to those whose reachability rules have the shape

ϕ ∧ P ⇒∃ ϕ′ ∧ P ′

where ϕ, ϕ′ are terms-as-predicates, and P, P ′ contain no terms-as-predicate. As argued in these
papers, such rules can support various styles of operational semantics, including evaluation
contexts [16], the chemical abstract machine [3], and K [7]. We thus support all reachability
systems supported by reachability logic.

3 Cartesian Reachability Logic

This section introduces Cartesian Reachability logic (CRL) - a language-parametric logic for
reasoning about k-safety hyperproperties. Our aim with CRL is to make reasoning in the
style of Cartesian Hoare logic (CHL) [28] available for any deterministic language for which a
reachability-logic semantics S is available. For that purpose, we define the language of CRL
and its semantics, and demonstrate the logic’s expressiveness on a couple of examples. Finally,
we give CRL a sound proof system, which is the main contribution of this paper.

3.1 Syntax and Semantics

Cartesian reachability logic is an extension of (one-path) reachability logic. To express k-safety
properties we extend reachability rules φ⇒∃ φ′ to cartesian reachability claims of the form

[φ1, . . . , φk] ∧ P ⇒c∃ ∃Y⃗ . [φ′
1, . . . , φ

′
k] ∧ P ′

The intuitive meaning of such a claim is as follows: there are k programs embedded into k
source configurations, with i-th source configuration matching φi, and k target configurations
matching φ′

is. Additionally, the FOL formula P can relate the source configurations, and the

FOL formula P ′ the target configurations. We call formulas of the form ∃Y⃗ . [φ1, . . . , φk] ∧ P
(where Y⃗ may be an empty vector) existentially-quantified constrained list patterns (ECLP).

For example, let us again consider the program

P ≡ while(x > 0){ x--; y++; } .

410

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Additionally, let ξ(Q,X, Y) be a pattern matching those configurations of program Q where
the program variable x has value X and the program variable y has value Y :

ξ(Q,X, Y) ≡ ≪ Q | x 7→ X, y 7→ Y ≫ . (6)

Then, the claim Ωmono, defined as

[ξ(P,X1, Y1), ξ(P,X2, Y2)] ∧X1 ≤ X2 ∧ Y1 ≤ Y2

⇒c∃ ∃X ′
1, Y

′
1 , X

′
2, Y

′
2 . [ξ(ϵ,X

′
1, Y

′
1), ξ(ϵ,X

′
2, Y

′
2)] ∧ Y ′

1 ≤ Y ′
2

(where ϵ denotes the empty program) expresses the property that the program P is monotone.
That is, when we start an execution (using the semantics of the particular language) from
some configuration γ1 matching ξ(P,X1, Y1) and a second execution from some configuration
γ2 matching ξ(P,X2, Y2), if X1 ≤ X2 and Y1 ≤ Y2, we end up in configurations γ′1, γ

′
2 matching

ξ(ϵ,X ′
1, Y

′
1) and ξ(ϵ,X ′

2, Y
′
2) for some X ′

1, Y
′
1 , X

′
2, Y

′
2 satisfying Y ′

1 ≤ Y ′
2 . Note that we need

the existential quantification on the right-hand side of claims to be able to talk about the new
values of program variables (whereas in CHL, we have original values in the precondition and
new values in the postcondition).

We formally define the semantics of a CRL claim as follows:

Definition 1 (CRL semantics). A claim [φ1, . . . , φk]∧P ⇒c∃ ∃Y⃗ . [φ′
1, . . . , φ

′
k]∧P ′ is valid in

a reachability system S = (T , S), written

(T , S) ⊨CRL [φ1, . . . , φk] ∧ P ⇒c∃ ∃Y⃗ . [φ′
1, . . . , φ

′
k] ∧ P ′ ,

iff for all configurations γ1, . . . , γk ∈ TCfg which terminate in (TCfg ,⇒S) and any T -valuation
ρ, whenever (T , γi, ρ) |= φi∧P for all i ∈ {1, . . . , k}, then there exist configurations γ′1, . . . , γ

′
k ∈

TCfg such that γi ⇒∗
S γ

′
i for all i ∈ {1, . . . , k}, and there also exists an T -valuation ρ′ satisfying

ρ(v) = ρ′(v) for any v ∈ Var \ Y⃗ , and (T , γ′i, ρ′) |= φ′
i ∧ P ′ for all i ∈ {1, . . . , k}.

As can be seen from the example above, CRL is more verbose than CHL. This is partly
because of the need to specify patterns matching the whole program configurations and partly
because of the need to existentially quantify those variables on the right side whose value is
not determined by the left side. To alleviate this problem, we introduce the following notation,
which we inherit from RL:

Notation Variables whose names start with a question mark are implicitly considered existen-
tially quantified on the right side. Also, an underscore is used to denote anonymous variables,
whose values we are not interested in. For example, we can write the claim Ωmono as

[ξ(P,X1, Y1), ξ(P,X2, Y2)] ∧X1 ≤ X2 ∧ Y1 ≤ Y2 ⇒c∃ [ξ(ϵ, ? , ?Y1), ξ(ϵ, ? , ?Y2)]∧?Y1 ≤?Y2 .

3.2 CRL as an extension of Reachability Logic

We want to point out that one cannot handle k-safety properties directly in RL, by simply
replacing a CRL claim with k components by k RL claims. The reason is that in CRL formulas,
one can relate variables from different components.

In CRL, one can localize the “global” constraints; for example, the claim Ωmono is equivalent
to

[ξ(P,X1, Y1), ξ(P,X2, Y2) ∧X1 ≤ X2 ∧ Y1 ≤ Y2] ⇒c∃ [ξ(ϵ, ? , ?Y1), ξ(ϵ, ? , ?Y2)∧?Y1 ≤?Y2] .

411

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

However, if one were to “split” the CRL claim into two, the resulting claims might express a
different property than monotonicity. For example, the two claims

ξ(Q,X1, Y1) ∧X1 ≤ X2 ∧ Y1 ≤ Y2 ⇒∃ ξ(ϵ, ?X1, ?Y1) (7)

ξ(Q,X2, Y2) ∧X1 ≤ X2 ∧ Y1 ≤ Y2 ⇒∃ ξ(ϵ, ?X2, ?Y2)∧?Y1 ≤?Y2 (8)

hold for any reasonable program Q (meaning that Q either executes fully or diverges), because
?Y1 in the second claim is unrelated to ?Y1 in the first claim and thus one can set it to the value
of ?Y2. On the other hand, if in the second claim we renamed ?Y1 to Y ′

1 (without a question
mark), the claim would require that ?Y2 is greater than or equal to any integer (because Y ′

1 is
not present on the left side), which clearly cannot hold.

On the other hand, CRL is an extension of RL in the following natural sense: If we restrict
configuration lists in CRL claims to contain a single configuration each, validity of CRL and
RL claims neatly coincide (the proof of the following proposition can be found in Appendix B):

Proposition 1. (T , S) ⊨CRL [φ] ∧ ⊤ ⇒c∃ [φ′] ∧ ⊤ ⇐⇒ (T , S) ⊨RL φ⇒∃ φ′ .

3.3 A language-independent alternative to self-composition

Before presenting a proof system for CRL, we must first discuss a concept crucial to proving
its soundness. Self-composition [2, 14] is a technique where a program P together with a
k-safety hyperproperty is reduced to a sequential composition of P with itself (with renamed
variables) together with a safety property. This technique allows one to use tools and techniques
for verification of safety properties to perform verification of k-safety hyperproperties. The
challenge here is to generalize self-composition to work with any deterministic language, even
if we do not know in advance how the language implements sequential composition, if at all.

To address this issue, we present a novel, general technique, which we call star extension.
The main idea is to transform a CRL claim into a RL claim over an extended reachability
system, whose configurations are lists of configurations of the original system. The function
flatten then converts an ECLP (which contains a meta-level list of matching logic patterns) into
a matching logic formula (containing an object-level list) that matches lists inside the model.
The transformation is quite straightforward but technical, and we refer an interested reader to
the Appendix B.1; here we state the main theorem:

Theorem 1. There exist a function ∗ on matching logic signatures, a (equally-named) function
∗ from reachability systems over Σ to reachability systems over Σ∗, and a function flatten from
ECLPs over Σ to matching logic Σ∗-formulas, such that

S ⊨CRL Ψ ⇒c∃ Ψ′ ⇐⇒ S∗ ⊨RL flatten(Ψ) ⇒c∃ flatten(Ψ′)

The price paid for self-composition is that the property of the self-composed program is often
hard to reason about. Therefore, in [28], the authors do not apply self-composition directly, but
only use its soundness to justify their technique - namely, the soundness of their proof system,
which avoids the explicit construction of self-composed programs. We use the star extension
for the same purpose.

3.4 Proof System for CRL

We are now ready to give Cartesian Reachability Logic a proof system to facilitate mechanical
reasoning. While the intuition behind the semantics of CRL is similar to that of CHL, with only

412

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

a few minor differences, coming up with a proof system for CRL is not straightforward. One
could attempt to reuse the proof system of CHL and modify it somehow to be independent
of the particular programming language. Since many CHL rules (e.g., its If rule shown in
Equation (2)) are simply Hoare logic rules acting on a particular component of a tuple of
formulas (that is, symbolic states), one could, for example, lift rules of reachability logic (RL)
to the tuple-context and be done. That would indeed work, and the resulting proof system
might even be complete.

However, the distinguishing feature of Cartesian Hoare Logic is not its completeness but
its ability to simplify reasoning by performing lockstep execution of loops, because that can
“greatly simplify the verification task (e.g., by requiring simpler invariants)” ([28]). To achieve
that, it is not enough to just lift RL rules to tuple-context. And it is not entirely obvious how
to support lockstep reasoning involving construct with repetitive behavior: in order to support
while-loops with break, Cartesian Hoare logic itself uses five additional fairly complex rules
(besides the lifted Hoare logic rules) that need to reflect the precise semantics of this construct.

We provide a single proof system consisting of only eight rules (Figure 1); the proof system
is agnostic about the kinds of constructs with repetetive behavior that the supplied language
supports, but enables lockstep reasoning about such constructs. The proof system derives
claims of the shape

(T , S) ⊢CRL Φ ⇓C,E Ψ

where Φ,Ψ are of the shape ∃X⃗. (φ1, . . . , φk) ∧ P . One can think about Φ as representing a
premise, while Ψ, which propagates through the proof rules unchanged, as representing a con-
clusion. For each i, φi is a matching logic pattern representing a particular component, and
P is a FOL formula (global constraint) relating variables from different components. The sets
C and E contain synchronization points and enabled synchronization points, respectively. To-
gether, they implement the concept of an invariant relating different components. In particular,
set C represents the invariants that were postulated right now, while set E represents those
postulated in the past and ready to be used. Initially, the proof search starts with E = C = ∅.

Similarly to circularities of reachability logic, synchronization points allow us to reason
coinductively4 about (cartesian) reachability claims: one can introduce them at any point of the
proof, but they can be used only after progress has been made by means of symbolic execution.
The progress requirements resemble the concept of productivity of co-recursive definitions.

The rules of our system are fairly simple, and general in the sense that none of them has the
semantics of any particular language construct hard-wired into it. We now explain the proof
rules of CRL (shown in Figure 1) one by one.

• The Circularity rule is a key rule which allows lockstep reasoning about arbitrary program
constructs. It allows the user to postulate the validity of the current claim by means of
adding the current premise into the set of synchronization points, from which a k-tuple
of program configurations satisfying the postcondition is claimed to be reachable. Once
progress is made (by means of the Step rule), the added synchronization points are enabled
and can be used to finish the proof using the Axiom rule.

• The Step rule performs symbolic execution on a selected component i (represented by
φi) using the semantic reachability rule φ ⇒∃ φ′ ∈ S. For this rule to apply, its left
side (φ) has to match all the program configurations matching φi. Therefore, the rule
decomposes φi into φ and an additional constraint P ′, which can be thought of as a part
of path condition that is local to the component i. This local path condition P ′ is then

4A formal treatement of the relationship between coinduction and reachability logic is to be found in [23].

413

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

(T , S) ⊢CRL Ψ ⇓C∪{Ψ},E Ψ′

Circularity
(T , S) ⊢CRL Ψ ⇓C,E Ψ′

φ⇒∃ φ′ ∈ S

T |= φi ↔ φ ∧ P ′

P ′ is a FOL formula

(T , S) ⊢CRL [φ1, . . . , φi−1, φ
′ ∧ P ′, φi+1, . . . , φk] ∧ P ⇓∅,(C∪E) Ψ

′

Step
(T , S) ⊢CRL [φ1, . . . , φi−1, φi, φi+1, . . . , φk] ∧ P ⇓C,E Ψ′

Ψ ∈ E
Axiom

(T , S) ⊢CRL Ψ ⇓C,E Ψ′

Reflexivity
(T , S) ⊢CRL Ψ ⇓∅,E Ψ

(T , S) ⊢CRL [φ1, . . . , φi−1, φi, φi+1, . . . , φk] ∧ P ′ ⇓C,E Ψ′

(T , S) ⊢CRL [φ1, . . . , φi−1, ψi, φi+1, . . . , φk] ∧ P ′ ⇓C,E Ψ′
Case

(T , S) ⊢CRL [φ1, . . . , φi−1, (φi ∨ ψi), φi+1, . . . , φk] ∧ P ′ ⇓C,E Ψ′

(T , S) ⊢CRL Φ′ ⇓C,E Ψ′ T ∗ |= flatten(Φ) → flatten(Φ′)
Conseq

(T , S) ⊢CRL Φ ⇓C,E Ψ′

X ̸∈ FV (Ψ′) (T , S) ⊢CRL ∃Y⃗ . [φ1, . . . , φk] ∧ P ⇓C,E Ψ′
Abstract

(T , S) ⊢CRL ∃X, Y⃗ . [φ1, . . . , φk] ∧ P ⇓C,E Ψ′

(T ∗, S∗ ∪ flatten∃(E,Ψ′)), ∅ ⊢RL flatten∃(Ψ,Ψ′)
Reduce

(T , S) ⊢CRL Ψ ⇓C,E Ψ′

Figure 1: A proof system for CRL

used to constrain the right-side φ′ of the selected rule. This proof rule also enables the
synchronization points from C by adding them to E.

• The Axiom rule uses an enabled synchronization point to finish the proof.

• The Reflexivity rule can be used to finish a proof when the premise corresponds to the
conclusion.

• The Case rule implements case analysis on a selected component i.

414

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

• The Conseq rule is used to weaken (or generalize) the premise. It can also be used to
propagate information between components and the global constraint.

• The Abstract rule can be used to remove existential quantifiers from the premise. In-
tuitively, this corresponds to a proof step in first-order logic that replaces an existential
quantifier on the left side of an implication with a universal quantifier over the implica-
tion, assuming that the variable bound by the existential quantifier does not occur free in
the right side. In our setting, the typical way of obtaining a top-level existential quantifier
in the premise is by means of the Conseq rule.

• The Reduce rule is a way to get completeness into our proof system: it reduces the goal
to reachability logic reasoning. This rule also provides a way to prove properties that do
not benefit from lockstep reasoning.

The soundness of the proof system, as stated by the following theorem, is the main technical
result of this paper.

Theorem 2 (Proof system soundness).

(T , S) ⊢CRL Ψ ⇓∅,∅ Ψ′ =⇒ (T , S) ⊨CRL Ψ ⇒c∃ Ψ′

In order to prove this theorem, we will need (beside Theorem 1, which we discuss in the pre-
vious section) a technical lemma stating that one can generate an RL proof on a star-extended
system from a CRL proof. This lemma is the second major component of the soundness proof
of CRL and its proof can be found in Appendix B.2.

Lemma 1.

(T , S) ⊢CRL Ψ ⇓C,E Ψ′ =⇒
(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten∃(Ψ,Ψ′)

With all the technical tools is place, the proof itself is a straightforward affair:

Proof of Theorem 2. Assume (T , S) ⊢CRL Ψ ⇓∅,∅ Ψ′. By Lemma 1, we have (T , S) ⊢RL

flatten∃(Ψ,Ψ′). By soundness of reachability logic, we have (T , S) ⊨RL flatten∃(Ψ,Ψ′). By
Theorem 1, we have (T , S) ⊨CRL Ψ ⇒c∃ Ψ′ and we are done.

The proof system is also relatively complete (with respect to an oracle deciding validity in
the underlying matching logic model T).

Theorem 3 (Relative completeness).

(T , S) ⊨CRL Ψ ⇒c∃ Ψ′ =⇒ (T , S) ⊢CRL Ψ ⇓∅,∅ Ψ′

Proof of Theorem 3. Assume (T , S) ⊨CRL Ψ ⇒c∃ Ψ′. By Theorem 1, we obtain

(T ∗, S∗) ⊨RL flatten∃(Ψ,Ψ′) .

By relative completeness of reachability logic, we obtain

(T ∗, S∗) ⊢RL flatten∃(Ψ,Ψ′) ,

and we conclude the proof using the Inherit rule. Note that to apply relative completeness of
RL, we need to have an oracle for deciding validity in the extended model. A construction of
such oracle from the oracle for deciding validity in T is in Appendix B.3. The main idea is to
reduce reasoning about list of configurations to reasoning about single natural numbers, using
Gödel’s β function for representation if sequences of natural numbers.

415

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Our completeness result is similar to the completeness result of CHL in the sense that the
completeness does not involve features used for lockstep reasoning. It would be interesting to
investigate whether we can have some complete proof system without the Reduce rule; we leave
this for future work.

One may ask the question, “why give CRL a new proof system if one can perform the
same reasoning by means of Theorem 1 and the existing proof system of reachability logic?”.
The answer is the following. When one reduces a CRL goal into RL using Theorem 1, the
function flatten appears in the goal. To perform reasoning using the RL proof system, one
then has to either simplify the goal by unfolding the definition of flatten, or use (and prove)
some helper lemmas about the effect of applying RL proof rules on RL goals containing flatten.
In the first case one lowers the abstraction level and have to reason about matching logic
formulas containing translations of other matching logic formulas into FOL, which then makes
RL reasoning difficult. In the second case, however, one may end up proving lemmas which,
when combined, result in a proof system for CRL. Indeed, the soundness of our proof system
is established by a (meta-)proof which constructs a RL proof from a CRL one (Lemma 1).

4 An example proof involving lockstep reasoning

We now present an example proof sketch using our proof system; the proof involves lockstep
reasoning. To ease the notation, we write simply tb instead of tb = true for boolean-sorted side
conditions tb. Consider again the claim Ωmono from Section 3.1:

[ξ(P,X1, Y1), ξ(P,X2, Y2)] ∧X1 ≤ X2 ∧ Y1 ≤ Y2 ⇒c∃ [ξ(ϵ, ? , ?Y1), ξ(ϵ, ? , ?Y2)]∧?Y1 ≤?Y2 .

Let Ψ′
mono denote the right side of the ⇒c∃ above. We want to prove

Simp ⊢CRL [ξ(P,X1, Y1), ξ(P,X2, Y2)] ∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ⇓∅,∅ Ψ′
mono .

To do so, we first want to add the current premise as a synchronization point. However, we
need to make the synchronization point more general than the current claim, as we will see
later in the proof. Therefore, we first apply the Conseq rule to change the goal to

Simp ⊢CRL ∃X1, Y1, X2, Y2. [ξ(P,X1, Y1), ξ(P,X2, Y2)] ∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ⇓∅,∅ Ψ′
mono ,

then apply the Circularity rule, followed by application of the Abstract rule, which basically
changes the goal back, except that now we have a general synchronization point. The goal is
now

Simp ⊢CRL [ξ(P,X1, Y1), ξ(P,X2, Y2)] ∧X1 ≤ X2 ∧ Y1 ≤ Y2 ⇓Φsync ,∅ Ψ′
mono ,

where

Φsync ≡ Simp ⊢CRL ∃X1, Y1, X2, Y2. [ξ(P,X1, Y1), ξ(P,X2, Y2)] ∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 .

Now we perform symbolic execution on both components, using repeated applications of the
Step rule, enabling the synchronization points. The exact details depend on the exact rules of
Simp , but assuming that the semantics of the while statement is defined by unrolling into the
if statement, we end up with a goal like

Simp ⊢CRL [ξ(if (X1 >Int 0){y++;x--;P}, X1, Y1), ξ(if (X2 >Int 0){y++;x--;P}, X2, Y2)]

∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ⇓∅,Φsync
Ψ′

mono ,

416

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Now we want to perform case analysis. To do so, we first use the Conseq rule to obtain
disjunctions of patterns at the respective components; then we repeatedly apply the Case rule,
leading to four goals; finally, we use the Conseq rule to propagate the constraints from the
components to the global constraint. Then, the four goals will be as follows (the differences are
shown in blue):

Simp ⊢CRL [ξ(if (true){y++;x--;P}, X1, Y1), ξ(if (true){y++;x--;P}, X2, Y2)]

∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ∧X1 >Int 0 ∧X2 >Int 0 ⇓∅,Φsync
Ψ′

mono ,
(9)

Simp ⊢CRL [ξ(if (true){y++;x--;P}, X1, Y1), ξ(if (false){y++;x--;P}, X2, Y2)]

∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ∧X1 >Int 0 ∧X2 ≤Int 0 ⇓∅,Φsync
Ψ′

mono ,
(10)

Simp ⊢CRL [ξ(if (false){y++;x--;P}, X1, Y1), ξ(if (true){y++;x--;P}, X2, Y2)]

∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ∧X1 ≤Int 0 ∧X2 >Int 0 ⇓∅,Φsync
Ψ′

mono ,
(11)

Simp ⊢CRL [ξ(if (false){y++;x--;P}, X1, Y1), ξ(if (false){y++;x--;P}, X2, Y2)]

∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ∧X1 ≤Int 0 ∧X2 ≤Int 0 ⇓∅,Φsync
Ψ′

mono .
(12)

• The case in Equation (12) represents the situation when both loops have finished their
execution. We can solve this case by symbolically executing both programs (using the
Step rule) to the end. It is easy to see that then the premise implies the conclusion;
therefore, we finish this case by generalizing the premise (using the Conseq rule) to be
exactly the conclusion, and then applying the Reflexivity rule.

• The case in Equation (10) represents the situation when the first loop continues execution
and the second is finished. This can never happen - we see that the side condition is
contradictory. We finish this case using the Reduce rule.

• The case in Equation (11) represents the complementary situation - the first loop has
finished its execution, while the second loop continues. This requires inventing an invariant
capturing the idea that the execution of the second loop can only increase the difference
between the values of y. We can Reduce this subgoal to simple RL reasoning. We could
also prove this case without Reduce, using the other rules, but lockstep reasoning does
not help there.

• The case in Equation (9) is the one when we utilize the ability to perform lockstep
reasoning. We symbolically execute both components until their program parts become
the while loops again; that is, P . The goal is now

Simp ⊢CRL [ξ(P,X1 −Int 1, Y1 +Int 1), ξ(P,X2 −Int 1, Y2 +Int 1)]

∧X1 ≤Int X2 ∧ Y1 ≤Int Y2 ∧X1 ≤Int 0 ∧X2 ≤Int 0 ⇓∅,Φsync
Ψ′

mono .

which implies the synchronization point Φsync which is already enabled. We can therefore
conclude the proof using Conseq and Axiom.

We observe that the proof is rather low-level. On the other hand, the proof system itself is
very simple, and one can prove derived rules that raise the abstraction level, as we show in
Appendix B.4.

417

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

5 Related Work and Discussion

5.1 Language-parametric verification

The idea of a Circularity rule is already present in the existing literature on reachability logics
[26, 27, 32], where it was used to generalize the notion of loop invariant. However, RL can not
be used to reason about k-safety hyperproperties and does not perform lockstep execution. The
literature on language-independent equivalence checking also contains the idea of a Circularity
rule. In [9], circularities are used to synchronize executions of different programs (possibly in
different languages); however, the proof system of [9] can be used only to reason about full
program equivalence and not about k-safety hyperproperties. What makes the proof system
of [9] really unusable in our situation is the fact that its Circularity rule

S ⊨ φ1 ⇒+ φ′
1 S ⊨ φ2 ⇒+ φ′

2 S ⊢equiv ⟨φ′
1, φ

′
2⟩ ⇓∞ E

S ⊢equiv ⟨φ1, φ2⟩ ⇓∞ E

requires all the components to make progress (denoted by the “plus” sign on top of the arrows)
before the circularity can be used, which would prohibit RL-style reasoning when one component
has already finished execution.

We believe that all the mentioned proof systems that use a variant of the Circularity rule
are instances of a more general framework, known as Circular coinduction in the literature [25].

5.2 Relation to Cartesian Hoare logic

5.2.1 (Non)determinism

We base our work on the one-path variant of reachability logic. Consequently, CRL inherits
a known limitation of one-path reachability logic: that the tight correspondence between one-
path RL and Hoare logics is limited to deterministic languages. This is because in the CRL
semantics we existentially quantify over reachable configurations, while in CHL, target states
are quantified universally. Despite that, we can prove the following theorem (the proof is
technical and can be found in Appendix B.5).

Theorem 4. CRL extends CHL on the deterministic fragment of the CHL-supported language.
That is, assume a sound reachability-logic formalization (that is, a reachability system) SIMP

of the CHL’s imperative language. Then there exist translation functions tr and end such that
given any statement P in the deterministic fragment of the CHL’s imperative language and any
first order formulas φ,ψ,

⊨CHL ||φ|| P ||ψ|| ⇐⇒ SIMP ⊨CRL tr(P,φ) ⇒c∃ end(P,ψ) .

5.2.2 Similarities

Our understanding of the inner workings of CHL is based on the extended, unpublished version
([29]) of [28]. There, the authors define a linearization operation on lists of programs, which
roughly corresponds to our star extension of the language’s semantics. Then, the authors
prove lemmas saying that a CHL triple with a list of programs inside is derivable in the CHL
proof system if and only if a Hoare triple having the same list of programs but linearized
inside, is derivable; the ”only if” implication corresponds to our Lemma 1, where we construct
an RL proof from a CRL proof, while the ”if” implication corresponds to our Reduce rule.

418

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Furthermore, in the proof of soundness of CHL, the authors assume soundness of the self-
composition technique; self-composition corresponds to our star extension and its soundness
to our Theorem 1. Finally, [29] assumes soundness and relative completeness of the underling
Hoare logic; similarly, we assume soundness and relative completeness of reachability logic.
However, for completeness, we had to prove that the star extension preserves decidability of
validity.

5.2.3 Differences

There are also differences between the CHL and CRL techniques. First, our proof system has
only 8 rules, and they do not mention any programming language construct, while CHL has 17
rules (not counting the Expand rule), half of which are specific to the underlying language.

Second, there is a redundancy between the language-specific CHL rules and the Hoare logic
rules of the programming language: for example, the conditional statement (”if”) has (1) a rule
in the formal semantics of the language, (2) a rule in the Hoare logic (not shown in the paper),
and (3) a rule in CHL. When considering that the three rules have to play nice together (that
is, CHL and Hoare logic rules have to be sound with respect to the semantics), someone had
to think about the conditional statement at least five times. We consider this to be highly
uneconomical - and the situation is even worse for the looping construct (”while-with-breaks”),
which is supported using additional CHL rules. In contrast, in the CRL/RL framework, it is
enough to design each language construct once - when giving its operational semantics.

Third, in CHL the support for lockstep reasoning is hard-wired into the rules for loops,
while in our framework, lockstep reasoning is not limited to loops, but can support arbitrary
sources of circular behavior - including loops, recursion, gotos.

5.3 Other Related Work

In [15], the authors develop a logic for hyper-triple composition (LHC) that allows reasoning
about k− safety properties compositionally. Similarly to CHL, LHC targets a particular small
imperative language. We believe that compositionality is orthogonal to language-parametricity,
and thus we would like to generalize their work to language-parametric settings in future work.

A game-based technique for verifying software hyperproperties beyond k-safety has been de-
veloped in [4]. This technique works with symbolic transition systems, so it already is language-
independent in some sense. However, it is not clear how to use the technique with an arbitrary
language L, without writing a compiler from L to symbolic transition systems first.

6 Future Work and Conclusion

We have presented Cartesian Reachability logic - a logic for reasoning about k-safety hyper-
properties in any deterministic language equipped with a RL-based operational semantics. The
logic has a simple, sound, and complete proof system and allows lockstep reasoning similar to
Cartesian Hoare logic. Instantiating CRL with a new language does not require any changes to
the soundness proof; therefore, CRL has the potential to significantly reduce the costs of the
development of tools and techniques for k-safety verification.

In the future, we want to develop a variant of CRL that would not require the language to
be deterministic. We believe this to be viable because (1) CHL has some support for nonde-
terminism and because (2) reachability logic, on which we base our work, has a newer variant
that supports nondeterminism, too. On the theoretical side, we would like to know whether

419

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

our proof system would be complete even in the absence of the Reduce rule. An orthogonal line
of future research is compositionality: we would like to enable compositional reasoning using
the technique developed in [15]. Finally, we plan to develop a practical, language-parametric
tool implementing CRL, using the K semantic framework, and use it for verification of smart
contracts (typically written in deterministic languages); we already have an early prototype5

capable of using lockstep reasoning for verification of the example from Section 4.

Acknowledgment We would like to thank the anonymous reviewers for their suggestions
and comments.

References

[1] Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hyperproperties in
hyperltl. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal,
June 27 - July 1, 2016, pages 239–252. IEEE Computer Society, 2016.

[2] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-composition.
In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June 2004,
Pacific Grove, CA, USA, pages 100–114. IEEE Computer Society, 2004.

[3] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theor. Comput. Sci., 96(1):217–
248, 1992.

[4] Raven Beutner and Bernd Finkbeiner. Software verification of hyperproperties beyond k-safety.
In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I, volume 13371 of
Lecture Notes in Computer Science, pages 341–362. Springer, 2022.

[5] Xiaohong Chen, Dorel Lucanu, and Grigore Rosu. Matching logic explained. J. Log. Algebraic
Methods Program., 120:100638, 2021.

[6] Xiaohong Chen and Grigore Rosu. Matching µ-logic. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13.
IEEE, 2019.

[7] Xiaohong Chen and Grigore Rosu. The K vision for the future of programming language design
and analysis. In Ezio Bartocci, Yliès Falcone, and Martin Leucker, editors, Formal Methods in
Outer Space - Essays Dedicated to Klaus Havelund on the Occasion of His 65th Birthday, volume
13065 of Lecture Notes in Computer Science, pages 3–9. Springer, 2021.

[8] Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A language-independent proof sys-
tem for mutual program equivalence. In Stephan Merz and Jun Pang, editors, Formal Methods and
Software Engineering - 16th International Conference on Formal Engineering Methods, ICFEM
2014, Luxembourg, Luxembourg, November 3-5, 2014. Proceedings, volume 8829 of Lecture Notes
in Computer Science, pages 75–90. Springer, 2014.

[9] Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Rosu. A language-independent proof
system for full program equivalence. Formal Aspects Comput., 28(3):469–497, 2016.

[10] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Mart́ın Abadi and Steve
Kremer, editors, Principles of Security and Trust - Third International Conference, POST 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8414 of Lecture Notes in Computer
Science, pages 265–284. Springer, 2014.

[11] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe,
and César Sánchez. Temporal logics for hyperproperties. CoRR, abs/1401.4492, 2014.

5available at https://github.com/h0nzZik/crl-tool/

420

https://github.com/h0nzZik/crl-tool/

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

[12] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In Proceedings of the 21st IEEE
Computer Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, USA, 23-25
June 2008, pages 51–65. IEEE Computer Society, 2008.

[13] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup. Verifying hyperliveness.
In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st International Confer-
ence, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561
of Lecture Notes in Computer Science, pages 121–139. Springer, 2019.

[14] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach to analysis of
secure information flow. In Dieter Hutter and Markus Ullmann, editors, Security in Pervasive
Computing, Second International Conference, SPC 2005, Boppard, Germany, April 6-8, 2005,
Proceedings, volume 3450 of Lecture Notes in Computer Science, pages 193–209. Springer, 2005.

[15] Emanuele D’Osualdo, Azadeh Farzan, and Derek Dreyer. Proving hypersafety compositionally.
Proc. ACM Program. Lang., 6(OOPSLA2):289–314, 2022.

[16] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT
Redex. MIT Press, 2009.

[17] Bernd Finkbeiner, Lennart Haas, and Hazem Torfah. Canonical representations of k-safety hyper-
properties. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019, pages 17–31. IEEE, 2019.

[18] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking hyperltl
and hyperctl ˆ*. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verifi-
cation - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, volume 9206 of Lecture Notes in Computer Science, pages 30–48. Springer,
2015.

[19] Dwight Guth, Chris Hathhorn, Manasvi Saxena, and Grigore Rosu. Rv-match: Practical
semantics-based program analysis. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer
Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I, volume 9779 of Lecture Notes in Computer Science, pages 447–453.
Springer, 2016.

[20] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight
Guth, Brandon M. Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, and Grigore Rosu. KEVM:
A complete formal semantics of the ethereum virtual machine. In 31st IEEE Computer Security
Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pages 204–217.
IEEE Computer Society, 2018.

[21] Theodoros Kasampalis, Dwight Guth, Brandon M. Moore, Traian-Florin Serbanuta, Yi Zhang,
Daniele Filaretti, Virgil Nicolae Serbanuta, Ralph Johnson, and Grigore Rosu. IELE: A rigorously
designed language and tool ecosystem for the blockchain. In Maurice H. ter Beek, Annabelle
McIver, and José N. Oliveira, editors, Formal Methods - The Next 30 Years - Third World
Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings, volume 11800 of Lecture
Notes in Computer Science, pages 593–610. Springer, 2019.

[22] E. Mendelson. Introduction to Mathematical Logic, Fourth Edition. Discrete Mathematics and Its
Applications. Taylor & Francis, 1997.

[23] Brandon M. Moore, Lucas Peña, and Grigore Rosu. Program verification by coinduction. In Amal
Ahmed, editor, Programming Languages and Systems - 27th European Symposium on Program-
ming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10801 of
Lecture Notes in Computer Science, pages 589–618. Springer, 2018.

[24] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Rosu. A formal verification
tool for ethereum VM bytecode. In Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu,
editors, Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake

421

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Buena Vista, FL, USA, November 04-09, 2018, pages 912–915. ACM, 2018.

[25] Grigore Rosu and Dorel Lucanu. Circular coinduction: A proof theoretical foundation. In Alexan-
der Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, Algebra and Coalgebra in Computer Sci-
ence, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceed-
ings, volume 5728 of Lecture Notes in Computer Science, pages 127–144. Springer, 2009.

[26] Grigore Ros,u and Andrei S, tefănescu. Checking reachability using matching logic. In Gary T.
Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012,
part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages 555–574. ACM, 2012.

[27] Grigore Ros,u, Andrei S, tefănescu, S, tefan Ciobâcă, and Brandon M. Moore. One-path reachability
logic. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New
Orleans, LA, USA, June 25-28, 2013, pages 358–367. IEEE Computer Society, 2013.

[28] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety properties. In Chandra
Krintz and Emery D. Berger, editors, Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016, pages 57–69. ACM, 2016.

[29] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety properties. 2016.

[30] Andrei Stefanescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Rosu. Semantics-based
program verifiers for all languages. In Eelco Visser and Yannis Smaragdakis, editors, Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Nether-
lands, October 30 - November 4, 2016, pages 74–91. ACM, 2016.

[31] Vlad Zamfir, Mihai Calancea, Denisa Diaconescu, Brandon M. Moore, Karl Palmskog, Traian-
Florin Serbanuta, and Michael Stay. VLSM: validating labelled state transition and message
production systems. CoRR, abs/2202.12662, 2022.

[32] Andrei S, tefănescu, S, tefan Ciobâcă, Radu Mereut, ă, Brandon M. Moore, Traian Florin S, erbănut, ă,
and Grigore Ros,u. All-path reachability logic. Log. Methods Comput. Sci., 15(2), 2019.

A Matching and Reachability logic

Definition 2 (Matching logic syntax and semantics). We define the matching logic syntax and
semantics as follows.

1. A matching logic signature Σ = (Σ,Var) is a many-sorted algebraic signature Σ together
with a sort-wise infinite set of variables Var; we let Vars denote the set of variables of
sort s.

2. Let TΣ(Var) denote the free Σ-algebra of terms with variables in Var. Let TΣ,s(Var)
denote the set of Σ-terms (with variables in Var) of sort s. More precisely, the syntax of
terms of sort s is defined by the following grammar:

ts ::= x | f(ts1 , . . . , tsn) (13)

where x ∈ Vars ranges over variables of of sort s and f over n-ary function symbols of
arity s1 × . . .× sn → s.

3. Let T be a Σ-algebra, and f be a symbol from Σ. We use the notation Tf to denote the
interpretation of f in T .

4. A function ρ : Var → T , where T is a Σ-algebra, extends uniquely (in the usual way) to
a Σ-algebra morphism ρ : TΣ(Var) → T .

422

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

5. The set of nullary predicate symbols Pϵ((Σ,Var)) (or just Pϵ if (Σ,Var) is known from
the context) is defined to contain exactly terms ϕ ∈ TΣ,s(Var).

6. A matching logic (Σ,Var)-formula (aka (Σ,Var)-pattern) of sort s is a (Σ, Pϵ) − FOL=
formula (that is, a FOL= formula where function symbols are exactly symbols from Σ,
and where nullary predicate symbols are exactly terms ϕ ∈ TΣ,s(Var), without any k-ary
predicate symbols for k > 0). We let Pattern(Σ) (or just Pattern when Σ is known from
the context) denote the set of all Σ-patterns. More precisely, the syntax of patterns is
defined by the following grammar:

φ ::= t | ts = ts | φ1 ∧ φ2 | ¬φ | ∃x : s. φ (14)

7. Let FV (φ) denote the set of all free variables of φ.

8. A matching logic pattern is structureless if it contains no terms ϕ ∈ TΣ,s(Var) used as
predicates.

9. A matching logic Σ-model T is a Σ-algebra with non-empty carrier sets.

10. Given a matching logic (Σ,Var) signature and a Σ-model T , a T -valuation ρ is a function
from Var to T respecting sorts.

11. A matching logic semantics is given by means of the satisfaction relation |= between a
matching logic Σ-model, a model element, and a valuation, defined inductively as

• (T , γ, ρ) |= t1 = t2 iff ρ(t1) = ρ(t2), where t1, t2 ∈ TΣ,s(Var) (for some sort s);

• (T , γ, ρ) |= ϕ iff γ = ρ(ϕ), where ϕ ∈ TΣ,s(Var);

• (T , γ, ρ) |= φ1 ∧ φ2 iff (T , γ, ρ) |= φ1 and (T , γ, ρ) |= φ2;

• (T , γ, ρ) |= ¬φ iff (T , γ, ρ) ̸|= φ;

• (T , γ, ρ) |= ∃x : s. φ iff (T , γ, ρ′) |= φ for some ρ′ such that ρ′(y) = ρ(y) for all
y ∈ Var \ {x} and ρ′(x) ∈ Ts;

Lemma 2. Let T be a matching logic Σ-model, γ, γ′ ∈ T model elements, and ρ a T -valuation.
Then for any structureless pattern P ,

(T , γ, ρ) |= P ⇐⇒ (T , γ′, ρ) |= P .

Therefore, when P is structureless, we may sometimes write (T , ρ) |= P to mean that (T , γ, ρ) |=
P for some γ ∈ T .

Proof of Lemma 2. Let P be a structureless pattern. We perform induction on P . If P ≡ t1 =
t2, the equivalence holds trivially, since the semantics does not mention γ. If P ≡ ϕ, we get
contradiction with the assumption that P is structureless; therefore, the conclusion holds by ex
falso quodlibet. Other cases follow from the induction hypotheses.

Lemma 3. Let T be a matching logic model and t a term. Then for any two T -valuations ρ, ρ′

satisfying ρ′(y) = ρ(y) for any y ∈ FV (t), we have ρ(t) = ρ′(t).

Proof. By induction on t.

423

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Lemma 4. Let T be a matching logic model, γ an element of this model, and φ a pattern.
Then for any two T -valuations ρ, ρ′ satisfying ρ′(y) = ρ(y) for any y ∈ FV (φ),

(T , γ, ρ) |= φ ⇐⇒ (T , γ, ρ′) |= φ .

Proof. By induction on the structure of φ. The base case where φ is a term is proved by
Lemma 3. The case of t1 = t2 also follows from Lemma 3. The conjunction and negation cases
follow from the induction hypothesis. For the case of existential quantification, we assume
that ρ′(y) = ρ(y) for any y ∈ FV (∃x : s. φ); the induction hypothesis says that for any two
valuations ρ1, ρ2 satisfying ρ1(y) = ρ2(y) for all y ∈ FV (φ), we have

(T , γ, ρ1) |= φ ⇐⇒ (T , γ, ρ2) |= φ

for any γ; and have to prove that there exists some ρ3 such that (1) ρ3(y) = ρ(y) for all
y ∈ Var \ {x}, (2) ρ3(x) ∈ Ts, and (3) (T , γ, ρ3) |= φ, if and only if there exists some ρ4 such
that (4) ρ4(y) = ρ′(y) for all y ∈ Var \ {x}, (5) ρ4(x) ∈ Ts, and (6) (T , γ, ρ4) |= φ. We show
here only the proof of the “only if” implication, since the “if” one is similar. Assume there
exists such ρ3. Choose

ρ4(y) =

{
ρ′(y) if y ̸= x

ρ3(y) if y = x

from which (4),(5) trivially follows. The point (6) follows from (3) and the induction hypothesis
after proving ρ3(y) = ρ4(y) for all y ∈ FV (φ): either y = x, in which case ρ3(y) = ρ4(y) holds
by the definition of ρ4, or y ̸= x, in which case we reduce the goal using the definition of ρ4
to ρ3(y) = ρ′(y). By (1), it is enough to show that ρ(y) = ρ′(y), which follows from the initial
assumption.

Lemma 5 (A semantic property of variable renaming). For any two variables X,Y of the
same sort, and for any two T -valuations ρ1, ρ2 which agree on all variables other than X,Y , if
ρ1(X) = ρ2(Y), then for any matching logic formula φ in which Y does not occur free,

(T , γ, ρ1) |= φ ⇐⇒ (T , γ, ρ2) |= φ[Y/X] .

Proof of Lemma 5. We first prove that for any term t ∈ TΣ,s(Var), ρ1(t) = ρ2(t[Y/X]), by
induction in t: if t is a variable, then we perform case analysis on whether the variable is X or
not, and we are done; if t is a function application, then we use the induction hypothesis and
the fact that function application preserves equality. Now we prove the lemma by induction on
the size of φ, generalizing over ρ1 and ρ2.

• If φ ≡ t for some t ∈ TΣ,s(Var), we apply the above property.

• If φ ≡ t1 = t2, we also apply the above property.

• If φ is a conjunction or negation, the desired property follows directly from the induction
hypothesis.

• If φ ≡ ∃Z : s. φ′.

– If X = Z, then we have to prove that (T , γ, ρ′) |= φ′ for some ρ′ satisfying ρ′(y) =
ρ1(y) for all y ∈ Var \ {Z}, iff (T , γ, ρ′′) |= φ′ for some ρ′′ satisfying ρ′′(y) = ρ2(y)
for all y ∈ Var \ {Z} - which is easy.

424

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

– If X ̸= Z, then we have to prove that (T , γ, ρ′) |= φ′ for some ρ′ satisfying ρ′(y) =
ρ1(y) for all y ∈ Var \ {Z}, iff (T , γ, ρ′′) |= φ′[Y/X] for some ρ′′ satisfying ρ′′(y) =
ρ2(y) for all y ∈ Var \ {Z}. Since the size of φ′ is smaller then the size of φ, and
since ρ′(X) = ρ1(X) = ρ2(Y) = ρ′′(Y), we can use the induction hypothesis and
finish the proof using firstorder reasoning.

Definition 3 ([32]). Given a matching logic (Σ,Var)-formula φ of sort Cfg, and a fresh (with
respect to φ) variable □ of sort Cfg, we let φ□ denote the FOL= formula formed from φ by
replacing nullary predicate symbols ϕ ∈ TΣ,Cfg(Var) with equalities □ = ϕ. Given a matching
logic (Σ,Var)-model T , a T -valuation ρ, and an element γ ∈ TCfg , we let the T -valuation ργ

be such that ργ(□) = γ, and ργ(x) = ρ(x) for x ̸= □.

Lemma 6 ([32]). Whenever □ is fresh in φ, we have

(T , γ, ρ) |= φ ⇐⇒ (T , ργ) |= φ□

Lemma 7. P□ ≡ P for any structureless pattern P

Proof. By induction.

Lemma 8 (On implication and FOL translation). Let φ1, φ2 be two matching logic formulas
such that |= φ1 → φ2. Then |= (φ□

1)[X/□] → (φ□
2)[X/□].

Proof. Let M be any matching logic model, γ an element of M , and ρ an M -valuation. We
have to prove that (M,γ, ρ) |= (φ□

1)[X/□] → (φ□
2)[X/□], which is (by definition of the squaring

function and substitution) equivalent to (M,γ, ρ) |= ((φ1 → φ2)
□)[X/□], which is (by Lemma 5,

because ρ(X) = ρ[□ := ρ(X)](□)) equivalent to (M,γ, ρ[□ := ρ(X)]) |= (φ1 → φ2)
□, which is

(by Lemma 6, because ρ[□ := ρ(X)] = ρρ(X)) equivalent to (M,ρ(X), ρ) |= φ1 → φ2, which
holds by the assumption.

Lemma 9 (On equivalence and FOL translation). Let φ1, φ2 be two matching logic formulas
such that |= φ1 ↔ φ2. Then |= (φ□

1)[X/□] ↔ (φ□
2)[X/□].

Proof. Apply Lemma 8 twice.

Definition 4 ([32, 26]). We define reachability-logic signatures, rules, and systems as follows.

1. A reachability-logic signature is a pair (Σ,Cfg), where Σ is a matching logic signature
and Cfg is a sort from Σ.

2. A one-path reachability rule over reachability logic signature (Σ,Cfg) is a pair φ⇒∃ φ′,
where φ and φ′ are Σ-patterns (which can have free variables) of sort Cfg.

3. A reachability system over a reachability-logic signature ((Σ,Var),Cfg) is a pair S =
(T , S), where T is a Σ-algebra and S is a set of reachability rules over ((Σ,Var),Cfg).

4. A rule φ ⇒∃ φ′ over ((Σ,Var),Cfg) is weakly well-defined with respect to Σ-algebra T
iff for any γ ∈ TCfg and ρ : Var → T with (T , γ, ρ) |= φ, there exists γ′ ∈ TCfg with
(T , γ′, ρ) |= φ′.

5. A reachability system S is weakly well-defined iff each its rule is weakly well-defined.

425

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

6. A reachability system S = (T , S) over ((Σ,Var),Cfg) induces a transition system
(TCfg ,⇒S), where γ ⇒S γ

′ for γ, γ′ ∈ TCfg iff there is some rule
φ⇒∃ φ′ ∈ S and some valuation ρ : Var → T with (T , γ, ρ) |= φ and (T , γ′, ρ) |= φ′.

7. A reachability system (T , S) is deterministic iff the induced transition system is deter-
ministic.

8. A reachability system (T , S) is ϵ-free iff for any two configurations σ, σ′ ∈ TCfg , if σ ⇒S
σ′, then σ ̸= σ′.

9. A configuration γ ∈ TCfg terminates in (TCfg ,⇒S) iff there is no infinite ⇒S)-sequence
starting with γ.

10. A ⇒S -path is a finite sequence γ0 ⇒S γ1 ⇒S . . .⇒S γn with γ0, . . . , γn ∈ TCfg .

11. A ⇒S-path is complete iff it is not a strict prefix of any other ⇒S-path.

12. A one-path reachability rule φ ⇒∃ φ′ is satisfied in a reachability system S = (T , S),
written S ⊨RL φ ⇒∃ φ′, iff for every γ ∈ TCfg such that γ terminates in (TCfg ,⇒S) and
for any valuation ρ : Var → T such that (T , γ, ρ) |= φ, there exists some γ′ ∈ TCfg such
that γ ⇒∗

S γ
′ and (T , γ′, ρ) |= φ′.

Remark 2. We work only with ϵ-free reachability systems. A reachability system (T , S) is
ϵ-free iff for any two configurations σ, σ′ ∈ TCfg , if σ ⇒S σ′, then σ ̸= σ′. (We are not aware
of any practical reachability system that would use these ϵ steps.)

B Cartesian Reachability logic

Definition 5 (CRL Syntax). We define the syntax of Cartesian Reachability logic as follows:

• A list-pattern has the shape [φ1, . . . , φk], where each φj (for j ∈ {1, . . . , k}) is a matching
logic pattern.

• A constrained list-pattern (CLP) is a conjunction Ψ0 ∧ P of a list-pattern Ψ0 and a
structureless pattern P .

• An existentially-quantified constrained list-pattern (ECLP) has the form ∃Y⃗ .Ψ, where Ψ

is a CLP and Y⃗ is a (possibly empty) list of variables.

• A One-Path Cartesian reachability claim of arity k has the shape Φ ⇒c∃ Ψ, where Φ is a
CLP and Ψ is an ECLP.

Proof of Proposition 1. Follows by firstorder reasoning from the definitions of semantics of CRL
(Definition 1) and RL (Definition 4).

B.1 Proof of Theorem 1

Definition 6. We translate a language semantics into a semantics for lists of configurations
as follows.

1. Let ((Σ,Var),Cfg) be a reachability-logic signature. Then

((Σ,Var∗),Cfg)∗ = ((Σ∗,Var∗),Cfg∗)

where

426

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

(a) Σ∗ = Σ ∪ {cfgitem, cfgconcat , cfgheat , cfgnil}
(b) Cfg∗ is a fresh sort (representing the sort of lists of configurations);

(c) Var∗ = Var ∪ VarCfg∗ , where VarCfg∗ is an infinite set of variables of sort Cfg∗,
distinct from varibles in Var;

(d) cfgitem a fresh symbol of sort Cfg → Cfg∗;

(e) cfgnil a fresh symbol of sort Cfg∗;

(f) cfgconcat a fresh symbol of sort Cfg∗ × Cfg∗ → Cfg∗; and

(g) cfgheat is a fresh symbol of sort Cfg∗ × Cfg × Cfg∗ → Cfg∗.

2. Let S be a set of reachability rules over (Σ,Cfg). We generate a set of reachability rules
S∗ over (Σ,Cfg)∗ by

(a) defining a function heat : Var × Pattern×Var → Pattern by

heat(L, ϕ ∧ P,R) = cfgheat(L, ϕ,R) ∧ P

(b) setting

S∗ = {heat(L,φ,R) ⇒∃ heat(L,φ′, R) | (φ⇒∃ φ′) ∈ S} ,

where L,R are distinct fresh variables (not occurring in any rule in S).

3. Let (Σ,Var) be a matching logic signature, and let T be a configuration model; that is, a
Σ-algebra. We generate a Σ∗-algebra T ∗, which interprets all sorts and symbols from Σ
as in T , and in addition interprets

(a) the sort Cfg∗ as the set of all finite lists [c1; . . . ; cn] for n ∈ N, where ci is an element
of sort Cfg for any 0 ≤ i ≤ n;

(b) the symbol cfgitem as the function λc. [c];

(c) the symbol cfgnil as the empty list ([]);

(d) the symbol cfgconcat as the function λl1, l2. l1++l2, where ++ is list concatenation;
and

(e) the symbol cfgheat as the function λl1, c, l2. l1++[c]++l2.

4. Let (Σ,Var) be a matching logic signature, let T be a configuration model, and let ρ be a
T -valuation. We define a T ∗-valuation ρ∗ by letting ρ∗(v) = ρ(v) for any v ∈ Var, and
letting ρ∗(v) = a, where a is some arbitrary element of sort Cfg∗, for any variable v of
sort Cfg∗.

5. Let S = (T , S) be a reachability system over (Σ,Cfg). We generate a reachability system
S∗ over (Σ,Cfg)∗ by setting S∗ = (T ∗, S∗).

Lemma 10. Let (Σ,Var) be a matching logic signature, T be a configuration model, and ρ be
a T -valuation. Then for any (Σ,Var)-term t,

ρ∗(t) = ρ(t) . (15)

Proof of Lemma 10. By induction on the term t.

427

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

• t ≡ v for v ∈ Var - follows from the definition of ρ∗.

• t ≡ f(t1, . . . , tk) - we have ρ(ti) = ρ∗(ti) for any i ∈ {1, . . . , k} by the induction hypothesis.
Then

ρ∗(f(t1, . . . , tk)) =T ∗
f (ρ

∗(t1), . . . , ρ
∗(tk))

=T ∗
f (ρ(t1), . . . , ρ(tk))

=Tf (ρ(t1), . . . , ρ(tk))
=ρ(f(t1, . . . , tk))

where the second-to-last equality holds by definition of T ∗.

Lemma 11. The star extension on matching logic models is conservative, in the following
sense. For any Σ-model T , any T -valuation ρ, any Σ-sort s, any γ ∈ Ts, and any matching
logic s-pattern φ,

(T , γ, ρ) |= φ ⇐⇒ (T ∗, γ, ρ∗) |= φ

Proof of Lemma 11. By induction on φ.

• φ ≡ t1 = t2 - follows from Lemma 10

• φ ≡ t, where π is a term (of sort s) - follows from Lemma 10.

• φ ≡ φ1 ∧ φ2 - follows from the induction hypothesis.

• φ ≡ ¬φ′ - follows from the induction hypothesis.

• φ ≡ ∃x : s′. φ′.

The induction hypothesis is: for any T , γ, ρ,

(T , γ, ρ) |= φ′ ⇐⇒ (T ∗, γ, ρ∗) |= φ′

We want to prove that for any T , γ, ρ,

(T , γ, ρ) |= ∃x : s′.φ′ ⇐⇒ (T ∗, γ, ρ∗) |= ∃x : s′.φ′

First, let us prove the left-to-right implication. The left-hand-side of the claim is equiva-
lent with

∃ρ′.(∀y.y ̸= x→ ρ′(y) = ρ(y)) ∧ (T, γ, ρ′) |= φ′

From the induction hypothesis, this is further equivalent with

∃ρ′.(∀y.y ̸= x→ ρ′(y) = ρ(y)) ∧ (T ∗, γ, ρ′
∗
) |= φ′

Since ∀y.y ̸= x→ ρ′
∗
(y) = ρ′(y) = ρ(y) = ρ∗(y), we deduce (T ∗, γ, ρ∗) |= ∃x : s′.φ′.

Conversely, the right-hand-side of the claim is equivalent with

∃ρ′′.(∀y.y ̸= x→ ρ′(y) = ρ ∗ (y)) ∧ (T ∗, γ, ρ′′) |= φ′

Let ρ′ be defined by ρ′(y) = ρ(y) if y ̸= x and ρ′(x) = ρ′′(x). Then it is easy to see that
ρ′

∗
= ρ′′, whence by the induction hypothesis we obtain that (T, γ, ρ′) |= φ′, and by the

definition of ρ′, (T, γ, ρ) |= ∃x : s′.φ′.

428

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Lemma 12. We have

C ⇒S∗ C ′

if and only if

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ : Var∗ → T ∗ such that

• (T ∗, ρ) |= P ; and

• (T ∗, ρ) |= P ′; and

• C = ρ(L)++[ρ(ϕ)]++ρ(R); and

• C ′ = ρ(L)++[ρ(ϕ′)]++ρ(R),

Proof. We have

C ⇒S∗ C ′

iff (by Definition 4)

there exists a rule φ⇒∃ φ′ ∈ S∗ and valuation ρ : Var∗ → T ∗ such that (T ∗, C, ρ) |= φ
and (T ∗, C ′, ρ) |= φ′,

iff (by Remark 1 and Definition 6)

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ : Var∗ → T ∗ such that

(T ∗, C, ρ) |= cfgheat(L, ϕ,R) ∧ P

and
(T ∗, C ′, ρ) |= cfgheat(L, ϕ′, R) ∧ P ′ ,

iff (by Definition 2 and Lemma 2)

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ : Var∗ → T ∗ such that
(T ∗, ρ) |= P and (T ∗, ρ) |= P ′ and

(T ∗, C, ρ) |= cfgheat(L, ϕl, R)

and
(T ∗, C ′, ρ) |= cfgheat(L, ϕ′j , R) ,

iff (by Definition 2 and Definition 6)

429

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ : Var∗ → T ∗ such that

• (T ∗, ρ) |= P ; and

• (T ∗, ρ) |= P ′; and

• C = ρ(L)++[ρ(ϕ)]++ρ(R); and

• C ′ = ρ(L)++[ρ(ϕ′)]++ρ(R).

That proves the desired equivalence.

Lemma 13. Let S = (T , S) be a reachability system over (Σ,Cfg). For any k ≥ 1, any
configurations c1, . . . , ck, c

′ ∈ TCfg , and any 1 ≤ i ≤ k, we have

ci ⇒S c
′ ⇐⇒ [c1, . . . , ck] ⇒S∗ [c1, . . . , ci−1, c

′, ci+1, . . . , ck]

Proof of Lemma 13. We have

[c1, . . . , ck] ⇒S∗ [c1, . . . , ci−1, c
′, ci+1, . . . , ck]

iff (by Lemma 12)

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ : Var∗ → T ∗ such that

• (T ∗, ρ) |= P ; and

• (T ∗, ρ) |= P ′; and

• [c1, . . . , ck] = ρ(L)++[ρ(ϕl)]++ρ(R); and

• [c1, . . . , ci−1, c
′, ci+1, . . . , ck] = ρ(L)++[ρ(ϕj)]++ρ(R).

Suppose we have such valuation ρ. We can surely construct valuation ρ0 : Var → T by
letting

ρ0(v) =

{
ρ(v) if ρ(v) ∈ T
a if ρ(v) ̸∈ T

(where a ∈ T is some arbitrary element). Now, for any v ∈ FV (ϕ)∪FV (ϕ′)∪FV (P)∪FV (P ′)
it holds that ((ρ0)

∗)(v) = ρ(v). Why? Because v has some sort s from Σ (that is, s ̸= Cfg∗).
Therefore, we can use Lemma 4 to change the goal to one saying that

430

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ0 : Var → T such that

• (T ∗, (ρ0)
∗) |= P ; and

• (T ∗, (ρ0)
∗) |= P ′; and

• [c1, . . . , ck] = ((ρ0)
∗)(L)++[((ρ0)

∗)(ϕl)]++((ρ0)
∗)(R); and

• [c1, . . . , ci−1, c
′, ci+1, . . . , ck] = ((ρ0)

∗)(L)++[((ρ0)
∗)(ϕj)]++((ρ0)

∗)(R)

(where the opposite implication follows by choice ρ := (ρ0)
∗). Now, we use Lemma 11 and

definition of starred valuation to change the goal to one saying that

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ0 : Var → T such that

• (T , ρ0) |= P ; and

• (T , ρ0) |= P ′; and

• [c1, . . . , ck] = ρ0(L)++[ρ0(ϕl)]++ρ0(R); and

• [c1, . . . , ci−1, c
′, ci+1, . . . , ck] = ρ0(L)++[ρ0(ϕj)]++ρ0(R).

Now, by list reasoning, this is equivalent to saying that

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ0 : Var → T such that there
exists some i′ satisfying 1 ≤ i′ ≤ k such that

• (T , ρ0) |= Pl; and

• (T , ρ0) |= Pj ; and

• [c1, . . . , ci′−1] = ρ0(L); and

• ci′ = ρ0(ϕl); and

• [ci′+1, . . . , ck] = ρ0(R); and

• [c1, . . . , ci−1, c
′, ci+1, . . . , ck] = ρ0(L)++[ρ0(ϕj)]++ρ0(R).

Now, let us define c′z by

c′z =

{
c′ if z = i

cz if z ̸= i

after which the goal is equivalent to saying that

431

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ0 : Var → T such that there
exists some i′ satisfying 1 ≤ i′ ≤ k such that

• (T , ρ0) |= P ; and

• (T , ρ0) |= P ′; and

• [c1, . . . , ci′−1] = ρ0(L); and

• ci′ = ρ0(ϕ); and

• [ci′+1, . . . , ck] = ρ0(R); and

• [c′1, . . . , c
′
i′−1] = ρ0(L); and

• c′i′ = ρ0(ϕ
′); and

• [c′i′+1, . . . , c
′
k] = ρ0(R).

Since L,R were fresh, they do not occur in ϕ nor in ϕ′. Therefore, using Lemma 4, we can
equivalently say that

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ0 : Var → T such that there
exists some i′ satisfying 1 ≤ i′ ≤ k such that

• (T , ρ0) |= P ; and

• (T , ρ0) |= P ′; and

• ci′ = ρ0(ϕl); and

• c′i′ = ρ0(ϕj).

(The downwards implication is trivial, as it is only removing constraints; the upwards im-
plication is from the fact that we can always choose a valuation ρ0 satisfying the constraints.)
But that is equivalent (Definition 2) to saying that

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and there exists some i′ satisfying 1 ≤ i′ ≤ k
and valuation ρ0 : Var → T such that

• (T , ci′ , ρ0) |= ϕ ∧ P ; and

• (T , c′i′ , ρ0) |= ϕ′ ∧ P ′ .

But that is equivalent to saying that

there exists some i′ satisfying 1 ≤ i′ ≤ k such that ci′ ⇒S c
′
i′ ,

which is almost equivalent to the left side of the equivalence we want to prove: that

432

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

ci ⇒S c
′
i.

The upwards implication is trivial; the downwards is as follows. If i = i′, we are done. But
otherwise, it would follow (by definition of c′i′) that ci′ ⇒S ci′ , which contradicts Remark 2.

Lemma 14. (T ∗, C, ρ) |= mkList(ϕ1, . . . , ϕk) iff there exists c1, . . . , ck ∈ TCfg such that C =
[c1, . . . , ck] and for every ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any
v ∈ FV (mkList(ϕ1, . . . , ϕk)), it holds that (T , c1, ρ′) |= ϕ1 and . . . and (T , ck, ρ′) |= ϕk.

Proof. By induction on k.

• If k = 1, then we have to prove that

(T ∗, C, ρ) |= cfgitem(ϕ1) iff there exists c1 ∈ TCfg such that C = [c1] and for every
ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈ FV (cfgitem(ϕ1)), it holds that
(T , c, ρ′) |= ϕ1.

By definition 2, this is equivalent to

C = ρ(cfgitem(ϕ1)) iff there exists c1 ∈ TCfg such that C = [c1] and for every
ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈ FV (cfgitem(ϕ1)), it holds that
c1 = ρ′(ϕ1).

By Definition 6, this is equivalent to

C = [ρ(ϕ1)] iff there exists c1 ∈ TCfg such that C = [c1] and for every ρ′ : Var → T
satisfying ρ′(v) = ρ(v) for any v ∈ FV (cfgitem(ϕ1)), it holds that c1 = ρ′(ϕ1).

We prove each implication separately. For the left-to-right implication, we let c1 := ρ(ϕ1)
and have to prove that ρ(ϕ1) = ρ′(ϕ1), which follows from Lemma 4. The right-to-left
implication also follows from Lemma 4.

• If k = k′ + 1, we assume the induction hypothesis saying that

for every C, ϕ1, . . . , ϕk′ , (T ∗, C, ρ) |= mkList(ϕ1, . . . , ϕk′) iff there exists
c1, . . . , ck′ ∈ TCfg such that C = [c1, . . . , ck′] and for every ρ′ : Var → T satisfying
ρ′(v) = ρ(v) for any v ∈ FV (mkList(ϕ1, . . . , ϕk′)), it holds that (T , c1, ρ′) |= ϕ1
and . . . and (T , ck′ , ρ′) |= ϕk,

and have to prove that

(T ∗, C, ρ) |= mkList(ϕ1, . . . , ϕk′+1) iff there exists c1, . . . , ck′+1 ∈ TCfg such that
C = [c1, . . . , ck′+1] and for every ρ′ : Var → T satisfying ρ′(v) = ρ(v) for
any v ∈ FV (mkList(ϕ1, . . . , ϕk′+1)), it holds that (T , c1, ρ′) |= ϕ1 and . . . and
(T , ck′+1, ρ

′) |= ϕk′+1,

which is (by Definition 2) equivalent to

433

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

C = ρ(mkList(ϕ1, . . . , ϕk′+1)) iff there exists c1, . . . , ck′+1 ∈ TCfg such that C =
[c1, . . . , ck′+1] and for every ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈
FV (mkList(ϕ1, . . . , ϕk′+1)), it holds that c1 = ρ′(ϕ1) and . . . and ck′+1 = ρ′(ϕk′+1),

which is (by Definition 6) equivalent to

C = [ρ(ϕ1)]++C
′ and C ′ = ρ(mkList(ϕ2, . . . , ϕk′+1)) iff there exists c1, . . . , ck′+1 ∈

TCfg such that C = [c1, . . . , ck′+1] and for every ρ′ : Var → T satisfying ρ′(v) =
ρ(v) for any v ∈ FV (mkList(ϕ1, . . . , ϕk′+1)), it holds that c1 = ρ′(ϕ1) and . . . and
ck′+1 = ρ′(ϕk′+1),

which is by the induction hypothesis with ϕ1 := ϕ2, . . . , ϕk := ϕk′+1 and α-renaming
equivalent to

C = [ρ(ϕ1)]++C
′ and there exists c2, . . . , ck′+1 ∈ TCfg such that C ′ =

[c2, . . . , ck′+1] and for every ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any
v ∈ FV (mkList(ϕ2, . . . , ϕk′+1)), it holds that (T , c2, ρ′) |= ϕ2 and . . . and
(T , ck′+1, ρ

′) |= ϕk′+1, iff there exists c1, . . . , ck′+1 ∈ TCfg such that C =
[c1, . . . , ck′+1] and for every ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈
FV (mkList(ϕ1, . . . , ϕk′+1)), it holds that c1 = ρ′(ϕ1) and . . . and ck′+1 = ρ′(ϕk′+1),

which is (by firstorder reasoning and simplification of list append) equivalent to

there exists c2, . . . , ck′+1 ∈ TCfg such that C = [ρ(ϕ1), c2, . . . , ck′+1] and for every
ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈ FV (mkList(ϕ2, . . . , ϕk′+1)),
it holds that (T , c2, ρ′) |= ϕ2 and . . . and (T , ck′+1, ρ

′) |= ϕk′+1, iff there exists
c1, . . . , ck′+1 ∈ TCfg such that C = [c1, . . . , ck′+1] and for every ρ′ : Var → T
satisfying ρ′(v) = ρ(v) for any v ∈ FV (mkList(ϕ1, . . . , ϕk′+1)), it holds that c1 =
ρ′(ϕ1) and . . . and ck′+1 = ρ′(ϕk′+1).

We simplify the goal using Definition 2 to

there exists c2, . . . , ck′+1 ∈ TCfg such that C = [ρ(ϕ1), c2, . . . , ck′+1] and for every
ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈ FV (mkList(ϕ2, . . . , ϕk′+1)), it
holds that c2 = ρ′(ϕ2) and . . . and ck′+1 = ρ′(ϕk′+1), iff there exists c1, . . . , ck′+1 ∈
TCfg such that C = [c1, . . . , ck′+1] and for every ρ′ : Var → T satisfying ρ′(v) =
ρ(v) for any v ∈ FV (mkList(ϕ1, . . . , ϕk′+1)), it holds that c1 = ρ′(ϕ1) and . . . and
ck′+1 = ρ′(ϕk′+1).

We prove each implication separately.

– Assuming

434

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

there exists c2, . . . , ck′+1 ∈ TCfg such that C = [ρ(ϕ1), c2, . . . , ck′+1]
and for every ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈
FV (mkList(ϕ2, . . . , ϕk′+1)), it holds that c2 = ρ′(ϕ1) and . . . and ck′+1 =
ρ′(ϕk),

we prove that

there exists c1, . . . , ck′+1 ∈ TCfg such that C = [c1, . . . , ck′+1] and for every
ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈ FV (mkList(ϕ1, . . . , ϕk′+1)),
it holds that c1 = ρ′(ϕ1) and . . . and ck′+1 = ρ′(ϕk′+1).

by choosing c1 := ρ′(ϕ1) and using Lemma 4
(note that FV (mkList(ϕ2, . . . , ϕk′+1)) ⊆ FV (mkList(ϕ1, . . . , ϕk′+1))).

– Assuming

there exists c1, . . . , ck′+1 ∈ TCfg such that C = [c1, . . . , ck′+1] and for every
ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈ FV (mkList(ϕ1, . . . , ϕk′+1)),
it holds that c1 = ρ′(ϕ1) and . . . and ck′+1 = ρ′(ϕk′+1),

we prove that

there exists c2, . . . , ck′+1 ∈ TCfg such that C = [ρ(ϕ1), c2, . . . , ck′+1]
and for every ρ′ : Var → T satisfying ρ′(v) = ρ(v) for any v ∈
FV (mkList(ϕ2, . . . , ϕk′+1)), it holds that c2 = ρ′(ϕ1) and . . . and ck′+1 =
ρ′(ϕk)

by setting ci := ci and again noting that

FV (mkList(ϕ2, . . . , ϕk′+1)) ⊆ FV (mkList(ϕ1, . . . , ϕk′+1)) .

Lemma 15. Let S = (T , S) be a reachability system over (Σ,Cfg). Then for any C,C ′ ∈ T ∗
Cfg∗ ,

if C ⇒S∗ C ′, then the length of C (it is a list) is the same as the length of C ′.

Proof. Assume C ⇒S∗ C ′. Then by Lemma 12,

there exists a rule ϕ ∧ Pl ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ : Var∗ → T ∗ such that

• (T ∗, ρ) |= P ; and

• (T ∗, ρ) |= P ′; and

• C = ρ(L)++[ρ(ϕ)]++ρ(R); and

• C ′ = ρ(L)++[ρ(ϕ′)]++ρ(R).

But then C and C ′ have the same length.

435

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Lemma 16 (At most one component changes). Let S = (T , S) be a reachability system over
(Σ,Cfg). Then for any C,C ′ ∈ T ∗Cfg∗ satisfying C ⇒S∗ C ′ there exists some i ∈ N such that
for every i′ ∈ N such that i′ ̸= i, we have C[i′] = C ′[i′] if both are defined.

Proof. Assume C ⇒S∗ C ′. Then by Lemma 12,

there exists a rule ϕ ∧ P ⇒∃ ϕ′ ∧ P ′ ∈ S and valuation ρ : Var∗ → T ∗ such that

• (T ∗, ρ) |= Pl; and

• (T ∗, ρ) |= Pj ; and

• C = ρ(L)++[ρ(ϕ)]++ρ(R); and

• C ′ = ρ(L)++[ρ(ϕ′)]++ρ(R).

But then we can let i := |ρ(L)|, and the rest follows.

The following definition and theorem on filtering infinite sequences are based on the Coq
development of [31] (specifically, on https://github.com/runtimeverification/vlsm/blob/

d6c8cee56708c7be2431b9743fe80ca6a7a29a58/theories/VLSM/Lib/StreamFilters.v).

Definition 7 (Filtering subsequence). Given a set A, a subset P ⊆ A and a function s : N → A,
a function ns : N → N is called a filtering subsequence for P on s, iff

1. ns is monotone;

2. s(x) ̸∈ P for any x < ns(0);

3. s(ns(j)) ∈ P for any j ∈ N; and

4. for every j ∈ N and every x such that ns(j) < x < ns(j + 1), s(x) ̸∈ P .

Intuitively, the last condition says that ns does not skip any P -element in s.

Lemma 17 (Existence of filtering sequence for infinite occurrences). Let A be a set, let P ⊆ A,
and let s : N → A be a function whose output falls to P infinitely often (that is, s(i) ∈ P for
infinitely many i). Then there exists a filtering subsequence for P on s.

Lemma 18. For any reachability system S = (T , S), any C ∈ T ∗
Cfg∗ , and any c1, . . . , ck ∈ TCfg

such that C = [c1, . . . , ck], C is terminating in (T ∗
Cfg∗ ,⇒S∗) iff for every j ∈ {1, . . . , k}, cj is

terminating in (TCfg ,⇒S).

Proof of Lemma 18. We prove both implications separately, by contraposition.

• Suppose some cj is not terminating in (TCfg ,⇒S). In other words, there exists some
infinite ⇒S -sequence cj = d(0) ⇒S d(1) ⇒S d(2) ⇒S Then

C = [c1, . . . , cj−1, d(0), cj+1, . . . , ck] ⇒S∗ [c1, . . . , cj−1, d(1), cj+1, . . . , ck] ⇒S∗ . . .

is (by Lemma 13) an infinite⇒S∗ -sequence. Therefore, C is not terminating in (T ∗
Cfg∗ ,⇒S∗

).

436

https://github.com/runtimeverification/vlsm/blob/d6c8cee56708c7be2431b9743fe80ca6a7a29a58/theories/VLSM/Lib/StreamFilters.v
https://github.com/runtimeverification/vlsm/blob/d6c8cee56708c7be2431b9743fe80ca6a7a29a58/theories/VLSM/Lib/StreamFilters.v

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

• Suppose C is not terminating in (T ∗
Cfg∗ ,⇒S∗). In other words, there exists an infinite

sequence C = D(0) ⇒S∗ D(1) ⇒S∗ Then there exists a component j of the sequence
which changes infinitely often in the sequence, because we have only k components. Now,
consider the function s : N → T ∗

Cfg∗ × T ∗
Cfg∗ defined by s(i) = (D(i), D(i + 1)), and let

P ⊆ T ∗
Cfg∗ × T ∗

Cfg∗ be defined by (X,X ′) ∈ P iff X[j] ̸= X ′[j]. By Lemma 16, we know
that whenever (X,X ′) ∈ P , then for any j′ satisfying 1 ≤ j′ ≤ k and j′ ̸= j, we have
X[j′] = X ′[j′]. Then, s(i) ∈ P iff in the sequence C, on position i, it is exactly the jth
component (and no other) which makes step. Now, by Lemma 17, there exists a filtering
subsequence ns for P on s. But then

D(ns(0))[j] ⇒S D(ns(1))[j] ⇒S D(ns(2))[j] ⇒S . . .

is a (TCfg ,⇒S) sequence witnessing the non-termination of D(0)[j] = cj . Indeed, we have

– D(ns(0))[j] = D(0)[j], by (2) of Definition 7, the definition of P , and transitivity of
equality;

– for any i ∈ N, D(ns(i))[j] ⇒S D(ns(i + 1))[j]. We prove this as follows. By (4) of
Definition 7 and definition of P we have D(ns(i+1))[j] = D(ns(i)+1)[j]. Therefore,
it is enough to show that

D(ns(i))[j] ⇒S D(ns(i) + 1)[j] .

By (3) of Definition 7 and definition of P we have D(ns(i))[j] ̸= D(ns(i) + 1)[j]. By
Lemma 13, it is enough to show that there exists k ≥ 1, c1, . . . , ck, c

′ ∈ TCfg , and some
i satisfying 1 ≤ i ≤ k, such that [c1, . . . , ck] = D(ns(i)) and [c1, . . . , ci−1, c

′, ci+1, ck] =
D(ns(i) + 1). But that follows from the fact that D(ns(i)) ⇒S∗ D(ns(i) + 1) and
that D(ns(i))[j] ̸= D(ns(i) + 1)[j] by Lemma 15 and Lemma 16.

Lemma 19. For any reachability system S = (T , S), any C,C ′ ∈ T ∗
Cfg∗ , and any

c1, . . . , ck, c
′
1, . . . , c

′
k ∈ TCfg

such that C = [c1, . . . , ck] and C
′ = [c′1, . . . , c

′
k], C ⇒∗

S∗ C ′ iff for every i ∈ {1, . . . , k}, ci ⇒∗
S c

′
i.

Proof of Lemma 19. We prove each implication separately.

• For the ”if” implication, we assume that ci ⇒∗
S c′i for any i ∈ {1, . . . , k}, and have to

prove that [c1, . . . , ck] ⇒∗
S∗ [c′1, . . . , c

′
k]. We will prove that for any j ∈ {1, . . . , k}, we it

holds that

[c′1, . . . , c
′
j−1, cj , cj+1, . . . , ck] ⇒∗

S∗ [c′1, . . . , c
′
j−1, c

′
j , cj+1, . . . , ck] ,

from which the goal follows by transitivity. Ok then, let j ∈ {1, . . . , k}. By Lemma 13, it
is enough to prove that cj ⇒∗

S c
′
j . But that holds by the assumption.

• For the ”only if” implication, we assume C ⇒∗
S∗ C ′, i ∈ {1, . . . , k}, and have to prove that

ci ⇒∗
S c

′
i. Let C1, . . . , Cl ∈ T ∗

Cfg∗ be a sequence witnessing C ⇒∗
S∗ C ′; that is, we have C =

C1, Cl = C ′, and Cj ⇒S∗ Cj+1 for any j ∈ {1, . . . , l − 1}. Let i1, . . . , im ∈ {1, . . . , l − 1}
be a strictly increasing sequence of maximal length such that Cij [i] ̸= Cij+1[i] for any
j ∈ {1, . . . ,m}; that is, the sequence of positions in the witnessing sequence when the

437

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

component i changes. Then clearly, C1[i] = Ci1 [i] (otherwise we could create a longer
sequence). Similarly, Cl[i] = Cim [i]. Now we claim that Ci1 [i] ⇒S . . . ⇒S Cim [i], from
which the conclusion easily follows. We have to prove that for any o ∈ {1, . . . ,m}, it holds
that Cio [i] ⇒S Cio+1

[i]. Let d := io+1 − io; clearly, we have d > 0. By the definition of d,
we have Cio+1

[i] = Cio+d[i]. By definition of the sequence, in particular by maximality,
we have Cio+d[i] = Cio+1[i] (because there can be no change of the component i between
the change at the position io and the change at the position io+1). Therefore, it is enough
to show that Cio [i] ⇒S Cio+1[i]. By Lemma 13 (using also Lemma 16 and Lemma 15), it
is enough to show that Cio ⇒S∗ Cio+1, but that is trivial and we are done.

Definition 8. We define mkList by letting

• mkList(ϕ) = cfgitem(ϕ); and

• mkList(ϕ1, . . . , ϕk) = cfgconcat(cfgitem(ϕ),mkList(ϕ2, . . . , ϕk)) whenever k > 1.

Definition 9. We define a function flatten from (potentially existentially-quantified) con-
strained list patterns to matching logic patterns over a star-extended signature by

flatten(∃X⃗. [φ1, . . . , φk) ∧ P] ≡

∃X⃗.mkList(Y1, . . . , Yk) ∧ (φ□
1)[Y1/□] ∧ . . . ∧ (φ□

k)[Yk/□] ∧ P ,

where Y1, . . . , Yk,□ are fresh. Furthermore, we let

flatten∃(Ψ,Ψ′) ≡ flatten(Ψ) ⇒∃ flatten(Ψ′) .

Lemma 20 (On Flattening). For any matching logic Σ-model T , any C ∈ T ∗
Cfg∗ , and any

T ∗-valuation ρ, we have

(T ∗, C, ρ) |= flatten(∃X⃗. [φ1, . . . , φk] ∧ P)

if and only if there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck] and there

exists a T -valuation ρ0 satisfying ρ0(v) = ρ(v) for any v ∈ Var \ X⃗ such that for any j ∈
{1, . . . , k}, (T , cj , ρ0) |= φj ∧ P .

Proof of Lemma 20. We have

(T ∗, C, ρ) |= flatten(∃X⃗. (φ1, . . . , φk) ∧ P)

if and only if (by unfolding the definition of flatten and Definition 2)

there exists a T ∗-valuation ρ′ satisfying ρ′(v) = ρ(v) for any v ∈ Var∗ \ X⃗ such that
(T ∗, C, ρ′) |= mkList(Y1, . . . , Yk) and for any j ∈ {1, . . . , k}, (T ∗, C, ρ′) |= (φ□

j)[Yj/□]∧P
,

if and only if (by Lemma 14)

438

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

there exists a T ∗-valuation ρ′ satisfying ρ′(v) = ρ(v) for any v ∈ Var∗ \ X⃗ such that

• there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck] and for every
T -valuation ρ′′ satisfying ρ′′(Yj) = ρ′(Yj) for any j ∈ {1, . . . , k}, it holds that for
any j ∈ {1, . . . , k}, (T , cj , ρ′′) |= Yj ; and

• for any j ∈ {1, . . . , k}, (T ∗, C, ρ′) |= (φ□
j)[Yj/□] ∧ P ,

if and only if (by Definition 2 and firstorder reasoning)

there exists a T ∗-valuation ρ′ satisfying ρ′(v) = ρ(v) for any v ∈ Var∗ \ X⃗ such that

• there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck] and for any
j ∈ {1, . . . , k}, ρ′(Yj) = cj ; and

• for any j ∈ {1, . . . , k}, (T ∗, C, ρ′) |= (φ□
j)[Yj/□] ∧ P ,

if and only if (by firstorder reasoning, Definition 2, and Lemma 2)

there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck], and there exists

a T ∗-valuation ρ′ satisfying ρ′(v) = ρ(v) for any v ∈ Var∗ \ X⃗ such that for any
j ∈ {1, . . . , k},

• ρ′(Yj) = cj ;

• (T ∗, ρ′) |= (φ□
j)[Yj/□] ; and

• (T ∗, ρ′) |= P ,

if and only if (by Lemma 11 and firstorder reasoning)

there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck], and there exists

a T -valuation ρ′ satisfying ρ′(v) = ρ(v) for any v ∈ Var \ X⃗ such that for any j ∈
{1, . . . , k},

• ρ′(Yj) = cj ;

• (T , ρ′) |= (φ□
j)[Yj/□] ; and

• (T , ρ′) |= P ,

if and only if (by Lemma 5, since we have ρ′(Yj) = cj on one side and ρ
cj
0 (□) = cj on the

other; for the implication from bottom to top, we also need the assumption that Yj was fresh
and Lemma 4 - in order to choose the valuation ρ′ satisfying ρ′(Yj) = cj)

439

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck] and there exists

a T -valuation ρ0 satisfying ρ0(v) = ρ(v) for any v ∈ Var \ X⃗ such that for any j ∈
{1, . . . , k},

• (T , ρcj0) |= φ□
j ; and

• (T , ρ0) |= P ,

if and only if (by Lemma 6, Definition 2, and Lemma 2)

there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck] and there exists

a T -valuation ρ0 satisfying ρ0(v) = ρ(v) for any v ∈ Var \ X⃗ such that for any j ∈
{1, . . . , k}, (T , cj , ρ0) |= φj ∧ P ,

which is what we wanted to prove.

Lemma 21.
S ⊨CRL Ψ ⇒c∃ Ψ′ ⇐⇒ S∗ ⊨RL flatten(Ψ) ⇒c∃ flatten(Ψ′)

Proof of Lemma 21. We prove each implication separately.

1. For the left-to-right implication, we let S = (T , S) and Ψ ≡ (φ1, . . . , φk) ∧ P and Ψ′ ≡
∃Y⃗ . (φ′

1, . . . , φ
′
k) ∧ P ′, and assume that

S ⊨CRL Ψ ⇒c∃ Ψ′ ;

that is, (i)

for all configurations c1, . . . , ck ∈ TCfg which terminate in (TCfg ,⇒S) and any
T -valuation ρ1, whenever (T , c1, ρ1) |= φ1 ∧ P and . . . and (T , ck, ρ1) |= φk ∧ P ,
then there exist configurations c′1, . . . , c

′
k ∈ TCfg such that c1 ⇒∗

S c′1 and . . . and
ck ⇒∗

S c
′
k, and there also exists an T -valuation ρ2 satisfying ρ1(v) = ρ2(v) for any

v ∈ Var \ Y⃗ , and (T , c′1, ρ2) |= φ′
1 ∧ P ′ and . . . and (T , c′k, ρ2) |= φ′

k ∧ P ′.

We have to prove that

for every C ∈ T ∗
Cfg∗ such that C terminates in (T ∗

Cfg∗ ,⇒S∗) and for any valuation
ρ : Var∗ → T ∗ such that (T ∗, C, ρ) |= flatten(Ψ), there exists some C ′ ∈ T ∗

Cfg∗

such that C ⇒∗
S∗ C ′ and (T ∗, C ′, ρ) |= flatten(Ψ′).

Let us then have some C ∈ T ∗
Cfg∗ such that C terminates in (T ∗

Cfg∗ ,⇒S∗), and a valuation
ρ : Var∗ → T ∗ such that (T ∗, C, ρ) |= flatten(Ψ). We have to prove that

there exists some C ′ ∈ T ∗
Cfg∗ such that C ⇒∗

S∗ C ′ and (T ∗, C ′, ρ) |= flatten(Ψ′).

We will proceed in five steps:

440

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

(a) We prove that there exists c1, . . . , ck such that C = [c1, . . . , ck].

(b) We prove that c1, . . . , ck are terminating.

(c) We find appropriate valuation ρ1 : Var → T and prove the premise of the assumption
(i): that (T , c1, ρ1) |= φ1 ∧ P and . . . and (T , ck, ρ1) |= φk ∧ P .

(d) From the assumption (i) we get the appropriate c′1, . . . , c
′
k, as well as a valuation

ρ2 : Var → T satisfying ρ1(v) = ρ2(v) for any v ∈ Var \ Y⃗ , and

(e) We let C ′ := [c′1, . . . , c
′
k] and prove that it is reachable from C, as well as that it

satisfies the flattened Ψ′ in ρ.

We have

(T ∗, C, ρ) |= flatten(Ψ);

that is,

(T ∗, C, ρ) |= flatten((φ1, . . . , φk) ∧ P);

which is by Lemma 20 equivalent to (ii)

there exist configurations c1, . . . , ck ∈ TCfg such that C = [c1, . . . , ck], and there
exists a T -valuation ρ0 satisfying ρ0(v) = ρ(v) for any v ∈ Var , such that for any
j ∈ {1, . . . , k}, (T , cj , ρ0) |= φj ∧ P .

Now, let ρ0 be such valuation, and let c1, . . . , ck be such configurations. We have just
proved Item 1a. To prove Item 1b, saying that the configurations c1, . . . , ck are termi-
nating, we simply use Lemma 18. To prove Item 1c, we let ρ1 := ρ0, and apply the
assumption (ii). Now it follows that (iii)

there exist configurations c′1, . . . , c
′
k ∈ TCfg such that c1 ⇒∗

S c
′
1 and . . . and ck ⇒∗

S
c′k, and there also exists an T -valuation ρ2 satisfying ρ1(v) = ρ2(v) for any v ∈
Var \ Y⃗ , and (T , c′1, ρ2) |= φ′

1 ∧ P ′ and . . . and (T , c′k, ρ2) |= φ′
k ∧ P ′.

Let us have such configurations c′1, . . . , c
′
k and valuation ρ2. We choose C ′ := [c′1, . . . , c

′
k],

and it remains to be proven that

C ⇒∗
S∗ C ′ and (T ∗, C ′, ρ) |= flatten(Ψ′)

(where ρ is the valuation that we started with). The part saying that C ⇒∗
S∗ C ′ holds

follows by Lemma 19. The other part can be changed using Lemma 20 into

there exist configurations c′1, . . . , c
′
k ∈ TCfg such that C ′ = [c′1, . . . , c

′
k] and there

exists a T -valuation ρ′0 satisfying ρ′0(v) = ρ(v) for any v ∈ Var \ Y⃗ such that for
any j ∈ {1, . . . , k}, (T , c′j , ρ′0) |= φ′

j ∧ P .

441

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Since we have constructed C ′ as a list of smaller configurations, it remains to be proven
that

there exists a T -valuation ρ′0 satisfying ρ′0(v) = ρ(v) for any v ∈ Var \ Y⃗ such that
for any j ∈ {1, . . . , k}, (T , c′j , ρ′0) |= φ′

j ∧ P .

Let us choose ρ′0 defined by ρ′0(v) = ρ2(v) for any v ∈ Var . We verify that ρ′0(v) = ρ2(v) =

ρ1(v) = ρ0(v) = ρ(v) for any v ∈ Var \ Y⃗ , and the rest follows from the assumption (iii)
by Lemma 4. This concludes the proof of the first implication.

2. For the opposite implication, we again assume that

Ψ ≡ (φ1, . . . , φk) ∧ P ,

Ψ′ ≡ ∃Y⃗ . (φ′
1, . . . , φ

′
k) ∧ P ′, φj = ϕj ∧ Pj and φ′

j = ϕ′j ∧ P ′
j for any j ∈ {1, . . . , k}, and

assume that

S∗ ⊨RL flatten(Ψ) ⇒∃ flatten(Ψ′) ;

that is (i),

for every C ∈ T ∗
Cfg∗ such that C terminates in (TCfg∗ ,⇒S∗) and for any valuation

ρ : Var∗ → T ∗ such that (T ∗, C, ρ) |= flatten(Ψ), there exists some C ′ ∈ T ∗
Cfg∗

such that C ⇒∗
S∗ C ′ and (T ∗, C ′, ρ) |= flatten(Ψ′);

we have to prove that

S ⊨CRL Ψ ⇒c∃ Ψ′ ;

that is,

for all configurations c1, . . . , ck ∈ TCfg which terminate in (TCfg ,⇒S) and any
T -valuation ρ1, whenever (T , c1, ρ1) |= φ1 ∧ P and . . . and (T , ck, ρ1) |= φk ∧ P ,
then there exist configurations c′1, . . . , c

′
k ∈ TCfg such that c1 ⇒∗

S c′1 and . . . and
ck ⇒∗

S c
′
k, and there also exists an T -valuation ρ2 satisfying ρ1(v) = ρ2(v) for any

v ∈ Var \ Y⃗ , and (T , c′1, ρ2) |= φ′
1 ∧ P ′ and . . . and (T , c′k, ρ2) |= φ′

k ∧ P ′.

Let us then have such terminating configurations c1, . . . , ck ∈ TCfg and such valuation
ρ1 : Var → T . We have to show that

there exist configurations c′1, . . . , c
′
k ∈ TCfg such that c1 ⇒∗

S c
′
1 and . . . and ck ⇒∗

S
c′k, and there also exists an T -valuation ρ2 satisfying ρ1(v) = ρ2(v) for any v ∈
Var \ Y⃗ , and (T , c′1, ρ2) |= ψ1 ∧ P ′ and . . . and (T , c′k, ρ2) |= ψk ∧ P ′.

We will proceed in the following steps.

442

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

(a) We prove the premise of (i) for C := [c1, . . . , ck], that is:

i. [c1, . . . , ck] terminates in (TCfg∗ ,⇒S∗); and

ii. (T ∗, [c1, . . . , ck], ρ) |= flatten(Ψ) for some constructed valuation ρ.

(b) We “destruct” the obtained C ′ into [c′1, . . . , c
′
k];

(c) We prove the desired properties of c′j from the properties of C ′.

First, [c1, . . . , ck] is terminating by Lemma 18. Next, we have to show that

(T ∗, [c1, . . . , ck], ρ) |= flatten((φ1, . . . , φk) ∧ P) ;

where ρ(v) = ρ1(v) for any v ∈ Var (and ρ(v) has arbitrary value for v outside of Var).
By Lemma 20, this is equivalent to showing that

there exist configurations c1, . . . , ck ∈ TCfg such that [c1, . . . , ck] = [c1, . . . , ck] and
there exists a T -valuation ρ0 satisfying ρ0(v) = ρ(v) for any v ∈ Var such that for
any j ∈ {1, . . . , k}, (T , cj , ρ0) |= φj ∧ P .

We choose cj := cj and ρ0 := ρ1; it remains to be proven that

(T , cj , ρ1) |= φj ∧ P .

which holds by assumption. Now we have obtained the following:

there exists some C ′ ∈ T ∗
Cfg such that [c1, . . . , ck] ⇒∗

S∗ C ′ and (T ∗, C ′, ρ) |=
flaten(Ψ′).

Now, by Lemma 15 (and using induction on the length of the sequence witnessing the
reachability), we get some c′1, . . . , c

′
k ∈ TCfg such that

[c1, . . . , ck] ⇒∗
S∗ [c′1, . . . , c

′
k] and (T ∗, [c′1, . . . , c

′
k], ρ) |= flaten(Ψ′).

Our goal is to prove that

there exist configurations c′1, . . . , c
′
k ∈ TCfg such that c1 ⇒∗

S c
′
1 and . . . and ck ⇒∗

S
c′k, and there also exists an T -valuation ρ2 satisfying ρ1(v) = ρ2(v) for any v ∈
Var \ Y⃗ , and (T , c′1, ρ2) |= ψ1 ∧ P ′ and . . . and (T , c′k, ρ2) |= ψk ∧ P ′,

so we choose c′j := c′j and have to prove that

c1 ⇒∗
S c′1 and . . . and ck ⇒∗

S c′k, and there also exists an T -valuation ρ2 satis-

fying ρ1(v) = ρ2(v) for any v ∈ Var \ Y⃗ , and (T , c′1, ρ2) |= ψ1 ∧ P ′ and . . . and
(T , c′k, ρ2) |= ψk ∧ P ′.

443

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

The first part follows from Lemma 19; it remains to be proven that

there also exists an T -valuation ρ2 satisfying ρ1(v) = ρ2(v) for any v ∈ Var \ Y⃗ ,
and (T , c′1, ρ2) |= ψ1 ∧ P ′ and . . . and (T , c′k, ρ2) |= ψk ∧ P ′.

and we already have

(T ∗, [c′1, . . . , c
′
k], ρ) |= flaten(Ψ′) ;

that is, by Lemma 20 we know that

there exists a T -valuation ρ0 satisfying ρ0(v) = ρ(v) for any v ∈ Var \ Y⃗ such that
for any j ∈ {1, . . . , k}, (T , c′j , ρ0) |= φ′.

Let ρ′0 be such valuation. In the goal, we let ρ2(v) := ρ′0(v) for any v ∈ Var ; we then note

that ρ2(v) = ρ′0(v) = ρ(v) = ρ1(v) for any v ∈ Var \ Y⃗ by definitions. The rest of the goal
follows from the assumption by Lemma 4. This concludes the proof.

B.2 Proof of Theorem 2

Proof of Lemma 1. By induction on the structure of the CRL proof.

1. If the proof ends with Reduce, then we are done, since flatten∃(∅, ψ′) = ∅.

2. If the proof ends with Reflexivity, then we need to prove

S∗ ∪ flatten∃(E,ψ), ∅ ⊢RL flatten∃(ψ,ψ)

which we do by applying the Reflexivity proof rule.

3. If the proof ends with Axiom, then ψ ∈ E, and we have to prove that

S∗ ∪ flatten ′(E,ψ′),flatten ′(C,ψ′) ⊢RL flatten ′(ψ,ψ′) .

By applying the Axiom proof rule of RL, it is enough to show that

flatten ′(ψ,ψ′) ∈ flatten ′(E,ψ′) ,

which follows from ψ ∈ E.

4. If the proof ends with Case, then we have

S∗ ∪ Ē, C̄ ⊢RL flatten∃((φ1, . . . , φi−1, φi, φi+1, . . . , φk) ∧ P ′,Ψ′)

and
S∗ ∪ Ē, C̄ ⊢RL flatten∃((φ1, . . . , φi−1, ψi, φi+1, . . . , φk) ∧ P ′,Ψ′)

as hypotheses, and we have to prove

S∗ ∪ Ē, C̄ ⊢RL flatten∃((φ1, . . . , φi−1, (φi ∨ ψi), φi+1, . . . , φk) ∧ P ′,Ψ′) .

444

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

φ⇒∃ φ′ ∈ A
Axiom

A, C ⊢RL φ⇒∃ φ′

Reflexivity
A, ∅ ⊢RL φ⇒∃ φ

(T , A), C ⊢RL φ1 ⇒+∃ φ2 (T , A ∪ C), ∅ ⊢RL φ2 ⇒∃ φ3
Transitivity

(T , A), C ⊢RL φ1 ⇒∃ φ3

A, C ⊢RL φ⇒∃ φ′ ψ is a FOL formula
Logic Framing

A, C ⊢RL φ ∧ ψ ⇒∃ φ′ ∧ ψ

T |= φ1 → φ′
1 (T , A), C ⊢RL φ

′
1 ⇒∃ φ′

2 T |= φ′
2 → φ2

Consequence
(T , A), C ⊢RL φ1 ⇒∃ φ2

A, C ⊢RL φ1 ⇒∃ φ A, C ⊢RL φ2 ⇒∃ φ
Case Analysis

A, C ⊢RL φ1 ∨ φ2 ⇒∃ φ

A, C ⊢RL φ⇒∃ φ′ X ̸∈ FV (φ′)
Abstraction

A, C ⊢RL ∃X.φ⇒∃ φ′

A,C ∪ {φ⇒∃ φ′} ⊢RL φ⇒∃ φ′
Circularity

A,C ⊢RL φ⇒∃ φ′

Figure 2: One-path reachability-logic proof system. The use of ⇒+∃ in a sequent means that
it was derived without Reflexivity.

(where Ē = flatten∃(E,ψ′) and C̄ = flatten∃(C,ψ′)). After simplifications, we get

S∗ ∪ Ē, C̄ ⊢RLmkList(X1, . . . , Xk) ∧

 k∧
j=1

(φ□
j)[Xj/□]

 ∧ P ′

⇒∃ flatten(Ψ′)

445

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

and

S∗ ∪ Ē, C̄ ⊢RLmkList(Y1, . . . , Yk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Yj/□]

 ∧ (ψ□
i)[Yi/□] ∧ P ′

⇒∃ flatten(Ψ′)

as hypotheses, and have to prove

S∗ ∪ Ē, C̄ ⊢RLmkList(Z1, . . . , Zk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Zj/□]

 ∧ ((φi ∨ ψi)
□)[Zi/□]

⇒∃ flatten(Ψ′)

(where X1, . . . , Xk, Y1, . . . , Yk, Z1, . . . , Zk are fresh variables). We first apply the Conse-
quence RL rule to the goal to distribute the φi ∨ ψi disjunction to the top, changing the
goal to

S∗ ∪ Ē, C̄ ⊢RL

mkList(Z1, . . . , Zk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Zj/□]

 ∧ (φ□
i)[Zi/□]

∨

mkList(Z1, . . . , Zk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Zj/□]

 ∧ (ψ□
i)[Zi/□]

⇒∃ flatten(Ψ′) .

Now we apply the Case Analysis rule. Then we transform the hypotheses to the respective
goals by existentially quantifying the Xjs (and Yjs, respectively) in the hypotheses using
the Abstraction RL rule, alpha-renaming (using the Consequence rule) the Xjs (and Yjs,
respectively) into Zjs, and stripping the existential quantifiers (using the Consequence
rule, again), and we are done.

5. If the proof ends with Step, we can assume a structureless FOL formula P ′, a rule φ⇒∃

φ′ ∈ S such that T |= φi ↔ φ ∧ P ′, and an induction hypothesis

(T ∗, S∗ ∪ flatten∃(C ∪ E,Ψ′)), ∅ ⊢RL

flatten([φ1, . . . , φi−1, φ
′ ∧ P ′, φi+1, . . . , φk] ∧ P) ⇒∃ flatten(Ψ′)

and have to construct

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL

flatten([φ1, . . . , φi−1, φi, φi+1, . . . , φk] ∧ P) ⇒∃ flatten(Ψ′) .

By definition of S∗, we also have

(heat(L,φ,R) ⇒∃ heat(L,φ′, R)) ∈ S∗ .

We apply the Transitivity rule with the second premise being our first inductive hypoth-
esis, and it remains to prove the second premise, which is

(T , S)∗,flatten∃(E,ψ′),flatten∃(C,ψ′)

⊢RL flatten([φ1, . . . , φi−1, φi, φi+1, . . . , φk] ∧ P)
⇒∃ flatten([φ1, . . . , φi−1, φ

′ ∧ P ′, φi+1, . . . , φk] ∧ P) .

446

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

that is (after simplification, assuming a reasonable choice of fresh variables)

(T , S)∗,flatten∃(E,ψ′),flatten∃(C,ψ′)

⊢RL mkList(X1, . . . , Xk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Xj/□]

 ∧ (φ□
i)[Xi/□] ∧ P

⇒∃ mkList(X1, . . . , Xk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Xj/□]

 ∧ ((φ′ ∧ P ′)□)[Xi/□] ∧ P .

By Lemma 9, our assumption that T |= φi ↔ (φ ∧ P ′), and conservativeness, we can
apply the Consequence rule, and the goal changes to

(T , S)∗,flatten∃(E,ψ′),flatten∃(C,ψ′)

⊢RL mkList(X1, . . . , Xk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Xj/□]

 ∧ ((φ ∧ P ′)□)[Xi/□] ∧ P

⇒∃ mkList(X1, . . . , Xk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Xj/□]

 ∧ ((φ′ ∧ P ′)□)[Xi/□] ∧ P .

We apply the Consequence rule again, changing the goal to

(T , S)∗,flatten∃(E,ψ′),flatten∃(C,ψ′)

⊢RL (φ□)[Xi/□] ∧ (mkList(X1, . . . , Xk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Xj/□]

 ∧ ((P ′)□)[Xi/□] ∧ P)

⇒∃ ((φ′)□)[Xi/□] ∧ (mkList(X1, . . . , Xk) ∧

 k∧
j=1,j ̸=i

(φ□
j)[Xj/□]

 ∧ ((P ′)□)[Xi/□] ∧ P) .

Now we apply Logic Framing to remove the structureless parts that are the same in both
the left and right sides, resulting in the goal

(T , S)∗,flatten∃(E,ψ′),flatten∃(C,ψ′)

⊢RL (φ□)[Xi/□] ∧mkList(X1, . . . , Xk)

⇒∃ ((φ′)□)[Xi/□] ∧mkList(X1, . . . , Xk) .

Now, from the assumption that φ ⇒∃ φ′ ∈ S and the construction of S∗ it follows that
heat(L,φ,R) ⇒∃ heat(L,φ′, R) ∈ S∗; and therefore cfgheat(L, ϕ,R)∧Q⇒∃ cfgheat(L, ϕ′, R)∧
Q′ ∈ S∗ where φ ≡ ϕ ∧Q and φ′ ≡ ϕ′ ∧Q′. By semantic reasoning we can prove that

T ∗ |=((φ□)[Xi/□] ∧mkList(X1, . . . , Xk))

↔cfgheat(L,Xi, R)

∧ L = mkList(X1, . . . , Xi−1)

∧R = mkList(Xi+1, . . . , Xk)

∧ (ϕ□)[Xi/□] ∧Q

447

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

and that

T ∗ |=(((φ′)□)[Xi/□] ∧mkList(X1, . . . , Xk))

↔cfgheat(L,Xi, R)

∧ L = mkList(X1, . . . , Xi−1)

∧R = mkList(Xi+1, . . . , Xk)

∧ ((ϕ′)□)[Xi/□] ∧Q′ .

Now we apply Consequence and subsequently strip the L,R equalities using Logic Framing,
thus getting

(T , S)∗,flatten∃(E,ψ′),flatten∃(C,ψ′)

⊢RL cfgheat(L,Xi, R) ∧ (ϕ□)[Xi/□] ∧Q
⇒∃ cfgheat(L,Xi, R) ∧ ((ϕ′)□)[Xi/□] ∧Q′ .

Now we use Consequence to expand ϕ□ and (ϕ′)□ into equalities, perform the substitution,
and use the equalities to replace the Xi subterm of cfgheat with ϕ and ϕ′, respectively;
this way the goal becomes

(T , S)∗,flatten∃(E,ψ′),flatten∃(C,ψ′)

⊢RL cfgheat(L, ϕ,R) ∧Q
⇒∃ cfgheat(L, ϕ′, R) ∧Q′ .

We finish the proof of this case using the Axiom rule.

6. If the proof ends with Circularity, we can assume

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C ∪ {Ψ},Ψ′) ⊢RL flatten∃(Ψ,Ψ′)

which simplifies to

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ∪ flatten∃({Ψ},Ψ′) ⊢RL flatten∃(Ψ,Ψ′)

and have to prove

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten∃(Ψ,Ψ′)

which follows from the assumption by Circularity.

7. If the proof ends with Conseq, we can assume

T ∗ |= flatten(Φ) → flatten(Φ′)

and

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten∃(Φ′,Ψ′) ,

and have to prove

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten∃(Φ,Ψ′) .

448

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

The second assumption simplifies to

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten(Φ′) ⇒∃ flatten(Ψ′) ,

while the goal to

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten(Φ) ⇒∃ flatten(Ψ′) ;

therefore, we can apply the Consequence rule.

8. If the proof ends with Abstract, we assume

X ̸∈ FV (Ψ′)

and

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten∃(∃Y⃗ . (φ1, . . . , φk) ∧ P,Ψ′)

and have to prove that

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL flatten∃(∃X, Y⃗ . (φ1, . . . , φk) ∧ P,Ψ′) .

After simplifications, the second premise becomes

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL

∃Y⃗ . (mkList(Z1, . . . , Zk) ∧ (φ□
1)[Z1/□] ∧ . . . (φ□

1)[Zk/□]) ∧ P)
⇒∃ flatten(Ψ′) ,

while the goal becomes

(T ∗, S∗ ∪ flatten∃(E,Ψ′)),flatten∃(C,Ψ′) ⊢RL

∃X.∃Y⃗ . (mkList(Z1, . . . , Zk) ∧ (φ□
1)[Z1/□] ∧ . . . (φ□

1)[Zk/□]) ∧ P) .

We prove the goal using the Abstraction rule (note that X ̸∈ FV (Ψ′) implies X ̸∈
FV (flatten(Ψ′)) because we are free to choose the fresh variables inside the flatten such).

This concludes the proof.

B.3 Completeness

To finish the proof of completeness, we lift the given oracle for a model T into an oracle for the
model T ∗ by means of a reduction function Θ. We assume a framework similar to that of [32].
Specifically, we assume that the model T interprets

• the symbol α as an injective function from configurations into natural numbers;

• the symbols <,+,−,∗ as the usual ordering, addition, subtraction, multiplication on nat-
ural numbers.

We represent Gödel’s β function, defined by

β(x1, x2, x3) = x1 mod (1 + (x3 + 1) · x2) ,

as e.g., in [22] - as a formula

βt(x1, x2, x3, y) ≡ ∃w : Nat . x1 = (1 + (x3 + 1) ∗ x2) ∗ w + y ∧ y ∧ 1 + (x3 + 1) ∗ x2 .

449

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Theorem 5 (Oracle lifting). For every Σ-model T satisfying the conditions above there exists
a function Θ from matching logic patterns over Σ∗ to matching logic patterns over Σ such that
T |= Θ(φ) ⇐⇒ T ∗ |= φ.

Proof. Intuitively, we perform Gödelization of the formula φ□, using Gödel’s βt predicate. The
idea is that the only construct appearing in FOL formulas over Σ∗ and not in FOL formulas
over Σ is comparison of lists of configurations for equality, and we reduce this construct to
equality of the corresponding elements of the list. For this purpose, we introduce a function
lookup(M, l, n, y) representing a predicate saying that the term l representing a list of config-
urations that has at position n the configuration y, where M is a mapping from list variables
into the two variables representing a list in the Godel encoding. The predicate length(M, l, n)
holds if the length of l is exactly n.

We define functions lookup and length by mutual structural recursion on their second pa-
rameter:

• lookup(M, l, n, y) = βt(al, bl, n, α(y)) if l is a variable of sort Cfg∗ and (l, al, bl) ∈M ;

• lookup(, cfgnil , ,) = ⊥.

• lookup(M, cfgconcat(t1, t2), n, y) =
∀l : Nat . length(M, t1, l) → ite(n < l, lookup(M, t1, n, y), lookup(M, t2, n− l, y))

• lookup(M, cfgheat(l1, c, l2), n, y) =

∀l : Nat . length(M, t1, l) →
ite(n < l, lookup(M, t1, n, y), ite(n = l, y = c, lookup(M, t2, n− l − 1, y)))

• length(M, l, n) = ∀i : Nat . (0 ≤ i < n) ↔ (∃v : Cfg .lookup(M, l, i, v))

The two functions have the following property.

Lemma 22. Let t be a term of sort Cfg∗ and ρ a T -valuation. Let M be a relation such
that for every free variable l of sort Cfg∗ of t, there exist unique variables al, bl of sort Nat
such that (l, al, bl) ∈ M and ρ(al), ρ(bl) β-encodes ρ(l). Then for any natural numer n, a
configuration γ, a variable c of sort Cfg, and a variable i of sort Nat, if ρ(c) = γ, then
ρ(t)[n] = γ ⇐⇒ M,ρ |= lookup(M, t, i, c). Also, for every natural numer n and a variable i of
sort Nat, if ρ(i) = n, then we have that the length of ρ(t) is exactly n iff T , ρ |= length(M, t, i).

Proof. By mutual structural induction on t.

Next, we define a function tr which performs basic recursion on a given FOL Σ∗ formula,
except that quantification over lists and equality of lists is handled as follows:

• tr(M,∀(l : Cfg∗). φ) = ∀al : Nat , bl : Nat . valid(al, bl) → tr(M ∪ {(l, al, bl)}, φ) for some
fresh al, bl;

• tr(M, l1 = l2) = ∀c : Nat , d : Cfg . (lookup(M, l1, c, d) ↔ lookup(M, l2, c, d))

where valid(a, b) = ∃l : Nat .∀i : Nat . i < l ↔ ∃y : Nat . y < a ∧ βp(a, b, i, y + 1). Intuitively,
the valid formula used as a guard in the universal quantification case ensures that we consider
only those al, bl pairs which β-encode some sequence of natural numbers. Also, the definition
of β guarantees that for fixed a, b, for large enough indices i, β(a, b, i) = a; the implementation
of valid uses this property to guess the length l of the sequence being represented by a, b.,

450

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

T |= φi → φ′
i

(T , S) ⊢CRL ∃X⃗. [φ1, . . . , φi−1, φ
′
i, φi+1, . . . , φk] ∧ P ⇓C,E Ψ′

ConseqLocal
(T , S) ⊢CRL ∃X⃗. [φ1, . . . , φi−1, φi, φi+1, . . . , φk] ∧ P ⇓C,E Ψ′

T |= P → P ′

(T , S) ⊢CRL ∃X⃗. [φ1, . . . , φi−1, φ, φi+1, . . . , φk] ∧ P ′ ⇓C,E Ψ′
ConseqGlobal

(T , S) ⊢CRL ∃X⃗. [φ1, . . . , φi−1, φ, φi+1, . . . , φk] ∧ P ⇓C,E Ψ′

(T , S) ⊢CRL [φ1, . . . , φi−1, φ, φi+1, . . . , φk] ∧ (P ∧ P ′) ⇓C,E Ψ′
PropOut

(T , S) ⊢CRL [φ1, . . . , φi−1, φ ∧ P ′, φi+1, . . . , φk] ∧ P ⇓C,E Ψ′

(T , S) ⊢CRL [φ1, . . . , φi−1, φ ∧ P ′, φi+1, . . . , φk] ∧ P ⇓C,E Ψ′
PropIn

(T , S) ⊢CRL [φ1, . . . , φi−1, φ, φi+1, . . . , φk] ∧ (P ∧ P ′) ⇓C,E Ψ′

ExFalso
(T , S) ⊢CRL [φ1, . . . , . . . , φk] ∧ false ⇓C,E Ψ′

X⃗ = FV (Φ) \ FV (Ψ′)

(T , S) ⊢CRL Φ ⇓C∪{∃X⃗.Φ},E Ψ′

GenWithCirc
(T , S) ⊢CRL Φ ⇓C,E Ψ′

Figure 3: Selected derived rules of CRL.

Let use consider the universal closure φc of φ□. Finally, we define Θ(φ) = tr(φc); the
desired equivalence holds by properties of the Godel βt predicate and properties of lists in the
extended model T ∗.

B.4 Derived Rules

Lemma 23. The rules of Figure 3 can be derived from the rules of Figure 1.

Proof. We prove them one by one.

• ConseqLocal - follows from Conseq. We need to prove that T |= φi → φ′
i implies

T ∗ |=flatten(∃X⃗. [φ1, . . . , φi−1, φi, φi+1, . . . , φk] ∧ P)

→flatten(∃X⃗. [φ1, . . . , φi−1, φ
′
i, φi+1, . . . , φk] ∧ P)

451

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

which, after unfolding flatten, follows from Lemma 8.

• ConseqGlobal - follows from Conseq. We need to prove that T |= P → P ′ implies

T ∗ |= flatten(∃X⃗. [φ1, . . . , φk] ∧ P) → flatten(∃X⃗. [φ1, . . . , φk] ∧ P ′)

which follows immediatelly after unfolding flatten.

• PropIn, PropOut - follows from Conseq after unfolding flatten and using Lemma 7.

• ExFalso - follows from Reduce.

• GenWithCirc - follows from Conseq, followed by Circularity, followed by Abstract.

B.5 Relation to CHL

In order to tie (one-path) CRL to CHL, we first define an all-path variant of CRL.

Definition 10 (All-Path CRL semantics). A claim

[φ1, . . . , φk] ∧ P ⇒c∀ ∃Y⃗ . [φ′
1, . . . , φ

′
k] ∧ P ′

is valid in a reachability system S = (T , S), written

(T , S) ⊨CRL [φ1, . . . , φk] ∧ P ⇒c∀ ∃Y⃗ . [φ′
1, . . . , φ

′
k] ∧ P ′ ,

iff for all configurations γ1, . . . , γk ∈ TCfg and any T -valuation ρ, whenever (T , γ1, ρ) |= φ1 ∧P
and . . . and (T , γk, ρ) |= φk ∧P , then for all complete ⇒S-paths (that is, finite paths which can-
not be extended further) π1, . . . , πk satisfying πi[0] = γi for any i ∈ {1, . . . , k} there exist natural
numbers j1, . . . , jk such that γ1 ⇒∗

S π1[j1] and . . . and γk ⇒∗
S πk[jk], and (T , π1[j1], ρ′) |= φ′

1∧P ′

and . . . and (T , πk[jk], ρ′) |= φ′
k ∧ P ′ for some ρ′ that agrees with ρ on all variables except Y⃗ .

All-path CRL and one-path CRL have the same semantics on deterministic languages, as-
suming the RHS of the claim is terminal.

Lemma 24 (One-path / All-path CRL correspondence). Let Φ be a CLP and Φ′ an ECLP
such that Φ′ is terminal (that is, configurations matching Φ′ cannot take a step). Then S ⊨CRL

Φ ⇒c∃ Φ′ if and only if S ⊨CRL Φ ⇒c∀ Φ′.

Proof. Let S = (T , S). Assume Φ ≡ [φ1, . . . , φk] ∧ P and Φ′ ≡ ∃Y⃗ . [φ′
1, . . . , φ

′
k] ∧ P ′. For the

“if” part, assume S ⊨CRL Φ ⇒c∀ Φ′. Assume some configurations γ1, . . . , γk which terminate,
and some valuation ρ satisfying (T , γ1, ρ) |= φ1 ∧ P and . . . and (T , γk, ρ) |= φk ∧ P . Let
π1 be some complete path γ1 = γ11 , γ

2
1 , . . . , γ

l1
1 and . . . and pik be some complete path γk =

γ1k, γ
2
k, . . . , γ

lk
k . Such paths exist, because γi (for i ∈ {1, . . . , k}) are terminating - we can start

with a path consisting of γj only and repeatedly extend the path until the last element has no
successor. Now, since every ϕ′i is terminal, all the jis that exist by Definition 10 refer to the
last configurations in the paths, because only those are terminal. That is, we have ji = li for
any i ∈ {1, . . . , k}. Therefore, we have some ρ′ and γl11 , . . . , γ

lk
k satisfying (T , γl11 , ρ′) |= φ′

1 ∧ P
and . . . and (T , γlkk , ρ′) |= φ′

k ∧ P , as required by Definition 1.
For the “only if” part, assume S ⊨CRL Φ ⇒c∃ Φ′. Assume some configurations γ1, . . . , γk and

some valuation ρ satisfying (T , γ1, ρ) |= φ1∧P and . . . and (T , γk, ρ) |= φk∧P . Let π1, . . . , πk be

452

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

complete paths γ11 , γ
2
1 , . . . , γ

l1
1 and . . . and γ1k, γ

2
k, . . . , γ

lk
k starting with γ1, . . . , γk, respectively.

By Definition 1, there exist configurations γ′1, . . . , γ
′
k such that γ1 ⇒∗

S γ
′
1 and . . . and γk ⇒∗

S γ
′
k,

and there also exists a valuation ρ′ that agrees with ρ on all variables outside Y⃗ such that
(T , γ′1, ρ′) |= φ′

1 ∧P and . . . and (T , γ′k, ρ′) |= φ′
k ∧P . Now by determinism and the fact that γ′i

are terminating (because φ′
i are terminating), we have γlii = γ′i. Thus, (T , π1[j1], ρ′) |= φ′

1 ∧ P ′

and . . . and (T , πk[jk], ρ′) |= φ′
k ∧ P ′, which concludes the proof.

Definition 11. Let LCHL denote the CHL’s imperative language and ΣLCHL
denote the matching

logic signature of a RL-based formalization of LCHL that that has a distinct constant symbol
symvar (x) and a distinct variable var inj (x) in the signature for ever program variable x of
LCHL, and that subsumues the syntax of the codomain of CHL state. We define a function
trcon by

trcon(P, σ) ≡ ≪ P | symvar (x1) 7→ σ(x1), . . . , symvar (xn) 7→ σ(xn) ≫

and a function endcon by

endcon(P, σ) ≡ ≪ skip | symvar (x1) 7→ σ(x1), . . . , symvar (xn) 7→ σ(xn) ≫

(where x1, . . . , xn are program variables occurring in P).

Assumption 1. We assume a sound formalization of LCHL in the form of a reachability system
SLCHL

that for any P, σ and any terminal γ′ satisfies

trcon(P, σ) ⇒∗
SLCHL

γ′ ⇐⇒ (σ, S ⇓ σ′) ∧ (γ′ = endcon(P, σ
′))

(where ⇓ denotes the relation defined by the original big-step semantics of LCHL).

Definition 12. Let f be an injective function on program variables of LCHL. We define a
function tr sym by

tr sym(P, finj) ≡ ≪ P | symvar (x1) 7→ var inj (f(x1)), . . . , symvar (xn) 7→ var inj (f(xn)) ≫

and a function end sym by

end sym(P, finj) ≡ ≪ skip | symvar (x1) 7→ var inj (f(x1)), . . . , symvar (xn) 7→ var inj (f(xn)) ≫

where P is a statement of LCHL over variables x1, . . . , xn.

Lemma 25 (Symbolic and concrete match). For any statement P , any injective function f on
program variables of LCHL, any finite map σ and any configuration γ, we have

(γ, ρ) |= tr sym(P, f)

iff
(γ = trcon(P, σ[f])) ∧ (∀j ∈ {1, . . . , n}. ρ(var inj (f(xj))) = (σ[f])(xj)) ;

similarly, we have
(γ, ρ) |= end sym(P, f)

iff
(γ = endcon(P, σ[f])) ∧ (∀j ∈ {1, . . . , n}. ρ(var inj (f(xj))) = (σ[f])(xj))

(where x1, . . . , xn are program variables occurring in P).

453

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

Proof. Follows by simple pattern matching.

Lemma 26 (Static reasoning in CHL vs CRL). Let σ1, . . . , σk be program states over x⃗.
Let ri(x) = xi for any x ∈ x⃗ and any i ∈ {1, . . . , k}. Let P be a statement over variables
r1(x⃗), . . . , rk(x⃗). Let σ =

⊎
1≤i≤k σi[ri]. Let ρσ be a matching logic valuation sending matching

logic variables var inj (x) to σ(x). Then:

σ ⊨FOL φ ⇐⇒ ∀P.∀i ∈ {1, . . . , k}. (trcon(P, σi[ri]), ρσ) |= tr sym(P, ri) ∧ φ
⇐⇒ ∀P.∀i ∈ {1, . . . , k}. (endcon(P, σi[ri]), ρσ) |= end sym(P, ri) ∧ φ

Proof. We show proof of the first equivalence only, since the second is similar. By Lemma 25
and properties of matching logic conjunction and structureless formulas, the RHS is equivalent
to

• for any j ∈ {1, . . . , n}, ρσ(var inj (ri(xj))) = (σi[ri])(xj); and

• ρσ |= φ.

The first item is always true: by the defining property of ρσ, it is enough to show that
σ(ri(xj)) = (σi[ri])(xj), which is trivially true. The second item is then equivalent to the
LHS.

Lemma 27 (All-path CRL vs CHL). Let P be a statement of LCHL over variables x⃗ =

x1, . . . , xn, and let Φ,Ψ be FOL formulas over variables x⃗1, . . . , x⃗k. Let Y⃗ = var inj (x⃗1, . . . , x⃗k).
Then ||φ|| P ||ψ|| if and only if

[tr sym(P, r1), . . . , tr sym(P, rk)] ∧ φ⇒c∀ ∃Y⃗ . [end sym(P, r1), . . . , end sym(P, rk)] ∧ ψ .

Proof. The left side is true iff (by definition)

for every set of valuation pairs {(σ1, σ′
1), . . . , (σk, σ

′
k)} satisfying ⊎

1≤i≤k

σi[ri] ⊨FOL φ

and

∀i ∈ {1, . . . , k}. σi, P ⇓ σ′
i

we also have ⊎
1≤i≤k

σ′
i[ri] ⊨FOL ψ

which is (by Lemma 26 and Assumption 1) equivalent to

454

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

for every set of valuation pairs {(σ1, σ′
1), . . . , (σk, σ

′
k)} satisfying

∀P.∀i ∈ {1, . . . , k}. (trcon(P, σi[ri]), ρσ) |= tr sym(P, ri) ∧ φ

and
∀i ∈ {1, . . . , k}. trcon(P, σi) ⇒∗

SLCHL
endcon(P, σ

′
i)

we also have

∀P.∀i ∈ {1, . . . , k}. (endcon(P, σi[ri]), ρσ′) |= end sym(P, ri) ∧ ψ

(where σ =
⊎

1≤i≤k σi[ri] and σ
′ =

⊎
1≤i≤k σ

′
i[ri])

We want to show this to be equivalent with

for all configurations γ1, . . . , γk ∈ TCfg and any T -valuation ρ, whenever (T , γ1, ρ) |=
tr sym(P, r1)∧φ and . . . and (T , γk, ρ) |= tr sym(P, rk)∧φ, then for all complete ⇒S -paths
(that is, finite paths which cannot be extended further) π1, . . . , πk satisfying πi[0] =
γi for any i ∈ {1, . . . , k} there exist natural numbers j1, . . . , jk such that γ1 ⇒∗

SLCHL

π1[j1] and . . . and γk ⇒∗
SLCHL

πk[jk], and (T , π1[j1], ρ′) |= end sym(P, r1) ∧ ψ and . . . and

(T , πk[jk], ρ′) |= end sym(P, rk)∧ψ for some ρ′ that agrees with ρ on all variables except

Y⃗ .

1. For the top-down implication, assume such configurations and such complete paths. Let
l1, . . . , lk denote the lengths of the paths π1, . . . , πk. By Lemma 25, we have for every
j ∈ {1, . . . , k}:

γj = trcon(P, σ[rj])

and therefore

trcon(P, σ[rj]) ⇒∗
SLCHL

πj [lj] .

By Assumption 1, we have

πj [lj] = endcon(P, σ[rj]) .

Because we have

∀P.∀i ∈ {1, . . . , k}. (endcon(P, σi[ri]), ρσ′) |= end sym(P, ri) ∧ ψ ,

it follows that

(πj [lj], ρσ′) |= end sym(P, ri) ∧ ψ ,

which is what we needed to prove.

2. For the bottom-up implication, assume a set of valuation pairs {(σ1, σ′
1), . . . , (σk, σ

′
k)}

satisfying

∀P.∀i ∈ {1, . . . , k}. (trcon(P, σi[ri]), ρσ) |= tr sym(P, ri) ∧ φ

and

∀i ∈ {1, . . . , k}. trcon(P, σi) ⇒∗
SLCHL

endcon(P, σ
′
i)

455

CRL: A Language-Independent Logic for k-Safety Tušil, S, erbănut, ă, and Obdržálek

The second means we have for every i some complete trace πi of length li starting in
trcon(P, σi) and ending in endcon(P, σ

′
i). We need to prove:

∀P.∀i ∈ {1, . . . , k}. (endcon(P, σi[ri]), ρσ′) |= end sym(P, ri) ∧ ψ

(where σ =
⊎

1≤i≤k σi[ri] and σ
′ =

⊎
1≤i≤k σ

′
i[ri]). Let P ′ be some program and let i be

in {1, . . . , k}. We need to show that

(endcon(P
′, σi[ri]), ρσ′) |= end sym(P ′, ri) ∧ ψ .

By Lemma 25, it is enough to show that

(∀j ∈ {1, . . . , n}. ρσ′(var inj (f(xj))) = (σ′[f])(xj))

(which holds by definition of ρσ′) and that

ρσ′ |= ψ .

It is enough to show that (T , πi[li], ρ′) |= end sym(P, ri) ∧ ψ which follows from the as-
sumptions by firstorder reasoning.

Now we can combine the above into the following result:

Theorem 6 (One-path CRL vs CHL). Let P be a deterministic statement of LCHL over

variables x⃗ = x1, . . . , xn, and let φ,ψ be FOL formulas over variables x⃗1, . . . , x⃗k. Let Y⃗ =
var inj (x⃗1, . . . , x⃗k). Then ||φ|| P ||ψ|| if and only if

[tr sym(P, r1), . . . , tr sym(P, rk)] ∧ φ⇒c∃ ∃Y⃗ . [end sym(P, r1), . . . , end sym(P, rk)] ∧ ψ .

Proof. Use Lemma 27 and Lemma 24.

Proof of Theorem 4. We define

tr(P,φ) ≡ [tr sym(P, r1), . . . , tr sym(P, rk)] ∧ φ

end(P,ψ) ≡ ∃Y⃗ . [end sym(P, r1), . . . , end sym(P, rk)] ∧ ψ

(where P is a deterministic statement over x⃗ = x1, . . . , xn, and φ,ψ are FOL formulas over

variables x⃗1, . . . , x⃗k, and Y⃗ = var inj (x⃗1, . . . , x⃗k)) and apply Theorem 6.

456

	Introduction
	Preliminaries
	Cartesian Hoare logic
	Matching Logic
	One-path Reachability Logic

	Cartesian Reachability Logic
	Syntax and Semantics
	CRL as an extension of Reachability Logic
	A language-independent alternative to self-composition
	Proof System for CRL

	An example proof involving lockstep reasoning
	Related Work and Discussion
	Language-parametric verification
	Relation to Cartesian Hoare logic
	(Non)determinism
	Similarities
	Differences

	Other Related Work

	Future Work and Conclusion
	Matching and Reachability logic
	Cartesian Reachability logic
	Proof of thm:CRLandRLcorrespondence
	Proof of thm:proofsystemSoundness
	Completeness
	Derived Rules
	Relation to CHL

