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Abstract. Electrocardiography (ECG) has the potential for bringing
Affective Computing outside laboratories, thanks to the spread of wear-
able and inexpensive instrumentation. Nevertheless, intra individual vari-
ability could influence Machine Learning (ML) models’ accuracy. To as-
sess this issue, we propose to group the participants according to their
general cardiovascular status, through the clusterization of HRV baseline
features. A specific ML model aimed at classifying emotional responses
was developed for each baseline cluster. This processing will lead to
cardiac-state specific classification models to mitigate ML performance
issues. We experimented this data analytics framework on the Mahnob
HCI database containing ECG paired with emotional self-report assess-
ment. Baseline data was clustered using k-means, dividing the dataset
into two parts. Successively, classification models were separately applied
to each group to predict arousal, valence, and dominance levels from ECG
features. Classifiers applied after clustering outperformed those without
clustering, reaching higher scores and lower randomness. Clustering ECG
baselines to create individualized classifiers may alleviate intra-individual
variability and improve emotion recognition performance, making affec-
tive computing more applicable.

Keywords: Affective Computing · ECG · HRV · Machine Learning ·
Emotion Recognition · ECG Features · Database.
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1 Introduction

Affective computing [1], which involves the computational recognition and inter-
pretation of human emotions, has the potential to revolutionize human-computer
dynamics, allowing to add the emotional layer. However, the results of emotion
recognition studies using Machine Learning (ML) models are often complex, and
the most accurate results are often achieved through multimodal designs (that
is, integrating different signals) or with the use of complex systems such as EEG,
eye tracking, and video recordings [2]. These tools are invasive, expensive, re-
quire specific settings, and could raise privacy issues, leading to difficulties in
their use outside of a laboratory [3]. Electrocardiogram (ECG) and Electroder-
mal Activity (EDA) sensors offer more promising solutions due to the availability
of non-invasive wearable devices [4] pairing user-friendliness with less expensive
instruments, and efficient data management. However, work is still to be done,
as performance obtained with peripheral signals is generally far from perfect[5].

One major issue in using ECG in Affective Computing can be the intra-
individual variations present in a subject’s heart activity, especially when com-
puted outside the classical hospital environments [8]. This range in heart rate
patterns could influence the training of ML models, leading to a less performant
result.

Affective computing models typically involve a standardized workflow [6,
7], beginning with physiological data acquisition where subjects are connected
to devices to record multiple physiological activations, followed by collecting
baseline ”ground truth” data during resting states to mitigate interpersonal
differences. Subjects then engage in tasks or receive stimuli to elicit various
emotional responses for data labeling. Subsequent steps involve cleaning data,
calculating sub-features, and populating a labeled database. Multiple supervised
classification algorithms are then trained and validation is typically performed
through leave-one-out cross-validation. A test phase evaluates the performance
levels and the best performer algorithm is selected.

To address the inter and intra-variability issue, we propose to add a pre-
liminary step to the classic Affective Computing ML classification training: we
suggest clustering of baseline data for similar characteristics. Clustering is a tech-
nique that automatically groups similar data points into distinct clusters based
on their inherent patterns or characteristics: in this case, we want to target how
people differ before the experimental conditions. Each task immediately follows
a baseline recording, in which the subject remains in a neutral/resting state.
The baseline values are specifically conditioned both on the subject’s cardiac
profile, and on any residual activation, and offer the key for evaluating both
inter-personal and intra-personal differences. The proposed additional step clus-
ters the baseline recording, grouping the ECG data connected to the emotional
activation, before applying algorithms to these different groups. The starting
dataset will be divided according to clusterization results. To each group will be
applied a standard classification model, using the physiological data collected
during the emotional tasks as input. We hypothesize that the model perfomance
will improve, in the clustered groups; in this feasibility study, we experiment
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with the application of this model to the Mahnob HCI open database, achiev-
ing an improvement in the performance of the final classifiers. This approach
can potentially alleviate the burden of intra-individual variability, improve the
accuracy of ML models for emotion recognition, and allow their use in a more
accessible, efficient, and effective way outside a laboratory setting.

2 Methods

2.1 Manhob-Hci Database

This study was performed on the Mahnob HCI multimodal database [2], which is
openly licensable for scientific purposes [9]. The database contains EEG, periph-
eral physiological signals, face and body videos, gaze, and audio of 27 subjects
who were watching 20 emotionally connotated videos. Subjects were also re-
quested to evaluate their emotional state after every video and rate their affect
for arousal, valence, and dominance level, following Russell et al., and Fontaine
et al. frameworks [10, 11].

Soleymani et al. also present results in the classification of emotion and va-
lence, arousal, and dominance levels [2]; their results show that the use of ag-
gregated peripheral physiology for predicting low, medium, and high levels of
Arousal and Valence obtained a performance of 46% and 45.5% respectively.

In [12], the authors show an increase to 51% in performance for both Arousal
(with Random Forest and K-Nearest Neighbors) and Valence (with Decision
Tree), using HRV temporal and frequency features, calculated from the sole
ECG signal. HRV is recognized as a reliable physiological data of choice to
discriminate a person’s mental and emotional state [13, 14]; better performance
in Valence and Arousal detection with HRV features, rather than ECG, was
obtained also on the RECOLA dataset [15].

2.2 Data analytics Framework

Following these premises, our first analysis will be focused on the HRV features
extracted from the ECG signals, which will be used to train and test multiple
classification algorithms. The prediction will be aimed at three different levels
of valence, arousal, and dominance (low, medium, and high).

As the second step, a preliminary clusterization will be presented, as a way to
overcome inter-individual differences in ECGs, which could make algorithms less
generalizable. Baselines will be clustered to create different starting states; after
that, the classification process will be repeated for each group. This will create
a model in which every new subject, at a specific moment, will be associated
with a specific classificator, trained with a heart pattern starting with a similar
baseline (Fig. 1).
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Fig. 1. ECG from each subject is acquired and processed. A first analysis of the ECG
pattern will select to which cluster it belongs; after that, the recorded data will flow
through the classifier trained on the data group it pertains to. The classifier will con-
sequently select a more precise affective state.

2.3 HRV Data Preprocessing

We received access to the Mahnob HCI multimodal database [2] and downloaded
from the web-portal [16] the ECG data collected for the experiment called ”emo-
tion elicitation”, alongside the subject and the session ID, and if the ECG track
was recorded during an emotional stimulus or not. Each session recorded during
an emotional stimulus was paired with the precedent not stimulated recording
(i.e. its baseline). We also collected the assessment that the participant provided
on the levels of arousal, valence, and dominance (evaluated on a 9-point Likert
Scale). These data were used to populate our dataset.

The ECG signal was processed using the Python libraries Numpy [17], Pandas
[18], HeartPy [19], and hrvanalysis [20]; the signal was cleaned from outliers
and ectopic beats, and the following missing values substituted through linear
interpolation. HRV features in the domains of time and frequency were calculated
(Time domain features: Mean NNI, SDNN, SDSD, NN50, pNN50, NN20, pNN20,
RMSSD, Median NN, Range NN, CVSD, CV NNI, Mean HR, Max HR, Min
HR, STD HR; Frequency domain features: LF, HF, VLF, LH/HF ratio, LFnu,
HFnu, Total Power. See Table 1 for acronyms and definitions) and the baseline
was subtracted.

2.4 ML Prediction Models Training and Validation

First, we apply a typical classification model to have benchmark performance
values. Decision Tree (DT), Random Forest (RF), KNeighbors (KNn), Support
Vector Machine (SVM) [24], and XGBoost (XGB) [25] algorithms were trained
to predict arousal, valence, and dominance in a 3-step layout, as in Soleymani et
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Table 1. Description of acronyms used in the article, regarding heart rate variability
(HRV, the variation in the time intervals between adjacent heartbeats), divided for
time and frequency domain features [21–23].

Time domain Definition

RR intervals Interbeat intervals between successive R points
NN intervals Interbeat intervals after artifacts removal
Mean NNI Mean NN Intervals
SDNN NN intervals standard deviation
SDSD Standard deviation of differences between adjacent NN intervals
NN50 Number of NN interval differences more than 50ms
pNN50 Percentage of successive RR intervals that differ by more than 50 ms
NN20 Number of NN interval differences more than 20ms
pNN20 Percentage of successive RR intervals that differ by more than 20 ms
RMSSD Root mean square of successive RR interval differences
Median NN Median of NN values
Range NN Range of NN values
CVSD RMSSD divided MeanNN
CV NNI SDNN divided by MeanNN
HR Heart Rate
Mean HR Mean of HR values
Max HR Maximum HR value
Min HR Minimum HR value
STD HR Standard deviation

Frequency domain Definition

LF Low-frequency band (0.04–0.15 Hz) in absolute power
HF High-frequency band (0.15–0.4 Hz) in absolute power
VLF Very-low-frequency band (0.0033–0.04 Hz) in absolute power
LH/HF ratio LF/HF power ratio
LFnu Relative power of LF in normal units
HFnu Relative power of HF in normal units
Total Power Absolute power of the sum of the frequency bands

al., and Ferdinando, et al. (1-3 low, 4-6 medium, 7-9 high) [2, 26]. Each classifica-
tion was evaluated through a Leave-One-Subject-Out Cross-Validation (LOSO
CV), in which the trained algorithm is repeatedly tested on all the subject data
-1, until all subjects are ”left out”. A further Features Selection through a Recur-
sive Feature Elimination with Cross-Validation (RFECV) [24] was also applied
to all the conditions, to select which features probably increase the functionality
of the model. The ”dummy value” was calculated for each classification through
a Dummy Classifier, that acts as a benchmark to assess how well a machine
learning model performs compared to random chance or simple rules, and helps
establish a baseline for randomness in the evaluation of more complex models.
[24]. Each model was evaluated by estimating precision (the ratio of correctly
predicted positive observations to total predicted positives), recall (the ratio
of correctly predicted positive observations to all actual positives), and F1-score
(the harmonic mean of precision and recall, balancing their values). Similar mod-
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els were also applied in [12] to check the validity of HRV features as input for
the prediction of the affective state.

The second model was applied to the same starting dataset. HRV features of
baseline data were selected, considering every baseline recorded before showing to
the subjects the emotive connoted videos as a single entry. The subject’s baseline
values were clustered through a K-means by using both time and frequency
domain characteristics as input features. The hyperparameters were configured
as follows: the maximum number of interactions was set to 300, the clustering
algorithm used was ”Lloyd”. To determine the appropriate number of clusters,
we calculated the silhouette score, which measures the sensibility of clustering
by considering both the cohesion within clusters and the separation between
clusters. A higher silhouette score indicates better clustering quality. In our case,
we selected 2 clusters based on both the silhouette score and the scarcity of data
when divided into more clusters. The calculated silhouette score reached 0.79,
indicating that approximately 79% of the data points were confidently assigned
to a specific cluster, while the remaining points were considered potential outliers
or subject to some degree of uncertainty.

To understand the contribution of each feature to the clusterization tasks,
a DT (found as the best performer algorithm) was trained with baseline data
to predict the labels Cluster 0 or Cluster 1. We calculated permutation feature
importance scores using the eli5 package, which assesses the decline in model
performance when each feature is randomly permuted, to obtain insight into the
significance of each feature in cluster discrimination.

The starting database was consequently split, referring to the cluster be-
longing to the baseline data. Therefore the new databases underwent the same
classification models used in the first analysis, i.e.: DT, RF, KNn, SVM, and
XGB models were trained to predict arousal, valence, and dominance in the 3-
step layout with and without an RFECV, evaluated through a LOSO CV, and
compared to a Dummy Classifier.

3 Results

3.1 Clusterization Results

Baseline clustering grouped 76,34% of data in Cluster 0 and 23,66% in Cluster
1. Figure 2 shows the mean of feature importance scores in the clusterization
between Cluster 0 and Cluster 1, excluding features with null relevance. We
calculated the DT classification with LOSO CV and reported the mean value of
the resulting features. Specifically, the major influence in the clustering division
is brought by the total power, followed by LF, RMSSD, and LF/HF ratio.

3.2 Affective Classification

Table 2 reports the best-performing algorithms in the aggregate, divided by
arousal, valence, and dominance. The results of the first classifications are shown
alongside the results obtained on clustered data.
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Fig. 2. The findings are charted by mean significance ratings across all leave-one-
subject-out cross-validation splits. We eliminated characteristics with little relevance
to the plot to increase its interpretability. Refer to table 1 for acronym definitions.

In the first round of classification, Random Forest without feature selection
performs best for arousal levels, XGboost with RFECV features selection for
valence, and Decision Tree with RFECV feature selection for dominance.

For both Cluster 0 and Cluster 1 data, the best-performing algorithm is the
Decision Tree without feature selection for arousal. For valence, XGBoost with
RFECV feature selection is the best performing in both the clusters, with Ran-
dom Forest (with RFECV feature selection in Cluster 0 and without in Cluster
1). For dominance, Random Forest with RFECV feature selection performs best
with Cluster 0, while Decision Tree with RFECV feature selection with Cluster
1. For valence and arousal, classifications after clusterization reach higher scores
for both clusters, showing a wider distance from the dummy random values. For
dominance, results without clusterization are comparable in Cluster 1 and higher
in Cluster 0, while in Cluster 1 distance from randomness is more marked. For
exhaustiveness, the weighted mean results of Clusters 0 and Cluster 1 are also
shown in table 2.
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Table 2. Performance Results: Classification results are separated by affect and clus-
tering condition: no clusterization or pre-clusterized baseline data in Cluster 0 and
Cluster 1. Each cell reports Precision, Recall, and F-1 scores of the best-performing
algorithm and, in brackets, if the results were obtained with (+) or without (-) an
RFECV Features Selection. The Dummy Classifier results are also reported with the
same criteria. Finally, the weighted mean between Cluster 0 and Cluster 1 results is
reported.

Affect No Cluster Cluster 0 Cluster 1
Weighted Mean
of Clusters 0 & 1

Arousal

RF (-FS)
Precision: 0.53
Recall: 0.44
F1-score: 0.42

DT (-FS)
Precision: 0.57
Recall: 0.52
F1-score: 0.51

DT (-FS)
Precision: 0.54
Recall: 0.51
F1-score: 0.51

Precision: 0.56
Recall: 0.52
F1-score: 0.51

Dummy

Precision: 0.43
Recall: 0.34
F1-score: 0.36

Dummy

Precision: 0.26
Recall: 0.18
F1-score: 0.20

Dummy

Precision: 0.44
Recall: 0.38
F1-score: 0.39

Dummy

Precision: 0.30
Recall: 0.23
F1-score: 0.24

Valence

XGB (+FS)
Precision: 0.48
Recall: 0.45
F1-score: 0.44

XGB (+FS)
Precision: 0.50
Recall: 0.44
F1-score: 0.44
RF (+FS)
Precision: 0.51
Recall: 0.41
F1-score: 0.42

RF (-FS)
Precision: 0.58
Recall: 0.66
F1-score: 0.60
XGB (+FS)
Precision: 0.60
Recall: 0.62
F1-score: 0.59

XGB
Precision: 0.52
Recall: 0.48
F1-score: 0.475
RF
Precision: 0.53
Recall: 0.47
F1-score: 0.46

Dummy

Precision: 0.50
Recall: 0.40
F1-score: 0.43

Dummy

Precision: 0.47
Recall: 0.39
F1-score: 0.41

Dummy

Precision: 0.17
Recall: 0.12
F1-score: 0.14

Dummy

Precision: 0.40
Recall: 0.32
F1-score: 0.35

Dominance

DT (+FS)
Precision: 0.51
Recall: 0.47
F1-score: 0.46

RF (+FS)
Precision: 0.47
Recall: 0.36
F1-score: 0.38

DT (+FS)
Precision: 0.51
Recall: 0.45
F1-score: 0.46

Precision: 0.48
Recall: 0.38
F1-score: 0.40

Dummy

Precision: 0.50
Recall: 0.40
F1-score: 0.43

Dummy

Precision: 0.46
Recall: 0.37
F1-score: 0.39

Dummy

Precision: 0.27
Recall: 0.22
F1-score: 0.24

Dummy

Precision: 0.415
Recall: 0.33
F1-score: 0.35

4 Discussion and Conclusions

As stated also in [12], valence, arousal, and dominance levels can be characterized
by differences in HRV values. The results we obtained without clusterization are
comparable to [12] but a further Cross-Validation was added, to increase their
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generalizability. Specifically, HRV features alone outperform the aggregate use
of peripheral physiological data, if compared with classifications trained on the
same dataset [2].

Our final model proposes to cluster the sole baselines, in order to decide
which classification algorithm needs to be applied to the subsequent activation
phase. The results suggest that clustering subjects based on HRV computed from
baseline ECG can improve affect recognition performance, especially regarding
arousal and valence. Classifiers applied after clustering outperformed those with-
out clustering, indicating that creating individualized models based on groups of
subjects’ heart rate patterns may alleviate intra-individual variability and noise.

As shown in Table 2, regarding precision, arousal scores exhibited an im-
provement from 53% to 56% and valence from 48% to 52%, while dominance
scores decreased from 51% to 48%. In terms of recall, arousal scores moved
from 44% to 52%, valence from 45% to 47%, and dominance scores from 47%
to 38%. The overall accuracy, as measured by the F-1 score, showed improve-
ments in arousal (from 42% to 51%) and in valence (from 44% to 46%), while
decreases in dominance from 46% to 40%. Clustering the baseline data resulted
in enhanced precision, recall, and accuracy for both arousal and valence dimen-
sions. However, the dominance dimension performed better when the data was
not clusterized. These results can be analyzed in light of inter and intraindivid-
ual differences in cardiovascular responses. Additionally, individuals may exhibit
different sensitivities to arousal and valence compared to dominance: this could
impact the performance of the model.

Positive and negative mean feature importance (see Figure 1) provide an
indication of which characteristics determine the cluster of belonging, and may
offer insights into the underlying cardiac functioning. Total power, followed by
LF, RMSSD, and LF/HF ratio have proven the major (positive) influence on
the clusterization.

However, the study can have some limitations. The Mahnob-Hci Database is
relatively small, and the results require validation on larger datasets. At the same
time, intrinsic characteristics of the specific database, such as characteristics of
the participants and the techniques used in the data collection and database
creation may limit the generalizability of the results.

Regarding adding the clustering step, the optimal number of clusters is un-
clear and may vary among different data collections: in this study, the choice of
two clusters was led by data scarcity. Having more data available would allow
one to test if a larger number of clusters could lead to a more precise division
of physiological patterns. Additionally, including other physiological signals like
EDA and respiration in the clustering approach could potentially further im-
prove results and offer insight into how inter and intra-personal differences can
influence physiological reactions to affective and emotive states.

In conclusion, clustering subjects based on HRV features calculated from
ECG baselines appears to be a promising approach to deal with intra-individual
variability in ML emotion recognition. With optimization and an enlargement
of the data pool, this method could make Affective Computing models more
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applicable outside laboratories by improving accuracy for individual users, on
data that can be easily collected in the wild. Future work will aim to validate
and expand this preliminary finding.
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